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Lower limits for distributions of randomly stopped sums1
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Abstract

We study lower limits for the ratioF
∗τ (x)

F (x)
of tail distributions whereF ∗τ is a distribution

of a sum of a random sizeτ of i.i.d. random variables having a common distributionF , and a
random variableτ does not depend on summands.
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1. Introduction. Let ξ, ξ1, ξ2, . . . be independent identically distributed random variables. We
assume that their common distributionF is unbounded from the right, that is,F (x) ≡ F (x,∞) >
0 for all x. PutS0 = 0 andSn = ξ1 + . . . + ξn, n = 1, 2, . . . .

Let τ be a counting random variable which does not depend on{ξn}n≥1. Denote byF ∗τ the
distribution of a random sumSτ = ξ1 + . . . + ξτ . In this paper we study lower limits (asx → ∞)

for the ratioF ∗τ (x)

F (x)
.

We distinguish two types of distributions, heavy- and light-tailed. A random variableη has a
heavy-taileddistribution ifEeεη = ∞ for all ε > 0, andlight-tailed otherwise.

We consider only non-negative random variables and, in the case of heavy-tailedF , study
conditions for

lim inf
x→∞

F ∗τ (x)

F (x)
= Eτ (1)

to hold. This problem has been given a complete solution in [5] for τ = 2, and then in [3]
for τ with a light-tailed distribution and for heavy-tailed summands. In the present work, we
generalise results of [3] onto classes of distributions ofτ which include all light-tailed distributions
and also some heavy-tailed distributions. With each heavy-tailed distributionF , we associate a
corresponding class of distributions ofτ . For earlier studies on lower limits and on a related
problem of justifying a constantK in the equivalenceF ∗2(x) ∼ KF (x), see e.g. [1, 2, 4, 7, 8]
and further references therein.

Since the inequality “≥” in (1) is valid for non-negative{ξn} without any further assumptions
(see, e.g., [9] or [3]), we immediately get the equality ifEτ = ∞. Therefore, in the rest of the
paper, we consider the caseEτ < ∞ only. Our first result is
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Theorem 1. Assume thatξ ≥ 0 is heavy-tailed andEξ < ∞. Let, for somec > Eξ,

P{cτ > x} = o(F (x)) asx → ∞. (2)

Then(1) holds.

The proof of Theorem 1 is based on a study of momentsEef(ξ) for appropriately chosen
concave functionf . More precisely, we deduce Theorem 1 from the following general result
which explores some ideas from [9, 5, 3].

Theorem 2. Assume thatξ ≥ 0 is heavy-tailed andEξ < ∞. Let there exists a functionf :
R

+ → R such that

Eef(ξ) = ∞, (3)

and, for somec > Eξ,

Eef(cτ) < ∞. (4)

If f(x) ≥ ln x for all sufficiently largex and if the differencef(x)− lnx is an eventually concave
function, then(1) holds.

In particular, the equality (1) is valid providedEξk = ∞ andEτk < ∞ for somek ≥ 1; it is
sufficient to consider the functionf(x) = k ln x. Earlier this was proved in [3, Theorem 1] by a
more simple method.

If we consider instead the functionf(x) = γx, γ > 0, then we obtain the equality (1) provided
ξ is heavy-tailed butτ is light-tailed. This is Theorem 2 from [3].

Finally, the equality (1) is valid ifF is a Weibull distribution with parameterβ ∈ (0, 1),
F (x) = e−xβ

andf(x) = xβ or, more generally,f(x) = xβ − c ln x for x ≥ 1 wherec ≤ β is
any fixed constant.

The counterpart of Theorem 1 in the light-tailed case is stated next. But first we need some
notations. By the Laplace transform ofF at the pointγ ∈ R we mean

ϕ(γ) =

∫ ∞

0
eγxF (dx) ∈ (0,∞].

Put
γ̂ = sup{γ : ϕ(γ) < ∞} ∈ [0,∞].

