Lower limits for distributions of randomly stopped sums ¹

D. Denisov,² S. Foss,³ and D. Korshunov⁴

Eurandom, Heriot-Watt University, and Sobolev Institute of Mathematics

Abstract

We study lower limits for the ratio $\frac{\overline{F^{*\tau}}(x)}{\overline{F}(x)}$ of tail distributions where $F^{*\tau}$ is a distribution of a sum of a random size τ of i.i.d. random variables having a common distribution F, and a random variable τ does not depend on summands.

AMS classification: Primary 60E05; secondary 60F10

Keywords: Convolution tail; Random sums of random variables; Lower limit; Heavy- and light-tailed distributions

1. Introduction. Let $\xi, \xi_1, \xi_2, \ldots$ be independent identically distributed random variables. We assume that their common distribution F is unbounded from the right, that is, $\overline{F}(x) \equiv F(x, \infty) > 0$ for all x. Put $S_0 = 0$ and $S_n = \xi_1 + \ldots + \xi_n, n = 1, 2, \ldots$

Let τ be a counting random variable which does not depend on $\{\xi_n\}_{n\geq 1}$. Denote by $F^{*\tau}$ the distribution of a random sum $S_{\tau}=\xi_1+\ldots+\xi_{\tau}$. In this paper we study lower limits (as $x\to\infty$) for the ratio $\frac{\overline{F^{*\tau}}(x)}{\overline{F}(x)}$.

We distinguish two types of distributions, heavy- and light-tailed. A random variable η has a heavy-tailed distribution if $\mathbf{E}e^{\varepsilon\eta}=\infty$ for all $\varepsilon>0$, and light-tailed otherwise.

We consider only non-negative random variables and, in the case of heavy-tailed F, study conditions for

$$\liminf_{x \to \infty} \frac{\overline{F^{*\tau}}(x)}{\overline{F}(x)} = \mathbf{E}\tau \tag{1}$$

to hold. This problem has been given a complete solution in [5] for $\tau=2$, and then in [3] for τ with a light-tailed distribution and for heavy-tailed summands. In the present work, we generalise results of [3] onto classes of distributions of τ which include all light-tailed distributions and also some heavy-tailed distributions. With each heavy-tailed distribution F, we associate a corresponding class of distributions of τ . For earlier studies on lower limits and on a related problem of justifying a constant K in the equivalence $\overline{F^{*2}}(x) \sim K\overline{F}(x)$, see e.g. [1, 2, 4, 7, 8] and further references therein.

Since the inequality " \geq " in (1) is valid for non-negative $\{\xi_n\}$ without any further assumptions (see, e.g., [9] or [3]), we immediately get the equality if $\mathbf{E}\tau=\infty$. Therefore, in the rest of the paper, we consider the case $\mathbf{E}\tau<\infty$ only. Our first result is

¹The research of Denisov and Foss was partially supported by the EPSRC Grant EP/E033717/1. The research of Foss and Korshunov was partially supported by the Royal Society International Joint Project Grant 2005/R2-JP. The research of Korshunov was partially supported by Russian Science Support Foundation.

²Address: School of MACS, Heriot-Watt University, Edinburgh EH14 4AS, UK. E-mail address: Denisov@ma.hw.ac.uk

³Address: School of MACS, Heriot-Watt University, Edinburgh EH14 4AS, UK; and Sobolev Institute of Mathematics, 4 Koptyuga Pr., Novosibirsk 630090, Russia. E-mail address: S.Foss@ma.hw.ac.uk

⁴Address: Sobolev Institute of Mathematics, 4 Koptyuga pr., Novosibirsk 630090, Russia. E-mail address: Korshunov@math.nsc.ru

Theorem 1. Assume that $\xi \geq 0$ is heavy-tailed and $\mathbf{E}\xi < \infty$. Let, for some $c > \mathbf{E}\xi$,

$$\mathbf{P}\{c\tau > x\} = o(\overline{F}(x)) \quad as \ x \to \infty. \tag{2}$$

Then (1) holds.

The proof of Theorem 1 is based on a study of moments $\mathbf{E}e^{f(\xi)}$ for appropriately chosen concave function f. More precisely, we deduce Theorem 1 from the following general result which explores some ideas from [9, 5, 3].

Theorem 2. Assume that $\xi \geq 0$ is heavy-tailed and $\mathbf{E}\xi < \infty$. Let there exists a function $f: \mathbf{R}^+ \to \mathbf{R}$ such that

$$\mathbf{E}e^{f(\xi)} = \infty,\tag{3}$$

and, for some $c > \mathbf{E}\xi$,

$$\mathbf{E}e^{f(c\tau)} < \infty. \tag{4}$$

If $f(x) \ge \ln x$ for all sufficiently large x and if the difference $f(x) - \ln x$ is an eventually concave function, then (1) holds.

In particular, the equality (1) is valid provided $\mathbf{E}\xi^k=\infty$ and $\mathbf{E}\tau^k<\infty$ for some $k\geq 1$; it is sufficient to consider the function $f(x)=k\ln x$. Earlier this was proved in [3, Theorem 1] by a more simple method.

