
The University of Manchester Research

Beehive SPIR-V Toolkit

Document Version
Final published version

Link to publication record in Manchester Research Explorer

Citation for published version (APA):
Fumero Alfonso, J., Rethy, G., Stratikopoulos, A., Foutris, N., & Kotselidis, C.-E. (2023). Beehive SPIR-V Toolkit: A
Composable and Functional API for Runtime SPIR-V Code Generation.

Citing this paper
Please note that where the full-text provided on Manchester Research Explorer is the Author Accepted Manuscript
or Proof version this may differ from the final Published version. If citing, it is advised that you check and use the
publisher's definitive version.

General rights
Copyright and moral rights for the publications made accessible in the Research Explorer are retained by the
authors and/or other copyright owners and it is a condition of accessing publications that users recognise and
abide by the legal requirements associated with these rights.

Takedown policy
If you believe that this document breaches copyright please refer to the University of Manchester’s Takedown
Procedures [http://man.ac.uk/04Y6Bo] or contact uml.scholarlycommunications@manchester.ac.uk providing
relevant details, so we can investigate your claim.

Download date:20. Mar. 2024

https://research.manchester.ac.uk/en/publications/5b93eb4c-ab14-4396-ae17-d0342e046a35

Beehive SPIR-V Toolkit
A Composable and Functional API for Runtime SPIR-V Code Generation

Juan Fumero
juan.fumero@manchester.ac.uk
The University of Manchester

United Kingdom

György Rethy∗
grethy@student.ethz.ch

ETH Zurich
Switzerland

Athanasios Stratikopoulos
{first}.{last}@manchester.ac.uk
The University of Manchester

United Kingdom

Nikos Foutris
nikos.foutris@manchester.ac.uk
The University of Manchester

United Kingdom

Christos Kotselidis
christos.kotselidis@manchester.ac.uk

The University of Manchester
United Kingdom

Abstract
The Standard Portable Intermediate Representation (SPIR-
V) is a low-level binary format designed for representing
shaders and compute kernels that can be consumed byOpenCL
for computing kernels, and Vulkan for graphics rendering.
As a binary representation, SPIR-V is meant to be used by
compilers and runtime systems, and is usually performed
by C/C++ programs and the LLVM software and compiler
ecosystem. However, not all programming environments,
runtime systems, and language implementations are C/C++
or based on LLVM.
This paper presents the Beehive SPIR-V Toolkit; a frame-

work that can automatically generate a Java composable and
functional library for dynamically building SPIR-V binary
modules. The Beehive SPIR-V Toolkit can be used by optimiz-
ing compilers and runtime systems to generate and validate
SPIR-V binary modules from managed runtime systems. Fur-
thermore, our framework is architected to accommodate
new SPIR-V releases in an easy-to-maintain manner, and
it facilitates the automatic generation of Java libraries for
other standards, besides SPIR-V. The Beehive SPIR-V Toolkit
also includes an assembler that emits SPIR-V binary mod-
ules from disassembled SPIR-V text files, and a disassembler
that converts the SPIR-V binary code into a text file. To the
best of our knowledge, the Beehive SPIR-V Toolkit is the first
Java programming framework that can dynamically generate
SPIR-V binary modules.

∗Work done while he was associated at The University of Manchester.

Permission to make digital or hard copies of part or all of this work for
personal or classroom use is granted without fee provided that copies are
not made or distributed for profit or commercial advantage and that copies
bear this notice and the full citation on the first page. Copyrights for third-
party components of this work must be honored. For all other uses, contact
the owner/author(s).
VMIL ’23, October 23, 2023, Cascais, Portugal
© 2023 Copyright held by the owner/author(s).
ACM ISBN 979-8-4007-0401-7/23/10.
https://doi.org/10.1145/3623507.3623555

To demonstrate the use of our framework, we showcase
the integration of the SPIR-V Beehive Toolkit in the con-
text of the TornadoVM, a Java framework for automatically
offloading and running Java programs on heterogeneous
hardware. We show that, via the SPIR-V Beehive Toolkit,
TornadoVM is able to compile code 3x faster than its existing
OpenCL C JIT compiler, and it performs up to 1.52x faster
than the existing OpenCL C backend in TornadoVM.

