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Abstract

We study lower limits for the ratié% of tail distributions wherd™" is a distribution

of a sum of a random sizeof i.i.d. random variables having a common distributiopand a
random variable- does not depend on summands.
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1. Introduction. Leté, &1, &, . .. be independent identically distributed random vdeisb\We
assume that their common distributidhis unbounded from the right, that iB(x) = F(z, 00) >
Oforall z. PutSo =0andS, =& +...+&.,n=1,2,....

Let 7 be a counting random variable which does not depenflqi,,>;. Denote byF*™ the
distribution of a random suri; = & + ... + &,. In this paper we study lower limits (as— o)
for the ratioF%S) .

We distinguish two types of distributions, heavy- and litdited. A random variable has a
heavy-taileddistribution if Ee*" = oo for all ¢ > 0, andlight-tailed otherwise.

We consider only non-negative random variables and, in #se of heavy-tailed”, study

conditions for

liminf ——= = Er D

to hold. This problem has been given a complete solutionjfdb~ = 2, and then in[[B]
for 7 with a light-tailed distribution and for heavy-tailed surantds. In the present work, we
generalise results df][3] onto classes of distributions which include all light-tailed distributions
and also some heavy-tailed distributions. With each h¢aNgd distributionF’, we associate a
corresponding class of distributions of For earlier studies on lower limits and on a related
problem of justifying a constark’ in the equivalence™*2(z) ~ KF (), see e.qg.[JUIJZ]14] 7] 8]
and further references therein.

Since the inequality2” in () is valid for non-negative{,, } without any further assumptions
(see, e.g.[]9] or]3]), we immediately get the equalityfEif = co. Therefore, in the rest of the
paper, we consider the caBe < oo only. Our first result is
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Theorem 1. Assume thag > 0 is heavy-tailed and¢ < . Let, for some: > E¢,
P{cr >2} = o(F(z)) asz— oc. (2)
Then() holds.

The proof of Theorem 1 is based on a study of momds€) for appropriately chosen
concave functionf. More precisely, we deduce Theoréin 1 from the following gaheesult
which explores some ideas frofd [9[5, 3].

Theorem 2. Assume that > 0 is heavy-tailed andE{ < oo. Let there exists a functioffi :
R™ — R such that

Ee/©) — 00, (3)
and, for some: > E¢,
Ee/ ") < 0. (4)

If f(z) > Inx for all sufficiently larger and if the differencef () — In « is an eventually concave
function, then() holds.

In particular, the equality{1) is valid providdgc* = oo andET* < oo for somek > 1; itis
sufficient to consider the functiofi(z) = klnz. Earlier this was proved in[3, Theorem 1] by a
more simple method.

If we consider instead the functigf{x) = vz, v > 0, then we obtain the equalityl(1) provided
¢ is heavy-tailed but is light-tailed. This is Theorem 2 frorf][3].

Finally, the equality[(l1) is valid ifF’ is a Weibull distribution with paramete? € (0,1),
F(z) = e and f(z) = 2° or, more generallyf(z) = 2® — clnx for z > 1 wherec < 3 is
any fixed constant.

The counterpart of Theorel 1 in the light-tailed case iestaext. But first we need some
notations. By the Laplace transform Bfat the pointy € R we mean

o) = [ Pl € 0,0).
0
Put
7 =sup{y : p(7) < oo} € [0, 0c].
Note that the functiop(~y) is monotone continuous in the intenfatoo, 5), andp(7) = li%g () €
vy
[1, 00].

Theorem 3. Lety € (0, o0], so thaty(7) € (1, o). If (2) holds and, for any fixed > 0,

lim inf M > e, (5)
= F )
then
BT () 1~
1 f— = Et¢’ .
i T ()



The paper is organised as follows. In Section 2, we formudatk prove a general result on
characterisation of heavy-tailed distributions on theitp@shalf-line. Section 3 is devoted to the
estimation of the functiondEe(S) for a concave functioh. Sections 4 and 5 contain proofs of
Theorem$§ 2 and 1 respectively. Section 6 is devoted to thaf prdight-tailed case.

2. Characterisation of heavy-tailed distributions. It was proved in[[B, Lemma 2] that, for
any heavy-tailed random varialje> 0 and for any reab > 0, there exists an increasing concave
functionh : R™ — R* such thatEe©) < 1 4 § andE&e™©) = co. In the present section, we
obtain some generalisation of it.