If we consider instead the function $f(x) = \gamma x$, $\gamma > 0$, then we obtain the equality (1) provided ξ is heavy-tailed but τ is light-tailed. This is Theorem 2 from [3].

Finally, the equality (1) is valid if F is a Weibull distribution with parameter $\beta \in (0,1)$, $\overline{F}(x) = e^{-x^{\beta}}$ and $f(x) = x^{\beta}$ or, more generally, $f(x) = x^{\beta} - c \ln x$ for $x \ge 1$ where $c \le \beta$ is any fixed constant.

The counterpart of Theorem 1 in the light-tailed case is stated next. But first we need some notations. By the Laplace transform of F at the point $\gamma \in \mathbf{R}$ we mean

$$\varphi(\gamma) = \int_0^\infty e^{\gamma x} F(dx) \in (0, \infty].$$

Put

$$\widehat{\gamma} = \sup\{\gamma : \varphi(\gamma) < \infty\} \in [0, \infty].$$

Note that the function $\varphi(\gamma)$ is monotone continuous in the interval $(-\infty, \widehat{\gamma})$, and $\varphi(\widehat{\gamma}) = \lim_{\gamma \uparrow \widehat{\gamma}} \varphi(\gamma) \in [1, \infty]$.

Theorem 3. Let $\widehat{\gamma} \in (0, \infty]$, so that $\varphi(\widehat{\gamma}) \in (1, \infty]$. If (2) holds and, for any fixed y > 0,

$$\liminf_{x \to \infty} \frac{\overline{F}(x-y)}{\overline{F}(x)} \ge e^{\widehat{\gamma}y}, \tag{5}$$

then

$$\liminf_{x \to \infty} \frac{\overline{F^{*\tau}}(x)}{\overline{F}(x)} = \mathbf{E} \tau \varphi^{\tau - 1}(\widehat{\gamma}).$$

The paper is organised as follows. In Section 2, we formulate and prove a general result on characterisation of heavy-tailed distributions on the positive half-line. Section 3 is devoted to the estimation of the functional $\mathbf{E}e^{h(S_n)}$ for a concave function h. Sections 4 and 5 contain proofs of Theorems 2 and 1 respectively. Section 6 is devoted to the proof in light-tailed case.

2. Characterisation of heavy-tailed distributions. It was proved in [3, Lemma 2] that, for any heavy-tailed random variable $\xi \geq 0$ and for any real $\delta > 0$, there exists an increasing concave function $h: \mathbf{R}^+ \to \mathbf{R}^+$ such that $\mathbf{E}e^{h(\xi)} \leq 1 + \delta$ and $\mathbf{E}\xi e^{h(\xi)} = \infty$. In the present section, we obtain some generalisation of it.

Lemma 1. Let $\xi \ge 0$ be a random variable with a heavy-tailed distribution. Let $f: \mathbf{R}^+ \to \mathbf{R}$ be a concave function such that

$$\mathbf{E}e^{f(\xi)} = \infty. \tag{6}$$

Let a function $g: \mathbf{R}^+ \to \mathbf{R}$ be such that $g(x) \to \infty$ as $x \to \infty$. Then there exists a concave function $h: \mathbf{R}^+ \to \mathbf{R}$ such that $h \le f$ and

$$\mathbf{E}e^{h(\xi)} < \infty, \quad \mathbf{E}e^{h(\xi)+g(\xi)} = \infty.$$

Proof. Without loss of generality assume f(0)=0. We will construct a function h(x) on the successive intervals. For that we introduce two positive sequences, $x_n \uparrow \infty$ as $n \to \infty$ and $\varepsilon_n \in (0,1]$. We put $x_0=0$, h(0)=f(0)=0, h'(0)=f'(0), and

$$h(x) = h(x_{n-1}) + \varepsilon_n \min(h'(x_{n-1})(x - x_{n-1}), f(x) - f(x_{n-1}))$$
 for $x \in (x_{n-1}, x_n]$;

here h' is the left derivative of the function h. The function h is increasing, since $\varepsilon_n > 0$ and f is increasing. Moreover, this function is concave, due to $\varepsilon_n \leq 1$ and concavity of f. Since $h(x) - h(x_{n-1}) \leq f(x) - f(x_{n-1})$ for $x \in (x_{n-1}, x_n]$, we have $h \leq f$.

Now proceed with the very construction of x_n and ε_n . By conditions $g(x) \to \infty$ and (6), we can choose x_1 so large that $e^{g(x)} \ge 2^1$ for all $x \ge x_1$ and

$$\mathbf{E}\{e^{\min(h'(0)\xi,f(\xi))}; \xi \in (x_0,x_1]\} + e^{\min(h'(0)x_1,f(x_1))}\overline{F}(x_1) > \overline{F}(x_0) + 1.$$

Choose $\varepsilon_1 \in (0,1]$ so that

$$\mathbf{E}\{e^{\varepsilon_1 \min(h'(0)\xi, f(\xi))}; \xi \in (x_0, x_1]\} + e^{\varepsilon_1 \min(h'(0)x_1, f(x_1))} \overline{F}(x_1) = \overline{F}(x_0) + 1.$$