CCS Concepts: • Software and its engineering → API
languages; Just-in-time compilers; Runtime environ-
ments.

Keywords: API, Library, Java, Metaprogramming, Runtime
Code Generation, SPIR-V
ACM Reference Format:
Juan Fumero, György Rethy, Athanasios Stratikopoulos, Nikos
Foutris, and Christos Kotselidis. 2023. Beehive SPIR-V Toolkit: A
Composable and Functional API for Runtime SPIR-V Code Genera-
tion. In Proceedings of the 15th ACM SIGPLAN International Work-
shop on Virtual Machines and Intermediate Languages (VMIL ’23), Oc-
tober 23, 2023, Cascais, Portugal.ACM, New York, NY, USA, 12 pages.
https://doi.org/10.1145/3623507.3623555

1 Introduction
The Standard Portable Intermediate Representation (SPIR-
V) [15], maintained by the Khronos group [14], is an inter-
mediate binary format for representing graphics and par-
allel computation that exploit parallel execution on hetero-
geneous hardware, such as GPUs and FPGAs. SPIR-V was
proposed in March 2015 [15], and it can be used as an ex-
tension from OpenCL 2.1 to compute kernels that consume
SPIR-V binaries instead of OpenCL C source code. Several
companies, including Intel, AMD, NVIDIA, Codeplay and
Google offer their own implementations1, tools and com-
pilers for generating and consuming SPIR-V binary code.
Besides those tools, the Khronos Group has created a set
of tools and utilities to compile, disassemble, validate and

1https://github.com/KhronosGroup/SPIRV-Headers/blob/main/include/
spirv/spir-v.xml

1

https://doi.org/10.1145/3623507.3623555
https://doi.org/10.1145/3623507.3623555
https://github.com/KhronosGroup/SPIRV-Headers/blob/main/include/spirv/spir-v.xml
https://github.com/KhronosGroup/SPIRV-Headers/blob/main/include/spirv/spir-v.xml

VMIL ’23, October 23, 2023, Cascais, Portugal Juan Fumero, György Rethy, Athanasios Stratikopoulos, Nikos Foutris, and Christos Kotselidis

optimize SPIR-V binary code [16]. However, all these tools
are only available for LLVM-based programming languages
implementations, such as C/C++ (e.g., clang [21]), as they
operate under the LLVM [22] ecosystem and compiler infras-
tructure2.

This feature hinders the exploitation of SPIR-V tools from
programming languages, such as Java, R, Ruby, and Scala,
which are built on top of managed runtime systems, such as
the Java Virtual Machine (JVM). Applications and systems’
software, such as optimizing compilers and runtime systems
(e.g., GraalVM [10]), that are implemented in those program-
ming languages, cannot use existing standard SPIR-V tools
in a direct way.
To enable the utilization of LLVM-based tools from man-

aged programming languages, it is necessary to invoke the
tools using native interfaces such as the Java Native Inter-
face (JNI). For instance, Java programs could invoke existing
LLVM tools by providing native methods that can be used
as library calls via JNI.

Another way is to invoke LLVM utilities as an invocation
of a new process from a guest programming language (e.g., by
creating a subprocess that invokes the LLVM tools from Java).
However, such integrations pose the following challenges:
i) high complexity due to the interaction between different
programming languages and the runtime system, ii) high
difficulty to maintain, and iii) the necessity to recompile the
Java JNI dispatch code for every new release of SPIR-V.

In this paper, we present the Beehive SPIR-V Toolkit, a Java
framework that enables the automatic generation of a com-
posable and functional Java library based on standardized
grammar files (e.g., SPIR-V grammar). The generated library
can be used to enhance software written in JVM program-
ming languages with functionality (i.e., generation, valida-
tion, optimization) that is currently offered by LLVM-based
SPIR-V tools. Besides, the proposed framework is architected
to accommodate new SPIR-V releases in an easy-to-maintain
manner and facilitate the automatic generation of Java li-
braries for other standards, besides SPIR-V.
To enable this functionality, the Beehive SPIR-V Toolkit

architecture encompasses a template system engine that
demonstrates awell-known technique based onmodel-driven
engineering [12] for automatically generating Java libraries
and composable APIs based on standardized specifications.
Note that this is a common software engineering technique,
and we have enabled it to provide new APIs that can be used
by compilers and runtime systems in a transparent manner
without the need to reconfigure new rules for every new
version of the SPIR-V standard.