Lemmal. Let > 0 be arandom variable with a heavy-tailed distribution. lfet Rt — R be
a concave function such that

Ee/(©) = . (6)

Let a functiong : RT — R be such thay(z) — oo asxz — oo. Then there exists a concave
functionh : R™ — R such thath < f and

Eh© < 0o, EMOTIEO) — o,

Proof. Without loss of generality assum&0) = 0. We will construct a functiorh(z) on the
successive intervals. For that we introduce two positivgueacesz,, 7 oo asn — oo and
en € (0,1]. We putzy = 0, h(0) = f(0) = 0, ' (0) = f'(0), and

h(l') = h(l'n—l) +én min(h/(xn—l)(x - mn—l)v f(SL') - f(xn—l)) forz € (wn—lal'n]?

hereh’ is the left derivative of the functioh. The functionh is increasing, since,, > 0 and
f is increasing. Moreover, this function is concave, due,jo< 1 and concavity off. Since
h(z) — h(xn—1) < f(z) — f(zp_1) for x € (xy—1,zy], we haveh < f.

Now proceed with the very construction ®f ande,,. By conditionsg(xz) — oo and [6), we
can choose;; so large thae?(*) > 2 for all z > z; and

E{e™nWO&S): ¢ ¢ (39, 21]} + e™nP O20f @D E(1)) > F(xg) + 1.
Chooses; € (0,1] so that
E{e5 W OS¢ ¢ (59, 21]} + ¢ @ O/ @OVE (1) = F(zg) + 1.
Puth(x) = 1 min(z, f(x)) for z € (0, z;1]. Then the latter equality is equivalent to
B{e":¢ € (ao,a1]} + " VF (@) = VP (ag) +1/2,

By induction we construct an increasing sequengeand a sequencs, € (0,1] such that
e9@) > on for all z > x,,, and

E{eh(s);ﬁ € (Tp-1,2n]} + eh(m”)F(azn) = eh(m"fl)F(xn_l) +1/2"

foranyn > 1. Forn = 1 this is already done. Make the induction hypothesis for same 2.
For anyz > z,, denote

§(z,e) = eh(rn)<E{e€min(h’(:vn)(ﬁ—rn)vf(é)—f(rn));56 (zn, 2]}

e minll (o) e—ou) S(0) =) ().



By the convergence(xz) — oo, by heavy-tailedness @f, and by the conditior {6), there exists
Tn41 SO large thaed®) > 27+ for all 2 > x,,,, and

§(xns1,1) > e EIF(x,) +1.

Note that the functiom (z,,, 1, <) is continuously decreasing t4(*»)F(z,,) ase | 0. Therefore,
we can choose,,1; € (0, 1] so that

Tpt1,6n+1) = eh(m”)F(mn) + 1/2”“.
Then
E{eh(§)§£ € (l’n, $n+1]} + eh(xn+1)F($n+1) = eh(x")F(ZEn) + 1/2n+1'

Our induction hypothesis now holds with+ 1 in place ofn as required.
Next, for anyN,

E{eh(i);gngH} — ZE{e ;&€ (xn, Tnt]}

N
_ Z(eh(xn)F(wn) o eh(aan)F(xn_i_l) + 1/2n+1>
n=0

< EOF(20) 41,

so thatEe"(©) is finite. On the other hand, sine&®) > 2* for all z > xy,
E{O+9©), ¢ 5 2} > on (E (O ¢ € (@n, wna]} + "E D F(z,, +1))

(@) F(x,) +1/27h).

Then, for anyn, E{eM9+9);¢ > 2.1 > 1/2, which impliesEe$+9() = 0. The proof is
complete.

Lemma2. Leté > 0 be a random variable with a heavy-tailed distribution. lfget: Rt — R
be any measurable function arfg : R™ — R a concave function such that

Ee1© « 5o and EeN1EO+26) —

Let a functiong : R™ — R be such thay(z) — oo asx — oo. Then there exists a concave
functionh : RT — R such thath < f> and

Ec1©+h(©) o and Ee1©O+h(©+9©) —
Proof. Consider a new governing probability measiedefined in the following way:

N1 E@IP{dw}

P*{dw} = i@
Then F1(©)+12(8)
Ee 1 2
* fa(8) 2% 7
Ee?™ = —F27® o0
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In particular, is heavy-tailed against the measi®&. Now it follows from Lemmad ]l that there
exists a concave functioh : Rt — R such thath < f,, h(z) = o(z), E*e¢ < oo, and
E*eM9+9¢) = 0. Equivalently,

Ec1©+h(&) — ReiOR 8 « oo

and
Ee/1(©O+h(&)+9(&) _ mefi@F*ch(@)+9(6) —

The proof is complete.