Note that the functionϕ(γ) is monotone continuous in the interval(−∞, γ̂), andϕ(γ̂) = lim
γ↑bγ

ϕ(γ) ∈

[1,∞].

Theorem 3. Let γ̂ ∈ (0,∞], so thatϕ(γ̂) ∈ (1,∞]. If (2) holds and, for any fixedy > 0,

lim inf
x→∞

F (x − y)

F (x)
≥ ebγy, (5)

then

lim inf
x→∞

F ∗τ (x)

F (x)
= Eτϕτ−1(γ̂).
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The paper is organised as follows. In Section 2, we formulateand prove a general result on
characterisation of heavy-tailed distributions on the positive half-line. Section 3 is devoted to the
estimation of the functionalEeh(Sn) for a concave functionh. Sections 4 and 5 contain proofs of
Theorems 2 and 1 respectively. Section 6 is devoted to the proof in light-tailed case.

2. Characterisation of heavy-tailed distributions. It was proved in [3, Lemma 2] that, for
any heavy-tailed random variableξ ≥ 0 and for any realδ > 0, there exists an increasing concave
functionh : R

+ → R
+ such thatEeh(ξ) ≤ 1 + δ andEξeh(ξ) = ∞. In the present section, we

obtain some generalisation of it.

Lemma 1. Let ξ ≥ 0 be a random variable with a heavy-tailed distribution. Letf : R+ → R be
a concave function such that

Eef(ξ) = ∞. (6)

Let a functiong : R
+ → R be such thatg(x) → ∞ as x → ∞. Then there exists a concave

functionh : R+ → R such thath ≤ f and

Eeh(ξ) < ∞, Eeh(ξ)+g(ξ) = ∞.

Proof. Without loss of generality assumef(0) = 0. We will construct a functionh(x) on the
successive intervals. For that we introduce two positive sequences,xn ↑ ∞ as n → ∞ and
εn ∈ (0, 1]. We putx0 = 0, h(0) = f(0) = 0, h′(0) = f ′(0), and

h(x) = h(xn−1) + εn min(h′(xn−1)(x − xn−1), f(x) − f(xn−1)) for x ∈ (xn−1, xn];

hereh′ is the left derivative of the functionh. The functionh is increasing, sinceεn > 0 and
f is increasing. Moreover, this function is concave, due toεn ≤ 1 and concavity off . Since
h(x) − h(xn−1) ≤ f(x) − f(xn−1) for x ∈ (xn−1, xn], we haveh ≤ f .

Now proceed with the very construction ofxn andεn. By conditionsg(x) → ∞ and (6), we
can choosex1 so large thateg(x) ≥ 21 for all x ≥ x1 and

E{emin(h′(0)ξ,f(ξ)); ξ ∈ (x0, x1]} + emin(h′(0)x1,f(x1))F (x1) > F (x0) + 1.

Chooseε1 ∈ (0, 1] so that

E{eε1 min(h′(0)ξ,f(ξ)); ξ ∈ (x0, x1]} + eε1 min(h′(0)x1,f(x1))F (x1) = F (x0) + 1.

Puth(x) = ε1 min(x, f(x)) for x ∈ (0, x1]. Then the latter equality is equivalent to

E{eh(ξ); ξ ∈ (x0, x1]} + eh(x1)F (x1) = eh(x0)F (x0) + 1/2,

By induction we construct an increasing sequencexn and a sequenceεn ∈ (0, 1] such that
eg(x) ≥ 2n for all x ≥ xn, and

E{eh(ξ); ξ ∈ (xn−1, xn]} + eh(xn)F (xn) = eh(xn−1)F (xn−1) + 1/2n

for anyn ≥ 1. Forn = 1 this is already done. Make the induction hypothesis for somen ≥ 2.
For anyx > xn, denote

δ(x, ε) ≡ eh(xn)
(
E{eεmin(h′(xn)(ξ−xn),f(ξ)−f(xn)); ξ ∈ (xn, x]}

+eε min(h′(xn)(x−xn),f(x)−f(xn))F (x)
)
.
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By the convergenceg(x) → ∞, by heavy-tailedness ofξ, and by the condition (6), there exists
xn+1 so large thateg(x) ≥ 2n+1 for all x ≥ xn+1 and

δ(xn+1, 1) > eh(xn)F (xn) + 1.