Lastly, the Beehive SPIR-V Toolkit provides a client utility
that can: i) assemble a SPIR-V binary code from a kernel

2Note that, although SPIR-V was created to be independent of the LLVM-IR,
many of the tools and utilities are still under the LLVM and C++ compiler
infrastructure.

description that is stored in a text file, and ii) disassemble a
binary code to a kernel description stored in a file.
The Beehive SPIR-V Toolkit has been developed to be

utilized by existing Just-In-Time (JIT) compilers and man-
aged runtime systems, as a means to facilitate SPIR-V code
generation and analysis from high-level JVM programming
languages. The source code of the Beehive SPIR-V Toolkit
is available on GitHub3 as an open-source project. As a use
case, we have extended the TornadoVM [7, 13] (a heteroge-
neous programming framework for Java) JIT Compiler and
runtime system, with a new backend for generating SPIR-V
using the Beehive SPIR-V Toolkit as a library.

In a nutshell, this paper makes the following contributions:
• It presents a template-based technique to automati-
cally generate composable and functional Java pro-
gramming libraries from standard grammar files that
are defined using the JSON format, showcasing the
technique in the context of SPIR-V.

• It presents the Beehive SPIR-V Toolkit, a framework
that automatically generates a composable and func-
tional Java library for building SPIR-V binary modules
at runtime. The proposed framework includes an as-
sembler that emits SPIR-V binary modules from disas-
sembled SPIR-V text files, as well as a disassembler that
converts the SPIR-V binary code to a kernel description
stored in a text file.

• It presents an extension of the TornadoVM JIT com-
piler and runtime system for automatically generating
SPIR-V from Java bytecode.

• It presents a performance evaluation of our framework
against existing OpenCL C backend of TornadoVM,
showing end-to-end speedups of up to 3x for the code
generation and up to 1.52x speedup for the execution
of the generated code.

2 Background and Motivation
SPIR-V was created to address the need for a universal in-
termediate language for parallel computing and graphics
processing applications. Similarly to OpenCL, SPIR-V lan-
guage’s tools generate code once and then compile it to dif-
ferent target architectures, such as CPUs, GPUs, and FPGAs,
among others, but in binary format. However, with SPIR-
V, developers do not need to distribute the source code of
the compute kernels, but rather the binary representation of
those kernels. Additionally, SPIR-V supports extensions from
multiple vendors and parties (e.g., SPIR-V Math Extended
Instruction Set [3]).
Since SPIR-V is a binary format representation, it might

be more convenient for compilers to generate this Interme-
diate Representation (IR) rather than, for example, OpenCL
C source code. In addition, SPIR-V kernels can be consumed

3https://github.com/beehive-lab/beehive-spirv-toolkit

2

https://github.com/beehive-lab/beehive-spirv-toolkit

Beehive SPIR-V Toolkit VMIL ’23, October 23, 2023, Cascais, Portugal

SPIR-V

OpenCL C
Clang c->spirv

llvm

C++/OCL

SYCL DPC++

ComputeAorta

Vulkan

OpenCL

triSYCL

MLIR

Level Zero

Metal

Figure 1. Language description and tooling ecosystem for
SPIR-V as described in the SPIR-V SPEC [15].

by OpenCL programs (from OpenCL 2.1) and Intel Level
Zero [27] applications.