3. Growth rate of sumsin terms of generalised moments. According to the Law of Large
Numbers, the sung,, growths likenE¢. In the following lemma we provide conditions on a
function h(x), guaranteeing an appropriate rate of growth for the funedife” (5,

Lemma 3. Let & be a non-negative random variable. Uet: RT™ — R be a non-decreasing
eventually concave function such thetr) = o(z) asz — oo andh(z) > In « for all sufficiently
large z. If Ee"(©) < oo, then, for any: > E¢, there exists a constart (¢) such thatEe"(S) <
K (c)e) for all n.

To prove this lemma, we need the following assertion, whiehegalises the corresponding
estimate from([B]:

Lemma4. Letn be a random variable witlEn < 0. Leth : R — R be a non-decreasing and
eventually concave function such thétr) = o(z) asz — oo andh(z) > In x for all sufficiently
large z. If Ee"(" < oo, then there exists, such that the inequalitfe(#+7) < ¢"(*) holds for
all z > xg.

Proof. Sinceh is increasing, without loss of generality we may assume fghatbounded from
below, that is;; > M for someM. Also, we may assume thétis hon-negative and concave on
the whole half-lin€g0, co).

Sinceh is concave i/ (z) is non-increasing function. With necessit{(xz) — 0 asz — oo,
otherwise the condition(z) = o(x) is violated. If ultimatelyh’(z) = 0, thenh is ultimately a
constant function and the proof of the theorem is obvious.

Consider now the casé(z) — 0 asz — oo buth/(z) > 0 for all z. Putg(z) = 1/h/(x),
theng(z) T oo asz — . SinceEn < 0, we can choose sufficiently largésuch that

e=E{nne[MA} +eE{gn>A} < 0 )
By concavity ofh, for anyx andy € R we have the inequaliti(z +y) — h(z) < 1/(x)y. Hence,

Ec(@tn=h@) < gLh @y (M, A} + E{" @ € (A, g(2)]}
+E{ @t =h@) > g(2)}
= FEi{+ Es+ Es. (8)

Sincel/(x) — 0, the Taylor's expansion for the exponent up to the lineantienplies, ast — oo,
By = P{ne M A} +h(@)E{nn € [M, A]} + o(h/ (). ©)
On the event) € (A, g(z)] we haveh! (z)n < 1 and, thuse' @7 < 1+ eh/(z)n. Then

Ey < P{nec(Ag(x)}+eh(x)E{n;n e (A g(x)]}. (10)
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We have
By = E{hMer@tn-h@=h0. ) g(2)}. (11)

By concavity ofh, for x > 0, the differenceh(z + y) — h(y) is non-increasing iy. Therefore,
for anyy > g(x),

hz+y) —h(z) —h(y) < hz+g(x)) —h(z) - hg(x))
< W(x)g(z) — h(g(z))
= 1-h(g(x))
< 1-Ing(x),

due to the conditiorh(z) > In «x for all sufficiently largez. This estimate and (11) imply

By < E{""in> g(x)}e! I

= o(1)/g(x) = o(K(z)) asz — oo, (12)

by the conditionEe™ < co. Substituting[(B),[(10) and{12) intbl(8) and taking into @aat the
choice [T) ofA, we get

Ech@tn)  — @) pehletn-hi)

< DA (@) +o(h (2) asz— occ.

Sincee < 0, the latter estimate implieBe (@7 < (=) for all sufficiently largex. The proof is
complete.

Proof of LemmaB. Puty, = &, — c. We haveEn, < 0 andEe"(™) < co. By Lemmad?,
there exists:y > 0 such thatEe (@ +m) < Eeh(®) for z > x4. Then, by monotonicity ok(z) and
by non-negativity ofS,,_1,

Eeh(sn) < Eeh(Sn-i-xo) — Eeh(3n71+x()+c+nn) < Eeh(S”*l—i_IO"_c).

Now, by the induction argumentEe"(5») < ghlentzo) < ghlen)h(zo) The proof is complete.
4. Proof of Theorem 2l Before starting the proof of Theorem 2, we formulate theofwihg
proposition from([[8, Corollary 1]:

Proposition 1. Let there exist a concave function: Rt — R such thatEe"®) < oo and
Eée©) = co. If Fis heavy-tailed andre”(5—1) < oo, then(T) holds.

We also need two auxiliary technical results.

Lemmab. Letyx > 0 be any random variable. Then there exists a differentiablecave function
g:RT = RT, ¢(0) = 0, such thaty/(z) < 1 for all z, g(x) — oo asz — oo, andEed™) < oco.