Put $h(x) = \varepsilon_1 \min(x, f(x))$ for $x \in (0, x_1]$. Then the latter equality is equivalent to

$$\mathbf{E}\{e^{h(\xi)}; \xi \in (x_0, x_1]\} + e^{h(x_1)}\overline{F}(x_1) = e^{h(x_0)}\overline{F}(x_0) + 1/2,$$

By induction we construct an increasing sequence x_n and a sequence $\varepsilon_n \in (0,1]$ such that $e^{g(x)} \ge 2^n$ for all $x \ge x_n$, and

$$\mathbf{E}\{e^{h(\xi)}; \xi \in (x_{n-1}, x_n]\} + e^{h(x_n)} \overline{F}(x_n) = e^{h(x_{n-1})} \overline{F}(x_{n-1}) + 1/2^n$$

for any $n \ge 1$. For n = 1 this is already done. Make the induction hypothesis for some $n \ge 2$. For any $x > x_n$, denote

$$\delta(x,\varepsilon) \equiv e^{h(x_n)} \Big(\mathbf{E} \{ e^{\varepsilon \min(h'(x_n)(\xi - x_n), f(\xi) - f(x_n))}; \xi \in (x_n, x] \} + e^{\varepsilon \min(h'(x_n)(x - x_n), f(x) - f(x_n))} \overline{F}(x) \Big).$$

By the convergence $g(x) \to \infty$, by heavy-tailedness of ξ , and by the condition (6), there exists x_{n+1} so large that $e^{g(x)} \ge 2^{n+1}$ for all $x \ge x_{n+1}$ and

$$\delta(x_{n+1}, 1) > e^{h(x_n)} \overline{F}(x_n) + 1.$$

Note that the function $\delta(x_{n+1},\varepsilon)$ is continuously decreasing to $e^{h(x_n)}\overline{F}(x_n)$ as $\varepsilon\downarrow 0$. Therefore, we can choose $\varepsilon_{n+1}\in (0,1]$ so that

$$\delta(x_{n+1}, \varepsilon_{n+1}) = e^{h(x_n)} \overline{F}(x_n) + 1/2^{n+1}.$$

Then

$$\mathbf{E}\{e^{h(\xi)}; \xi \in (x_n, x_{n+1}]\} + e^{h(x_{n+1})}\overline{F}(x_{n+1}) = e^{h(x_n)}\overline{F}(x_n) + 1/2^{n+1}.$$

Our induction hypothesis now holds with n+1 in place of n as required. Next, for any N,

$$\mathbf{E}\{e^{h(\xi)}; \xi \le x_{N+1}\} = \sum_{n=0}^{N} \mathbf{E}\{e^{h(\xi)}; \xi \in (x_n, x_{n+1}]\}$$

$$= \sum_{n=0}^{N} \left(e^{h(x_n)}\overline{F}(x_n) - e^{h(x_{n+1})}\overline{F}(x_{n+1}) + 1/2^{n+1}\right)$$

$$\le e^{h(x_0)}\overline{F}(x_0) + 1,$$

so that $\mathbf{E}e^{h(\xi)}$ is finite. On the other hand, since $e^{g(x)} \geq 2^k$ for all $x \geq x_k$,

$$\mathbf{E}\{e^{h(\xi)+g(\xi)}; \xi > x_n\} \geq 2^n \Big(\mathbf{E}\{e^{h(\xi)}; \xi \in (x_n, x_{n+1}]\} + e^{h(x_{n+1})} \overline{F}(x_{n+1}) \Big)$$

$$= 2^n (e^{h(x_n)} \overline{F}(x_n) + 1/2^{n+1}).$$

Then, for any n, $\mathbf{E}\{e^{h(\xi)+g(\xi)}; \xi > x_n\} \ge 1/2$, which implies $\mathbf{E}e^{h(\xi)+g(\xi)} = \infty$. The proof is complete.

Lemma 2. Let $\xi \geq 0$ be a random variable with a heavy-tailed distribution. Let $f_1 : \mathbf{R}^+ \to \mathbf{R}$ be any measurable function and $f_2 : \mathbf{R}^+ \to \mathbf{R}$ a concave function such that

$$\mathbf{E}e^{f_1(\xi)} < \infty$$
 and $\mathbf{E}e^{f_1(\xi)+f_2(\xi)} = \infty$.

Let a function $g: \mathbf{R}^+ \to \mathbf{R}$ be such that $g(x) \to \infty$ as $x \to \infty$. Then there exists a concave function $h: \mathbf{R}^+ \to \mathbf{R}$ such that $h \le f_2$ and

$$\mathbf{E}e^{f_1(\xi)+h(\xi)} < \infty$$
 and $\mathbf{E}e^{f_1(\xi)+h(\xi)+g(\xi)} = \infty$.