Note that the functionδ(xn+1, ε) is continuously decreasing toeh(xn)F (xn) asε ↓ 0. Therefore,
we can chooseεn+1 ∈ (0, 1] so that

δ(xn+1, εn+1) = eh(xn)F (xn) + 1/2n+1.

Then

E{eh(ξ); ξ ∈ (xn, xn+1]} + eh(xn+1)F (xn+1) = eh(xn)F (xn) + 1/2n+1.

Our induction hypothesis now holds withn + 1 in place ofn as required.
Next, for anyN ,

E{eh(ξ); ξ ≤ xN+1} =

N∑

n=0

E{eh(ξ); ξ ∈ (xn, xn+1]}

=
N∑

n=0

(
eh(xn)F (xn) − eh(xn+1)F (xn+1) + 1/2n+1

)

≤ eh(x0)F (x0) + 1,

so thatEeh(ξ) is finite. On the other hand, sinceeg(x) ≥ 2k for all x ≥ xk,

E{eh(ξ)+g(ξ); ξ > xn} ≥ 2n
(
E{eh(ξ); ξ ∈ (xn, xn+1]} + eh(xn+1)F (xn+1)

)

= 2n(eh(xn)F (xn) + 1/2n+1).

Then, for anyn, E{eh(ξ)+g(ξ); ξ > xn} ≥ 1/2, which impliesEeh(ξ)+g(ξ) = ∞. The proof is
complete.

Lemma 2. Let ξ ≥ 0 be a random variable with a heavy-tailed distribution. Letf1 : R
+ → R

be any measurable function andf2 : R+ → R a concave function such that

Eef1(ξ) < ∞ and Eef1(ξ)+f2(ξ) = ∞.

Let a functiong : R
+ → R be such thatg(x) → ∞ as x → ∞. Then there exists a concave

functionh : R+ → R such thath ≤ f2 and

Eef1(ξ)+h(ξ) < ∞ and Eef1(ξ)+h(ξ)+g(ξ) = ∞.

Proof. Consider a new governing probability measureP
∗ defined in the following way:

P
∗{dω} =

ef1(ξ(ω))
P{dω}

Eef1(ξ)
.

Then

E
∗ef2(ξ) =

Eef1(ξ)+f2(ξ)

Eef1(ξ)
= ∞.
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In particular,ξ is heavy-tailed against the measureP
∗. Now it follows from Lemma 1 that there

exists a concave functionh : R
+ → R such thath ≤ f2, h(x) = o(x), E

∗eh(ξ) < ∞, and
E

∗eh(ξ)+g(ξ) = ∞. Equivalently,

Eef1(ξ)+h(ξ) = Eef1(ξ)
E

∗eh(ξ) < ∞

and
Eef1(ξ)+h(ξ)+g(ξ) = Eef1(ξ)E

∗eh(ξ)+g(ξ) = ∞.

The proof is complete.
3. Growth rate of sums in terms of generalised moments. According to the Law of Large

Numbers, the sumSn growths likenEξ. In the following lemma we provide conditions on a
functionh(x), guaranteeing an appropriate rate of growth for the functional Eeh(Sn).

Lemma 3. Let ξ be a non-negative random variable. Leth : R
+ → R be a non-decreasing

eventually concave function such thath(x) = o(x) asx → ∞ andh(x) ≥ ln x for all sufficiently
large x. If Eeh(ξ) < ∞, then, for anyc > Eξ, there exists a constantK(c) such thatEeh(Sn) ≤
K(c)eh(nc), for all n.