Proof. Consider an increasing sequeras, } such thatey = 0, 1 = 1, zp41 — 2 > Ty — -1,
andP{x > z,} < e™". Putg;(x,) = n/2 and continiously linear between these points. Then,
foranyx € (z,,, xn+1) andy € (41, Tny2) We have

1 1
(x) = > = g1 (y),
gl( ) 2(wn+l _ xn) 2(xn+2 wn—i—l) gl(y)




so thatg; is concave. By the constructiog; (z) 1 co asz — oo andgj(z) < 1 where the
derivative exists. Finally,

Ee1 () < Zegl(wnJrl)P{X > zn) < Ze(n+1)/2e—n < oo.
n=0

n=0

A procedure of smoothing, sayz) = ff“ g1(y)dy — fol g1(y)dy, completes the proof.

Lemma6. Lety > 0 be a random variable such that, for some concave funcfioR*™ — R™,
Ee/) = co. Then there exists a concave functipn: R* — R* such thatf; < f, fi(z) =
o(z) asz — oo, andEe/1(0) = oo,

Proof. Takez; so large thaE{e™"0f0)); y < 21} > 1 and putf;(z) = min(z, f(x)) for
x € [0, z1]. Then by induction, for any, we can choose,,; such that

Let fi(x) = fi(zn) + min(n =L f](z,)(x — 2,), f(x) — f(z,)) for x € (v, 2,11]. By construc-
tion, f1 is concave,f; < f, andf{(zn+1) < fi(xn)/n — 0asn — oo.

Proof of Theoren 2. Without loss of generality, assume that) > In x for all z and that
f2(x) = f(x) — Inz is concave on the whole posititive half-line. By Lemfia 6 agchieasure
change arguments like in the proof of Lemimha 2 we may assumetfie very beginning that

f(x) =o0(z) asz— oo.

Next we state the existence of a concave functiolR* — R such thaty(z) — co asz — oo,
g(x) < Inz for all sufficiently largex, the differencen z — g(x) is a non-decreasing function,

and
Ee/(en)+g(en) .

Indeed, by Lemma&l5 and again measure change technique,etkiste a differentiable concave
functiong; : R* — R such thaig; (0) = 0, g1(z) T o0, ¢} (x) < 1, andEef/ (e +91(e7) < o0,
Putg(z) = ¢1(In(x+1))—1. Theng is a monotone function increasing to infinity ag@:) < Inx
for all sufficiently largex. In addition,

(Inz —g(z))" =1/ — gi(In(z + 1))/(z + 1) > 0,

so that the differenck = — g(z) is a non-decreasing function as needed.

Since the functionf,(x) is concave, by Lemmid 2 witlfy (z) = Inz, there exists a concave
function h such thath < fo, h(z) = o(z), E€e®) < oo andE&eM9+9() = oo, Sincelnz +
h(z) + g(z) < f(x) + g(x), by (4) and by the choice gf,

Ereen)9(en) < o, (13)

The concave function(z) = h(z) + g(z) satisfies all conditions of Propositibh 1. Indeed, due to
the inequalityg(z) < In z for all sufficiently largez, we haveEe” ) < oo becausdte€) < co.
It remains to check thdEre”(5~—1) < 0. Since, by[(IB),

E{TeT(ST); Sr<er} < Ere"(¢T) < oo,



it suffices to prove that
E{re"®7); S, > 1} < o0.

We proceed in the following way:

E{cre™5); 8. > er} = ZP{T = n}enE{e""); S, > cn}

n=1

— ZP{T = nledlentnlen)—glen) g h(Sn)+9(Sn). g > con).
n=1
By the monotonicity of the differende x — g(x), we obtain the following estimate

E{cre"®); S, > er} < Z P{r = n}edE{M 55, 5 > en},

n=1
Since the functioin = + h(z) is concave anth z + h(z) > Inz, by Lemmd 3,

Ee® Sn+h(Sn) < K(C) eln(nc)+h(cn)

for someK (¢) < oco. Therefore,

E{cre’®): S, > et} < K(c) Z P{r = n}ed(en) nlen)thine)

n=1

= K(¢)cErehen () < oo,

from (13). The proof of Theorem 2 is complete.
5. Proof of Theorem[Il Denote byG the distribution function of-r.
We will construct an increasing concave functipn R+ — R such that

E¢e/© = and Ere/") < . (14)

Then the desired relatidn 1) will follow by applying Theor2n

If G is light-tailed then one can takgxz) = Ax for a sufficiently small\ > 0. ¢,From now on
we assumé- to be heavy-tailed.