Besides, SPIR-V allows high-level language front-ends to
produce programs in a standardized intermediate format that
can be consumed by driver implementations for Vulkan [18],
OpenGL [30] or OpenCL [33], thus eliminating the need for
high-level language front-end compilers in device drivers.
This not only simplifies driver architecture, but also sup-
ports a broad range of language and framework front-ends
for different hardware architectures, promoting an active
ecosystem of open-source tools for analysis, porting, debug-
ging, and optimization. Lastly, SPIR-V can speedup the final
compilation stage by the GPU drivers, because the kernels
are expressed in an intermediate low-level representation.

But, what is missing? Figure 1 shows the SPIR-V Lan-
guage ecosystem and some of the tools associated with SPIR-
V as they are specified in the SPIR-V Standard [15]. From the
figure, we can see that SPIR-V represents the intermediate
step between the high-level languages and the low-level pro-
gramming models for computing and graphics processing.
From the high-level language descriptions, we see that all
tools and languages represent conversions from the C and
C++ programming languages, with a heavy focus on the
LLVM compiler ecosystem.
While SPIR-V was designed to be independent of the

LLVM software and compiler ecosystem, current tools and
translators are centered around LLVM. This paper presents
a framework to generate SPIR-V code from managed run-
time programming languages and managed runtime envi-
ronments, such as the Java Virtual Machine and the Java pro-
gramming language. As far as we know, this paper presents
the first Java library to dynamically generate and validate
SPIR-V code.

3 Beehive SPIR-V Toolkit
This section presents the Beehive SPIR-V Toolkit. First, it
shows an overview of the overall software architecture, and
it shows how the Beehive SPIR-V Toolkit works (Section 3.1)
Then, Sections 3.2-3.3.4 describe each component in detail.

3.1 System Overview
To generate the Java library and the API, we have imple-
mented a Template System Engine (TSE) (Section 3.2.2).
The TSE is also fully implemented in Java, and it generates
new Java types that will be used to compose SPIR-V binary
modules. The generated library is then distributed as a stan-
dard Java JAR file to be imported by Java client applications,
runtime systems and compilers that are also implemented in
Java. Figure 2 shows the three main components, as follows:

SPIR-V Library Generator: This component generates
the Java SPIR-V Library and the APIs for composing SPIR-
V binary modules. The SPIR-V Library Generator takes, as
inputs, a set of grammar files described in the JSON format
that represents the SPIR-V grammar specified by the Khronos
Group, and a set of templates implemented in Java. The
Java templates provide the initial scaffolding to facilitate the
automatic generation of the functional and composable APIs,
as well as helper Java classes.

The core of the template generator is the TSE component,
which is a fully automated system that allows the generation
of composable APIs for every new version of the SPIR-V
standard based on the new grammar files. We refer to the
generated API as composable because, in order for client
applications to build new SPIR-V modules, it makes use of
function composition to create and build new constructs for
the resulting SPIR-V binary modules.

SPIR-V Library: This component is the result of the SPIR-
V library generator, and it is meant to be distributed to Java
clients as a standard Java library in a JAR format. This library
allows Java developers to implement JVM-based programs
(e.g., those implemented in Java, Scala, etc.) that dynamically
create SPIR-V modules. Furthermore, the SPIR-V library in-
cludes functionality to check and validate basic rules for
SPIR-V modules.

SPIR-V Client Utility: This component provides a client
application that can be used for assembling and disassem-
bling SPIR-V modules as a standalone tool. The client appli-
cation assembles and disassembles SPIR-V code from text
to binary format and vice-versa. Furthermore, this compo-
nent acts as an end-to-end application that demonstrates
how the generated SPIR-V library can be used with complete
examples.

As follows, we describe, in more detail, each of these com-
ponents.