To prove this lemma, we need the following assertion, which generalises the corresponding
estimate from [6]:

Lemma 4. Let η be a random variable withEη < 0. Let h : R → R be a non-decreasing and
eventually concave function such thath(x) = o(x) asx → ∞ andh(x) ≥ ln x for all sufficiently
large x. If Eeh(η) < ∞, then there existsx0 such that the inequalityEeh(x+η) ≤ eh(x) holds for
all x > x0.

Proof. Sinceh is increasing, without loss of generality we may assume thatη is bounded from
below, that is,η ≥ M for someM . Also, we may assume thath is non-negative and concave on
the whole half-line[0,∞).

Sinceh is concave,h′(x) is non-increasing function. With necessityh′(x) → 0 asx → ∞,
otherwise the conditionh(x) = o(x) is violated. If ultimatelyh′(x) = 0, thenh is ultimately a
constant function and the proof of the theorem is obvious.

Consider now the caseh′(x) → 0 asx → ∞ but h′(x) > 0 for all x. Putg(x) ≡ 1/h′(x),
theng(x) ↑ ∞ asx → ∞. SinceEη < 0, we can choose sufficiently largeA such that

ε ≡ E{η; η ∈ [M,A]} + eE{η; η > A} < 0. (7)

By concavity ofh, for anyx andy ∈ R we have the inequalityh(x+y)−h(x) ≤ h′(x)y. Hence,

Eeh(x+η)−h(x) ≤ E{eh′(x)η; η ∈ [M,A]} + E{eh′(x)η; η ∈ (A, g(x)]}

+E{eh(x+η)−h(x); η > g(x)}

≡ E1 + E2 + E3. (8)

Sinceh′(x) → 0, the Taylor’s expansion for the exponent up to the linear term implies, asx → ∞,

E1 = P{η ∈ [M,A]} + h′(x)E{η; η ∈ [M,A]} + o(h′(x)). (9)

On the eventη ∈ (A, g(x)] we haveh′(x)η ≤ 1 and, thus,eh′(x)η ≤ 1 + eh′(x)η. Then

E2 ≤ P{η ∈ (A, g(x)]} + eh′(x)E{η; η ∈ (A, g(x)]}. (10)
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We have

E3 = E{eh(η)eh(x+η)−h(x)−h(η); η > g(x)}. (11)

By concavity ofh, for x > 0, the differenceh(x + y) − h(y) is non-increasing iny. Therefore,
for anyy > g(x),

h(x + y) − h(x) − h(y) ≤ h(x + g(x)) − h(x) − h(g(x))

≤ h′(x)g(x) − h(g(x))

= 1 − h(g(x))

≤ 1 − ln g(x),

due to the conditionh(x) ≥ ln x for all sufficiently largex. This estimate and (11) imply

E3 ≤ E{eh(η); η > g(x)}e1−ln g(x)

= o(1)/g(x) = o(h′(x)) asx → ∞, (12)

by the conditionEeh(η) < ∞. Substituting (9), (10) and (12) into (8) and taking into account the
choice (7) ofA, we get

Eeh(x+η) = eh(x)
Eeh(x+η)−h(x)

≤ eh(x)(1 + h′(x)ε + o(h′(x))) asx → ∞.

Sinceε < 0, the latter estimate impliesEeh(x+η) < eh(x) for all sufficiently largex. The proof is
complete.

Proof of Lemma 3. Putηn = ξn − c. We haveEηn < 0 andEeh(ηn) < ∞. By Lemma 4,
there existsx0 > 0 such thatEeh(x+ηn) ≤ Eeh(x) for x > x0. Then, by monotonicity ofh(x) and
by non-negativity ofSn−1,

Eeh(Sn) ≤ Eeh(Sn+x0) = Eeh(Sn−1+x0+c+ηn) ≤ Eeh(Sn−1+x0+c).

Now, by the induction arguments,Eeh(Sn) ≤ eh(cn+x0) ≤ eh(cn)eh(x0). The proof is complete.
4. Proof of Theorem 2. Before starting the proof of Theorem 2, we formulate the following

proposition from [3, Corollary 1]:

Proposition 1. Let there exist a concave functionr : R
+ → R such thatEer(ξ) < ∞ and

Eξer(ξ) = ∞. If F is heavy-tailed andEτer(Sτ−1) < ∞, then(1) holds.