Consider new random variablés andr, with the following distributions:

xF(dx)

nP{r =n}
E¢ ‘

P{¢, € da} = Er

and P{r.=n}=

Denote byF, and G, the distributions of¢, and cr, respectively. Then botli, and G, are
heavy-tailed and

Gi(x) = o(F.(r)) asx — co. (15)

The heavy-tailedness @i, is equivalent to the following condition: for ary> 0,
/ G Ina)de = / e*Gy(x/e)dr = oo0. (16)
1 0
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In terms of new distributiong’, andG, conditions[(I4) nay be reformulated as follows: we need
to construct an increasing concave functiprsuch thatEe/(¢*) = 0o and Ee/(¢™) < oo, or,
equivalently,

/OO F.(f'(Inz))der = 0o and /00 G.(f(Inz))dz < oo. 17)
1 1

The concavity off is equivalent to the convexity of its inverse= f~!. So, conditions[(17) may
be rewritten as: we have to present an increasing convexidmnic such that

/00 e"Fy(h(z))dr = oo and /00 e"G(h(z))dxr < co. (18)
0 0

We will constructh(z) as a piece-wise linear function. For this, we will introdiw®e increas-
ing sequences, say, T oo anda,, T oo, and let

h(z) = h(x,)+ap(x —x,) forz € (zp, zp4a].

Then the convexity of will follow from the increase of a,, }.
Putzy = 0 andf(z¢) = 0. Due to [15) and(16), we can choasgeso large that

=

(y
«(y)

> 2!

Ql

forally > z; and

/Oxl e G(h(zo) + 1+ (z — z0))dz > 1.
Then there exists a sufficiently largg > 1 such that

/Om1 "Gy (h(zo) + ap(x — xp))dz = 1.

Now we use the induction argument to construct increasingesges{z, } and{a,} such
that

> 2n+1 (19)

forally > =, and

Forn = 0 this is already done. Make the induction hypothesis for sariel. For anyx > 1,
denote

S(r.a) = / T (itnss + 0y — nn)))dy.

n+1



Due to [15) and (16), we can choasg, > so large that

> 27L+2

forally > z,.2 and

Since the functio(x,, 12, a) continuously decreases foasa 1 oo, we can choose, 1 > a,
such that

6(wn+2aan+l) = 2—(n+1X

Then

Tn+2 .
/ e*Gy(h(x))dz = 27+,

n+1

Our induction hypothesis now holds with+ 1 in place ofn as required.
Now the inequalities (18) follow since, from the constraantiof functionh,

[e.e]

/0 GG (W) dr = 3 /+ "G, (h(z))da

n=0"%n

o
= Z2‘"<oo.
n=0

and, by [(19),

/0 T L (h(2))de = ngo / T )

Tn+1

2" "Gy (h(x))dx
gl

n

o0
= 22"2—" = .
n=0

v

The proof of Theorerl1 is complete.

6. Proof of Theorem[3. We apply the exponential change of measure with parameaed
consider the distributio(du) = €7 F(du)/¢(7) and the stopping time with the distribution
P{v =k} = o*(7)P{r = k}/E¢" (7). Then it was proved ir[]3, Lemma 3] that
G* () S 1 F*7(x)

liminf — liminf — . 20

¢ From the definition of, the distributionG is heavy-tailed. Let us prove that

P{cv >z} = o(G(z)) asz — oco. (21)
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Indeed, put\ = In ¢(5) > 0; then
1

P{ov >z} = ——— eAkP{T =k}
Ep™(¥) g;‘/
%/ NP{r € dy}. (22)
EQOT(’Y) xz/c
Integration by parts implies
/ MP{redy} = —eNP{r> y}‘oj + )x/ eVP{r > y}dy
z/c z/c z/c

A o
AP {er >z} + p / NP {er > yldy,
becausdy™ (7) < oo and, thuseP{r > y} — 0 asy — oo. Now applying the conditiori{2)
we obtain that the latter sum is of order
o A o] o [e%¢)
0(6)‘50/CF(36) + E/ eAy/CF(y)dy> = 0(/ e)‘y/CF(dy)> asr — oo.

T

Together with[(2R) it implied (21). Therefore, by Theorlem d krave the equality

lmint & @) g, = ETG)
z—oco  (G(x) E¢7(7)
and, due to[(20),
. T (2) 1~
lim inf “— < Ery" . 23
minf =y < Bre (7) (23)

The result now follows from Lemma .
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