Proof. Consider a new governing probability measure P^* defined in the following way:

$$\mathbf{P}^*\{d\omega\} = \frac{e^{f_1(\xi(\omega))}\mathbf{P}\{d\omega\}}{\mathbf{E}e^{f_1(\xi)}}.$$

Then

$$\mathbf{E}^* e^{f_2(\xi)} = \frac{\mathbf{E} e^{f_1(\xi) + f_2(\xi)}}{\mathbf{E} e^{f_1(\xi)}} = \infty.$$

In particular, ξ is heavy-tailed against the measure \mathbf{P}^* . Now it follows from Lemma 1 that there exists a concave function $h: \mathbf{R}^+ \to \mathbf{R}$ such that $h \leq f_2$, h(x) = o(x), $\mathbf{E}^* e^{h(\xi)} < \infty$, and $\mathbf{E}^* e^{h(\xi) + g(\xi)} = \infty$. Equivalently,

$$\mathbf{E}e^{f_1(\xi)+h(\xi)} = \mathbf{E}e^{f_1(\xi)}\mathbf{E}^*e^{h(\xi)} < \infty$$

and

$$\mathbf{E}e^{f_1(\xi)+h(\xi)+g(\xi)} = \mathbf{E}e^{f_1(\xi)}\mathbf{E}^*e^{h(\xi)+g(\xi)} = \infty.$$

The proof is complete.

3. Growth rate of sums in terms of generalised moments. According to the Law of Large Numbers, the sum S_n growths like $n\mathbf{E}\xi$. In the following lemma we provide conditions on a function h(x), guaranteeing an appropriate rate of growth for the functional $\mathbf{E}e^{h(S_n)}$.

Lemma 3. Let ξ be a non-negative random variable. Let $h: \mathbf{R}^+ \to \mathbf{R}$ be a non-decreasing eventually concave function such that h(x) = o(x) as $x \to \infty$ and $h(x) \ge \ln x$ for all sufficiently large x. If $\mathbf{E}e^{h(\xi)} < \infty$, then, for any $c > \mathbf{E}\xi$, there exists a constant K(c) such that $\mathbf{E}e^{h(S_n)} \le K(c)e^{h(nc)}$, for all n.

To prove this lemma, we need the following assertion, which generalises the corresponding estimate from [6]:

Lemma 4. Let η be a random variable with $\mathbf{E}\eta < 0$. Let $h : \mathbf{R} \to \mathbf{R}$ be a non-decreasing and eventually concave function such that h(x) = o(x) as $x \to \infty$ and $h(x) \ge \ln x$ for all sufficiently large x. If $\mathbf{E}e^{h(\eta)} < \infty$, then there exists x_0 such that the inequality $\mathbf{E}e^{h(x+\eta)} \le e^{h(x)}$ holds for all $x > x_0$.

Proof. Since h is increasing, without loss of generality we may assume that η is bounded from below, that is, $\eta \geq M$ for some M. Also, we may assume that h is non-negative and concave on the whole half-line $[0, \infty)$.

Since h is concave, h'(x) is non-increasing function. With necessity $h'(x) \to 0$ as $x \to \infty$, otherwise the condition h(x) = o(x) is violated. If ultimately h'(x) = 0, then h is ultimately a constant function and the proof of the theorem is obvious.

Consider now the case $h'(x) \to 0$ as $x \to \infty$ but h'(x) > 0 for all x. Put $g(x) \equiv 1/h'(x)$, then $g(x) \uparrow \infty$ as $x \to \infty$. Since $\mathbf{E}\eta < 0$, we can choose sufficiently large A such that

$$\varepsilon \equiv \mathbf{E}\{\eta; \eta \in [M, A]\} + e\mathbf{E}\{\eta; \eta > A\} \quad < \quad 0. \tag{7}$$

By concavity of h, for any x and $y \in \mathbf{R}$ we have the inequality $h(x+y) - h(x) \le h'(x)y$. Hence,

$$\mathbf{E}e^{h(x+\eta)-h(x)} \leq \mathbf{E}\{e^{h'(x)\eta}; \eta \in [M,A]\} + \mathbf{E}\{e^{h'(x)\eta}; \eta \in (A,g(x)]\} + \mathbf{E}\{e^{h(x+\eta)-h(x)}; \eta > g(x)\}$$

$$\equiv E_1 + E_2 + E_3. \tag{8}$$

Since $h'(x) \to 0$, the Taylor's expansion for the exponent up to the linear term implies, as $x \to \infty$,

$$E_1 = \mathbf{P}\{\eta \in [M, A]\} + h'(x)\mathbf{E}\{\eta; \eta \in [M, A]\} + o(h'(x)). \tag{9}$$

On the event $\eta \in (A, g(x)]$ we have $h'(x)\eta \leq 1$ and, thus, $e^{h'(x)\eta} \leq 1 + eh'(x)\eta$. Then

$$E_2 \le \mathbf{P}\{\eta \in (A, g(x)]\} + eh'(x)\mathbf{E}\{\eta; \eta \in (A, g(x)]\}. \tag{10}$$

We have

$$E_3 = \mathbf{E}\{e^{h(\eta)}e^{h(x+\eta)-h(x)-h(\eta)}; \eta > g(x)\}. \tag{11}$$