We also need two auxiliary technical results.

Lemma 5. Letχ ≥ 0 be any random variable. Then there exists a differentiable concave function
g : R+ → R

+, g(0) = 0, such thatg′(x) ≤ 1 for all x, g(x) → ∞ asx → ∞, andEeg(χ) < ∞.

Proof. Consider an increasing sequence{xn} such thatx0 = 0, x1 = 1, xn+1−xn > xn−xn−1,
andP{χ > xn} ≤ e−n. Putg1(xn) = n/2 and continiously linear between these points. Then,
for anyx ∈ (xn, xn+1) andy ∈ (xn+1, xn+2) we have

g′1(x) =
1

2(xn+1 − xn)
>

1

2(xn+2 − xn+1)
= g′1(y),

6



so thatg1 is concave. By the construction,g1(x) ↑ ∞ asx → ∞ and g′1(x) ≤ 1 where the
derivative exists. Finally,

Eeg1(χ) ≤

∞∑

n=0

eg1(xn+1)
P{χ > xn} ≤

∞∑

n=0

e(n+1)/2e−n < ∞.

A procedure of smoothing, sayg(x) =
∫ x+1
x g1(y)dy −

∫ 1
0 g1(y)dy, completes the proof.

Lemma 6. Letχ ≥ 0 be a random variable such that, for some concave functionf : R+ → R
+,

Eef(χ) = ∞. Then there exists a concave functionf1 : R
+ → R

+ such thatf1 ≤ f , f1(x) =
o(x) asx → ∞, andEef1(χ) = ∞.

Proof. Takex1 so large thatE{emin(χ,f(χ));χ ≤ x1} ≥ 1 and putf1(x) = min(x, f(x)) for
x ∈ [0, x1]. Then by induction, for anyn, we can choosexn+1 such that

E{ef1(xn)+min(n−1f ′

1
(xn)(χ−xn),f(χ)−f(xn));χ ∈ (xn, xn+1]} ≥ 1.

Let f1(x) = f1(xn) + min(n−1f ′
1(xn)(x− xn), f(x)− f(xn)) for x ∈ (xn, xn+1]. By construc-

tion, f1 is concave,f1 ≤ f , andf ′
1(xn+1) ≤ f ′

1(xn)/n → 0 asn → ∞.
Proof of Theorem 2. Without loss of generality, assume thatf(x) ≥ ln x for all x and that

f2(x) ≡ f(x) − lnx is concave on the whole posititive half-line. By Lemma 6 and by measure
change arguments like in the proof of Lemma 2 we may assume from the very beginning that

f(x) = o(x) asx → ∞.

Next we state the existence of a concave functiong : R
+ → R such thatg(x) → ∞ asx → ∞,

g(x) ≤ ln x for all sufficiently largex, the differenceln x − g(x) is a non-decreasing function,
and

Eef(cτ)+g(cτ) < ∞.

Indeed, by Lemma 5 and again measure change technique, thereexists a differentiable concave
function g1 : R

+ → R
+ such thatg1(0) = 0, g1(x) ↑ ∞, g′1(x) ≤ 1, andEef(cτ)+g1(cτ) < ∞.

Putg(x) = g1(ln(x+1))−1. Theng is a monotone function increasing to infinity andg(x) ≤ ln x
for all sufficiently largex. In addition,

(ln x − g(x))′ = 1/x − g′1(ln(x + 1))/(x + 1) ≥ 0,

so that the differenceln x − g(x) is a non-decreasing function as needed.
Since the functionf2(x) is concave, by Lemma 2 withf1(x) = ln x, there exists a concave

function h such thath ≤ f2, h(x) = o(x), Eξeh(ξ) < ∞ andEξeh(ξ)+g(ξ) = ∞. Sinceln x +
h(x) + g(x) ≤ f(x) + g(x), by (4) and by the choice ofg,

Eτeh(cτ)+g(cτ) < ∞. (13)

The concave functionr(x) = h(x) + g(x) satisfies all conditions of Proposition 1. Indeed, due to
the inequalityg(x) ≤ ln x for all sufficiently largex, we haveEer(ξ) < ∞ becauseEξeh(ξ) < ∞.
It remains to check thatEτer(Sτ−1) < ∞. Since, by (13),

E{τer(Sτ );Sτ ≤ cτ} ≤ Eτer(cτ) < ∞,

7



it suffices to prove that

E{τer(Sτ );Sτ > cτ} < ∞.

We proceed in the following way:

E{cτer(Sτ );Sτ > cτ} =

∞∑

n=1

P{τ = n}cnE{er(Sn);Sn > cn}

=
∞∑

n=1

P{τ = n}eg(cn)+ln(cn)−g(cn)
E{eh(Sn)+g(Sn);Sn > cn}.

By the monotonicity of the differenceln x − g(x), we obtain the following estimate

E{cτer(Sτ );Sτ > cτ} ≤

∞∑

n=1

P{τ = n}eg(cn)
E{eln Sn+h(Sn);Sn > cn},

Since the functionln x + h(x) is concave andln x + h(x) ≥ ln x, by Lemma 3,

Eeln Sn+h(Sn) ≤ K(c)eln(nc)+h(cn)

for someK(c) < ∞. Therefore,

E{cτer(Sτ );Sτ > cτ} ≤ K(c)

∞∑

n=1

P{τ = n}eg(cn)eln(cn)+h(nc)

= K(c)cEτeh(cτ)+g(cτ) < ∞,

from (13). The proof of Theorem 2 is complete.
5. Proof of Theorem 1. Denote byG the distribution function ofcτ .
We will construct an increasing concave functionf : R+ → R such that

Eξef(ξ) = ∞ and Eτef(cτ) < ∞. (14)

Then the desired relation 1) will follow by applying Theorem2.
If G is light-tailed then one can takef(x) = λx for a sufficiently smallλ > 0. ¿From now on

we assumeG to be heavy-tailed.
Consider new random variablesξ∗ andτ∗ with the following distributions:

P{ξ∗ ∈ dx} =
xF (dx)

Eξ
and P{τ∗ = n} =

nP{τ = n}

Eτ
.

Denote byF∗ and G∗ the distributions ofξ∗ and cτ∗ respectively. Then bothF∗ and G∗ are
heavy-tailed and

G∗(x) = o(F ∗(x)) asx → ∞. (15)

The heavy-tailedness ofG∗ is equivalent to the following condition: for anyε > 0,
∫ ∞

1
G∗(ε

−1 ln x)dx ≡

∫ ∞

0
exG∗(x/ε)dx = ∞. (16)

8



In terms of new distributionsF∗ andG∗, conditions (14) nay be reformulated as follows: we need
to construct an increasing concave functionf such thatEef(ξ∗) = ∞ andEef(cτ∗) < ∞, or,
equivalently,

∫ ∞

1
F ∗(f

−1(ln x))dx = ∞ and
∫ ∞

1
G∗(f

−1(ln x))dx < ∞. (17)

The concavity off is equivalent to the convexity of its inverse,h = f−1. So, conditions (17) may
be rewritten as: we have to present an increasing convex function h such that

∫ ∞

0
exF ∗(h(x))dx = ∞ and

∫ ∞

0
exG∗(h(x))dx < ∞. (18)

We will constructh(x) as a piece-wise linear function. For this, we will introducetwo increas-
ing sequences, sayxn ↑ ∞ andan ↑ ∞, and let

h(x) = h(xn) + an(x − xn) for x ∈ (xn, xn+1].

Then the convexity off will follow from the increase of{an}.
Putx0 = 0 andf(x0) = 0. Due to (15) and (16), we can choosex1 so large that

F ∗(y)

G∗(y)
≥ 21

for all y > x1 and
∫ x1

0
exG∗(h(x0) + 1 · (x − x0))dx ≥ 1.