By concavity of h, for x > 0, the difference h(x + y) - h(y) is non-increasing in y. Therefore, for any y > g(x),

$$h(x+y) - h(x) - h(y) \leq h(x+g(x)) - h(x) - h(g(x))$$

$$\leq h'(x)g(x) - h(g(x))$$

$$= 1 - h(g(x))$$

$$\leq 1 - \ln g(x),$$

due to the condition $h(x) \ge \ln x$ for all sufficiently large x. This estimate and (11) imply

$$E_{3} \leq \mathbf{E}\{e^{h(\eta)}; \eta > g(x)\}e^{1-\ln g(x)}$$

$$= o(1)/g(x) = o(h'(x)) \quad \text{as } x \to \infty,$$
(12)

by the condition $\mathbf{E}e^{h(\eta)} < \infty$. Substituting (9), (10) and (12) into (8) and taking into account the choice (7) of A, we get

$$\mathbf{E}e^{h(x+\eta)} = e^{h(x)}\mathbf{E}e^{h(x+\eta)-h(x)}$$

$$\leq e^{h(x)}(1+h'(x)\varepsilon+o(h'(x))) \quad \text{as } x \to \infty.$$

Since $\varepsilon < 0$, the latter estimate implies $\mathbf{E} e^{h(x+\eta)} < e^{h(x)}$ for all sufficiently large x. The proof is complete.

Proof of Lemma 3. Put $\eta_n = \xi_n - c$. We have $\mathbf{E}\eta_n < 0$ and $\mathbf{E}e^{h(\eta_n)} < \infty$. By Lemma 4, there exists $x_0 > 0$ such that $\mathbf{E}e^{h(x+\eta_n)} \leq \mathbf{E}e^{h(x)}$ for $x > x_0$. Then, by monotonicity of h(x) and by non-negativity of S_{n-1} ,

$$\mathbf{E}e^{h(S_n)} \le \mathbf{E}e^{h(S_n+x_0)} = \mathbf{E}e^{h(S_{n-1}+x_0+c+\eta_n)} \le \mathbf{E}e^{h(S_{n-1}+x_0+c)}.$$

Now, by the induction arguments, $\mathbf{E}e^{h(S_n)} \leq e^{h(cn+x_0)} \leq e^{h(cn)}e^{h(x_0)}$. The proof is complete.

4. Proof of Theorem 2. Before starting the proof of Theorem 2, we formulate the following proposition from [3, Corollary 1]:

Proposition 1. Let there exist a concave function $r: \mathbf{R}^+ \to \mathbf{R}$ such that $\mathbf{E}e^{r(\xi)} < \infty$ and $\mathbf{E}\xi e^{r(\xi)} = \infty$. If F is heavy-tailed and $\mathbf{E}\tau e^{r(S_{\tau-1})} < \infty$, then (1) holds.

We also need two auxiliary technical results.

Lemma 5. Let $\chi \geq 0$ be any random variable. Then there exists a differentiable concave function $g: \mathbf{R}^+ \to \mathbf{R}^+$, g(0) = 0, such that $g'(x) \leq 1$ for all $x, g(x) \to \infty$ as $x \to \infty$, and $\mathbf{E}e^{g(\chi)} < \infty$.

Proof. Consider an increasing sequence $\{x_n\}$ such that $x_0 = 0$, $x_1 = 1$, $x_{n+1} - x_n > x_n - x_{n-1}$, and $\mathbf{P}\{\chi > x_n\} \le e^{-n}$. Put $g_1(x_n) = n/2$ and continiously linear between these points. Then, for any $x \in (x_n, x_{n+1})$ and $y \in (x_{n+1}, x_{n+2})$ we have

$$g_1'(x) = \frac{1}{2(x_{n+1} - x_n)} > \frac{1}{2(x_{n+2} - x_{n+1})} = g_1'(y),$$

so that g_1 is concave. By the construction, $g_1(x) \uparrow \infty$ as $x \to \infty$ and $g'_1(x) \le 1$ where the derivative exists. Finally,

$$\mathbf{E}e^{g_1(\chi)} \le \sum_{n=0}^{\infty} e^{g_1(x_{n+1})} \mathbf{P}\{\chi > x_n\} \le \sum_{n=0}^{\infty} e^{(n+1)/2} e^{-n} < \infty.$$

A procedure of smoothing, say $g(x) = \int_x^{x+1} g_1(y) dy - \int_0^1 g_1(y) dy$, completes the proof.

Lemma 6. Let $\chi \geq 0$ be a random variable such that, for some concave function $f: \mathbf{R}^+ \to \mathbf{R}^+$, $\mathbf{E}e^{f(\chi)} = \infty$. Then there exists a concave function $f_1: \mathbf{R}^+ \to \mathbf{R}^+$ such that $f_1 \leq f$, $f_1(x) = o(x)$ as $x \to \infty$, and $\mathbf{E}e^{f_1(\chi)} = \infty$.

Proof. Take x_1 so large that $\mathbf{E}\{e^{\min(\chi,f(\chi))};\chi\leq x_1\}\geq 1$ and put $f_1(x)=\min(x,f(x))$ for $x\in[0,x_1]$. Then by induction, for any n, we can choose x_{n+1} such that

$$\mathbf{E}\{e^{f_1(x_n)+\min(n^{-1}f_1'(x_n)(\chi-x_n),f(\chi)-f(x_n))}; \chi \in (x_n,x_{n+1}]\} \ge 1.$$

Let $f_1(x) = f_1(x_n) + \min(n^{-1}f_1'(x_n)(x - x_n), f(x) - f(x_n))$ for $x \in (x_n, x_{n+1}]$. By construction, f_1 is concave, $f_1 \le f$, and $f_1'(x_{n+1}) \le f_1'(x_n)/n \to 0$ as $n \to \infty$.