Then there exists a sufficiently largea0 ≥ 1 such that
∫ x1

0
exG∗(h(x0) + a0(x − x0))dx = 1.

Now we use the induction argument to construct increasing sequences{xn} and{an} such
that

F ∗(y)

G∗(y)
≥ 2n+1 (19)

for all y > xn+1 and
∫ xn+1

xn

exG∗(h(x))dx = 2−n.

Forn = 0 this is already done. Make the induction hypothesis for somen ≥ 1. For anyx > xn+1,
denote

δ(x, a) ≡

∫ x

xn+1

eyG∗(h(xn+1 + a(y − xn+1)))dy.

9



Due to (15) and (16), we can choosexn+2 so large that

F ∗(y)

G∗(y)
≥ 2n+2

for all y > xn+2 and

δ(xn+2, an) ≥ 1.

Since the functionδ(xn+2, a) continuously decreases to0 asa ↑ ∞, we can choosean+1 > an

such that

δ(xn+2, an+1) = 2−(n+1).

Then
∫ xn+2

xn+1

exG∗(h(x))dx = 2−(n+1).

Our induction hypothesis now holds withn + 1 in place ofn as required.
Now the inequalities (18) follow since, from the construction of functionh,

∫ ∞

0
exG∗(h(x))dx =

∞∑

n=0

∫ xn+1

xn

exG∗(h(x))dx

=

∞∑

n=0

2−n < ∞.

and, by (19),

∫ ∞

0
exF ∗(h(x))dx =

∞∑

n=0

∫ xn+1

xn

exF ∗(h(x))dx

≥

∞∑

n=0

2n

∫ xn+1

xn

exG∗(h(x))dx

=
∞∑

n=0

2n2−n = ∞.

The proof of Theorem 1 is complete.
6. Proof of Theorem 3. We apply the exponential change of measure with parameterγ̂ and

consider the distributionG(du) = ebγuF (du)/ϕ(γ̂) and the stopping timeν with the distribution
P{ν = k} = ϕk(γ̂)P{τ = k}/Eϕτ (γ̂). Then it was proved in [3, Lemma 3] that

lim inf
x→∞

G∗ν(x)

G(x)
≥

1

Eϕτ−1(γ)
lim inf
x→∞

F ∗τ (x)

F (x)
. (20)

¿From the definition of̂γ, the distributionG is heavy-tailed. Let us prove that

P{cν > x} = o(G(x)) asx → ∞. (21)
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Indeed, putλ ≡ ln ϕ(γ̂) > 0; then

P{cν > x} =
1

Eϕτ (γ̂)

∑

k>x/c

eλk
P{τ = k}

≤
1

Eϕτ (γ̂)

∫ ∞

x/c
eλy

P{τ ∈ dy}. (22)

Integration by parts implies
∫ ∞

x/c
eλy

P{τ ∈ dy} = −eλy
P{τ > y}

∣∣∣
∞

x/c
+ λ

∫ ∞

x/c
eλy

P{τ > y}dy

= eλx/c
P{cτ > x} +

λ

c

∫ ∞

x
eλy/c

P{cτ > y}dy,

becauseEϕτ (γ̂) < ∞ and, thus,eλy
P{τ > y} → 0 asy → ∞. Now applying the condition (2)

we obtain that the latter sum is of order

o
(
eλx/cF (x) +

λ

c

∫ ∞

x
eλy/cF (y)dy

)
= o

(∫ ∞

x
eλy/cF (dy)

)
asx → ∞.

Together with (22) it implies (21). Therefore, by Theorem 1 we have the equality

lim inf
x→∞

G∗ν(x)

G(x)
= Eν =

Eτϕτ (γ̂)

Eϕτ (γ̂)
,

and, due to (20),

lim inf
x→∞

F ∗τ (x)

F (x)
≤ Eτϕτ−1(γ̂). (23)

The result now follows from Lemma .
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