Proof of Theorem 2. Without loss of generality, assume that $f(x) \ge \ln x$ for all x and that $f_2(x) \equiv f(x) - \ln x$ is concave on the whole posititive half-line. By Lemma 6 and by measure change arguments like in the proof of Lemma 2 we may assume from the very beginning that

$$f(x) = o(x)$$
 as $x \to \infty$.

Next we state the existence of a concave function $g: \mathbf{R}^+ \to \mathbf{R}$ such that $g(x) \to \infty$ as $x \to \infty$, $g(x) \le \ln x$ for all sufficiently large x, the difference $\ln x - g(x)$ is a non-decreasing function, and

$$\mathbf{E}e^{f(c\tau)+g(c\tau)}<\infty$$

Indeed, by Lemma 5 and again measure change technique, there exists a differentiable concave function $g_1: \mathbf{R}^+ \to \mathbf{R}^+$ such that $g_1(0) = 0$, $g_1(x) \uparrow \infty$, $g_1'(x) \leq 1$, and $\mathbf{E}e^{f(c\tau)+g_1(c\tau)} < \infty$. Put $g(x) = g_1(\ln(x+1)) - 1$. Then g is a monotone function increasing to infinity and $g(x) \leq \ln x$ for all sufficiently large x. In addition,

$$(\ln x - g(x))' = 1/x - g_1'(\ln(x+1))/(x+1) \ge 0,$$

so that the difference $\ln x - g(x)$ is a non-decreasing function as needed.

Since the function $f_2(x)$ is concave, by Lemma 2 with $f_1(x) = \ln x$, there exists a concave function h such that $h \leq f_2$, h(x) = o(x), $\mathbf{E}\xi e^{h(\xi)} < \infty$ and $\mathbf{E}\xi e^{h(\xi)+g(\xi)} = \infty$. Since $\ln x + h(x) + g(x) \leq f(x) + g(x)$, by (4) and by the choice of g,

$$\mathbf{E}\tau e^{h(c\tau)+g(c\tau)} < \infty. \tag{13}$$

The concave function r(x) = h(x) + g(x) satisfies all conditions of Proposition 1. Indeed, due to the inequality $g(x) \le \ln x$ for all sufficiently large x, we have $\mathbf{E}e^{r(\xi)} < \infty$ because $\mathbf{E}\xi e^{h(\xi)} < \infty$. It remains to check that $\mathbf{E}\tau e^{r(S_{\tau-1})} < \infty$. Since, by (13),

$$\mathbf{E}\{\tau e^{r(S_{\tau})}; S_{\tau} \le c\tau\} \le \mathbf{E}\tau e^{r(c\tau)} < \infty,$$

it suffices to prove that

$$\mathbf{E}\{\tau e^{r(S_{\tau})}; S_{\tau} > c\tau\} < \infty.$$

We proceed in the following way:

$$\begin{split} \mathbf{E}\{c\tau e^{r(S_{\tau})}; S_{\tau} > c\tau\} &= \sum_{n=1}^{\infty} \mathbf{P}\{\tau = n\} cn \mathbf{E}\{e^{r(S_n)}; S_n > cn\} \\ &= \sum_{n=1}^{\infty} \mathbf{P}\{\tau = n\} e^{g(cn) + \ln(cn) - g(cn)} \mathbf{E}\{e^{h(S_n) + g(S_n)}; S_n > cn\}. \end{split}$$

By the monotonicity of the difference $\ln x - g(x)$, we obtain the following estimate

$$\mathbf{E}\{c\tau e^{r(S_{\tau})}; S_{\tau} > c\tau\} \leq \sum_{n=1}^{\infty} \mathbf{P}\{\tau = n\} e^{g(cn)} \mathbf{E}\{e^{\ln S_n + h(S_n)}; S_n > cn\},$$

Since the function $\ln x + h(x)$ is concave and $\ln x + h(x) \ge \ln x$, by Lemma 3,

$$\mathbf{E}e^{\ln S_n + h(S_n)} < K(c)e^{\ln(nc) + h(cn)}$$

for some $K(c) < \infty$. Therefore,

$$\mathbf{E}\{c\tau e^{r(S_{\tau})}; S_{\tau} > c\tau\} \leq K(c) \sum_{n=1}^{\infty} \mathbf{P}\{\tau = n\} e^{g(cn)} e^{\ln(cn) + h(nc)}$$
$$= K(c) c\mathbf{E} \tau e^{h(c\tau) + g(c\tau)} < \infty,$$

from (13). The proof of Theorem 2 is complete.

5. Proof of Theorem 1. Denote by G the distribution function of $c\tau$.

We will construct an increasing concave function $f: \mathbf{R}^+ \to \mathbf{R}$ such that

$$\mathbf{E}\xi e^{f(\xi)} = \infty$$
 and $\mathbf{E}\tau e^{f(c\tau)} < \infty$. (14)

Then the desired relation 1) will follow by applying Theorem 2.

If G is light-tailed then one can take $f(x) = \lambda x$ for a sufficiently small $\lambda > 0$. From now on we assume G to be heavy-tailed.

Consider new random variables ξ_* and τ_* with the following distributions:

$$\mathbf{P}\{\xi_* \in dx\} = \frac{xF(dx)}{\mathbf{E}\xi} \quad \text{and} \quad \mathbf{P}\{\tau_* = n\} = \frac{n\mathbf{P}\{\tau = n\}}{\mathbf{E}\tau}.$$

Denote by F_* and G_* the distributions of ξ_* and $c\tau_*$ respectively. Then both F_* and G_* are heavy-tailed and

$$\overline{G}_*(x) = o(\overline{F}_*(x)) \quad \text{as } x \to \infty.$$
 (15)

The heavy-tailedness of G_* is equivalent to the following condition: for any $\varepsilon > 0$,

$$\int_{1}^{\infty} \overline{G}_{*}(\varepsilon^{-1} \ln x) dx \equiv \int_{0}^{\infty} e^{x} \overline{G}_{*}(x/\varepsilon) dx = \infty.$$
 (16)

In terms of new distributions F_* and G_* , conditions (14) nay be reformulated as follows: we need to construct an increasing concave function f such that $\mathbf{E}e^{f(\xi_*)} = \infty$ and $\mathbf{E}e^{f(c\tau_*)} < \infty$, or, equivalently,

$$\int_{1}^{\infty} \overline{F}_{*}(f^{-1}(\ln x))dx = \infty \quad \text{and} \quad \int_{1}^{\infty} \overline{G}_{*}(f^{-1}(\ln x))dx < \infty. \tag{17}$$

The concavity of f is equivalent to the convexity of its inverse, $h = f^{-1}$. So, conditions (17) may be rewritten as: we have to present an increasing convex function h such that

$$\int_0^\infty e^x \overline{F}_*(h(x)) dx = \infty \qquad \text{and} \qquad \int_0^\infty e^x \overline{G}_*(h(x)) dx < \infty. \tag{18}$$

We will construct h(x) as a piece-wise linear function. For this, we will introduce two increasing sequences, say $x_n \uparrow \infty$ and $a_n \uparrow \infty$, and let

$$h(x) = h(x_n) + a_n(x - x_n)$$
 for $x \in (x_n, x_{n+1}]$.

Then the convexity of f will follow from the increase of $\{a_n\}$.

Put $x_0 = 0$ and $f(x_0) = 0$. Due to (15) and (16), we can choose x_1 so large that

$$\frac{\overline{F}_*(y)}{\overline{G}_*(y)} \geq 2^1$$

for all $y > x_1$ and

$$\int_0^{x_1} e^x \overline{G}_*(h(x_0) + 1 \cdot (x - x_0)) dx \ge 1.$$

Then there exists a sufficiently large $a_0 \ge 1$ such that

$$\int_0^{x_1} e^x \overline{G}_*(h(x_0) + a_0(x - x_0)) dx = 1.$$

Now we use the induction argument to construct increasing sequences $\{x_n\}$ and $\{a_n\}$ such that

$$\frac{\overline{F}_*(y)}{\overline{G}_*(y)} \ge 2^{n+1} \tag{19}$$

for all $y > x_{n+1}$ and

$$\int_{x_n}^{x_{n+1}} e^x \overline{G}_*(h(x)) dx = 2^{-n}.$$

For n=0 this is already done. Make the induction hypothesis for some $n \ge 1$. For any $x > x_{n+1}$, denote

$$\delta(x,a) \equiv \int_{x_{n+1}}^{x} e^{y} \overline{G}_{*}(h(x_{n+1} + a(y - x_{n+1})))dy.$$

Due to (15) and (16), we can choose x_{n+2} so large that

$$\frac{\overline{F}_*(y)}{\overline{G}_*(y)} \geq 2^{n+2}$$

for all $y > x_{n+2}$ and

$$\delta(x_{n+2}, a_n) \geq 1.$$

Since the function $\delta(x_{n+2},a)$ continuously decreases to 0 as $a\uparrow\infty$, we can choose $a_{n+1}>a_n$ such that

$$\delta(x_{n+2}, a_{n+1}) = 2^{-(n+1)}.$$

Then

$$\int_{x_{n+1}}^{x_{n+2}} e^x \overline{G}_*(h(x)) dx = 2^{-(n+1)}.$$

Our induction hypothesis now holds with n + 1 in place of n as required.

Now the inequalities (18) follow since, from the construction of function h,

$$\int_0^\infty e^x \overline{G}_*(h(x)) dx = \sum_{n=0}^\infty \int_{x_n}^{x_{n+1}} e^x \overline{G}_*(h(x)) dx$$
$$= \sum_{n=0}^\infty 2^{-n} < \infty.$$

and, by (19),

$$\int_0^\infty e^x \overline{F}_*(h(x)) dx = \sum_{n=0}^\infty \int_{x_n}^{x_{n+1}} e^x \overline{F}_*(h(x)) dx$$

$$\geq \sum_{n=0}^\infty 2^n \int_{x_n}^{x_{n+1}} e^x \overline{G}_*(h(x)) dx$$

$$= \sum_{n=0}^\infty 2^n 2^{-n} = \infty.$$

The proof of Theorem 1 is complete.

6. Proof of Theorem 3. We apply the exponential change of measure with parameter $\widehat{\gamma}$ and consider the distribution $G(du) = e^{\widehat{\gamma}u}F(du)/\varphi(\widehat{\gamma})$ and the stopping time ν with the distribution $\mathbf{P}\{\nu=k\} = \varphi^k(\widehat{\gamma})\mathbf{P}\{\tau=k\}/\mathbf{E}\varphi^\tau(\widehat{\gamma})$. Then it was proved in [3, Lemma 3] that

$$\liminf_{x \to \infty} \frac{\overline{G^{*\nu}}(x)}{\overline{G}(x)} \geq \frac{1}{\mathbf{E}\varphi^{\tau-1}(\gamma)} \liminf_{x \to \infty} \frac{\overline{F^{*\tau}}(x)}{\overline{F}(x)}.$$
 (20)

From the definition of $\hat{\gamma}$, the distribution G is heavy-tailed. Let us prove that

$$\mathbf{P}\{c\nu > x\} = o(\overline{G}(x)) \quad \text{as } x \to \infty. \tag{21}$$

Indeed, put $\lambda \equiv \ln \varphi(\widehat{\gamma}) > 0$; then

$$\mathbf{P}\{c\nu > x\} = \frac{1}{\mathbf{E}\varphi^{\tau}(\widehat{\gamma})} \sum_{k>x/c} e^{\lambda k} \mathbf{P}\{\tau = k\}$$

$$\leq \frac{1}{\mathbf{E}\varphi^{\tau}(\widehat{\gamma})} \int_{x/c}^{\infty} e^{\lambda y} \mathbf{P}\{\tau \in dy\}. \tag{22}$$

Integration by parts implies

$$\int_{x/c}^{\infty} e^{\lambda y} \mathbf{P} \{ \tau \in dy \} = -e^{\lambda y} \mathbf{P} \{ \tau > y \} \Big|_{x/c}^{\infty} + \lambda \int_{x/c}^{\infty} e^{\lambda y} \mathbf{P} \{ \tau > y \} dy$$
$$= e^{\lambda x/c} \mathbf{P} \{ c\tau > x \} + \frac{\lambda}{c} \int_{x}^{\infty} e^{\lambda y/c} \mathbf{P} \{ c\tau > y \} dy,$$

because $\mathbf{E}\varphi^{\tau}(\widehat{\gamma}) < \infty$ and, thus, $e^{\lambda y}\mathbf{P}\{\tau > y\} \to 0$ as $y \to \infty$. Now applying the condition (2) we obtain that the latter sum is of order

$$o\Big(e^{\lambda x/c}\overline{F}(x) + \frac{\lambda}{c}\int_x^\infty e^{\lambda y/c}\overline{F}(y)dy\Big) \quad = \quad o\Big(\int_x^\infty e^{\lambda y/c}F(dy)\Big) \quad \text{ as } x\to\infty.$$

Together with (22) it implies (21). Therefore, by Theorem 1 we have the equality

$$\liminf_{x \to \infty} \frac{\overline{G^{*\nu}}(x)}{\overline{G}(x)} = \mathbf{E}\nu = \frac{\mathbf{E}\tau\varphi^{\tau}(\widehat{\gamma})}{\mathbf{E}\varphi^{\tau}(\widehat{\gamma})},$$

and, due to (20),

$$\liminf_{x \to \infty} \frac{\overline{F^{*\tau}}(x)}{\overline{F}(x)} \leq \mathbf{E}\tau \varphi^{\tau - 1}(\widehat{\gamma}).$$
(23)

The result now follows from Lemma.

References

- 1. Chover, J., Ney, P. and Wainger, S., 1973. Functions of probability measures. J. Anal. Math. 26, 255–302.
- 2. Cline, D., 1987. Convolutions of distributions with exponential and subexponential tailes. J. Aust. Math. Soc. 43, 347–365.
- Denisov, D., Foss, S. and Korshunov, D. On lower limits and equivalences for tails of randomly stopped sums. To appear in Bernoulli.
- 4. Embrechts, P. and Goldie, C. M., 1982. On convolution tails. Stochastic Process. Appl. 13, 263–278.
- 5. Foss, S. and Korshunov, D., 2007. Lower limits and equivalences for convolution tails. Ann. Probab. 35, 366-383.
- 6. Foss, S. and Sapozhnikov, A., 2004. On the existence of moments for the busy period in the single-server queue. Math. Oper. Research 29, 592–601.
- 7. Pakes, A. G., 2004. Convolution equivalence and infinite divisibility. J. Appl. Probab. 41, 407–424.
- 8. Rogozin, B. A., 2000. On the constant in the definition of subexponential distributions. Theory Probab. Appl. 44, 409–412.
- 9. Rudin, W., 1973. Limits of ratios of tails of measures. Ann. Probab. 1, 982-994.