3.2 SPIR-V Template Library Generator
The objective of the SPIR-V template library generator is
to automatically generate Java libraries that can be utilized
by other software components (e.g., optimizing compilers,
runtime systems, etc.) as a means to develop SPIR-V code.
The generated API is functional (as in functional program-
ming in which each new operation returns a new object of

3

VMIL ’23, October 23, 2023, Cascais, Portugal Juan Fumero, György Rethy, Athanasios Stratikopoulos, Nikos Foutris, and Christos Kotselidis

SPIR-V Grammar
JSON File

Template System
Engine
(TSE)

Java Template
Classes

SPIR-V Generated
Library

SPIR-V Library
Helper

SPIR-V Utility
(ASM/DISASM)

SPIR-V Library Generator SPIR-V Library SPIR-V Clients

Application1

ApplicationN

consumes

generates

parses

Instructions[]

Operands[]

Figure 2. Overview of the main components of the Beehive SPIR-V Toolkit. It provides three main components: 1) the SPIR-V
Library Generator; 2) the SPIR-V Library, and 3) a SPIR-V Client. The purple sub-components are provided by the Beehive
SPIR-V Toolkit. The SPIR-V Grammar file is provided by the Khronos Group in GitHub [16]. The green components represents
two data structures that store all SPIR-V instructions and operands that will be used to generate the new Java types.

the requested type, such as an integer addition, and there is
no mutation state of internal properties of the Java objects),
and composable (new instructions are composed of other
instructions, that are, in turn, built by creating and compos-
ing new objects of the requested types). We demonstrate the
details of the composition of calls in Section 3.3.
Furthermore, the library generator is capable of creating

an assembler and a disassembler that can adhere to various
versions of the SPIR-V standards. Thus, any future exten-
sions in the SPIR-V standard can be easily adopted in existing
systems’ software by updating to newly generated SPIR-V
formats in a transparent and automatic manner. To enable
this functionality, the SPIR-V library generator employs two
open-source software components: (1) the Jackson Annota-
tion Library [11], to parse the JSON grammar files and create
a list of instructions and operands to be generated; and (2)
the Apache Freemarker [2], to generate all Java types for all
instructions and operands that were previously parsed.

3.2.1 Parsing the JSON files from the SPIR-V Standard
Specification. As part of the tools for the SPIR-V standard,
the Khronos Group provides, in their repository [31], the
JSON files that specify the grammar for the SPIR-V Interme-
diate Language, and it defines all SPIR-V instructions, SPIR-V
operands, and SPIR-V types.
Figure 3 presents the main structure of serialized JSON

objects that reside in the JSON file. The blue blocks represent
JSON objects that can be expanded to other SPIR-V category
types, while the light-grey blocks represent the final objects
that correspond to SPIR-V final types. As illustrated in Fig-
ure 3, the SPIR-V grammar is composed of a Magic Number
along with a set of Instructions and a list of Operand Kinds.

To parse the SPIR-V grammar JSON file and generate the
corresponding Java classes that will compose the SPIR-V li-
brary, we use the Java Jackson annotation framework, which
is a popular and widely used Java framework to map Java
objects into/from files. Thus, the mapped Java objects from
the JSON file are structured following the object definition
in the standardized SPIR-V grammar.

Furthermore, our library supports the OpenCL Extended
Math Instructions set [3]. Note that, although the Beehive
SPIR-V Toolkit implementation covers the whole SPIR-V
grammar as defined in the SPIR-V core specification, it does
not cover the complete list of SPIR-V extensions, such as
GLSL, and AMD extensions. The reason is that at the cur-
rent status of the Beehive SPIR-V Toolkit, our focus has
been on providing support for parallel compute kernels (to
be integrated with OpenCL and Intel Level Zero [27] run-
time systems) rather than graphics processing. However, the
proposed framework can be extended in the same way to
generate all Java classes for graphics processing as well.
The result of the JSON parser process for the generation

of the Beehive SPIR-V Toolkit is a list of two arrays to store
instructions and operands with their corresponding fields.
These two arrays are used in the next step (in the TSE) to
generate all the Java types to represent SPIR-V instructions
and operands.

3.2.2 Template System Engine (TSE). The core func-
tionality of the SPIR-V Library Generator is the automatic
generation of libraries through the TSE, which generates a
Java library that uses function composition to build, at run-
time, SPIR-V binary modules. The TSE component generates
a set of Java classes, mapper classes and the utilities needed
for the SPIR-V assembler and dissembler. As such, these Java
templates follow three different categories within the TES
component: a) instructions templates; b) operand templates;
and c) mappers templates.
The way the TSE component works is as follows: the

engine takes, as inputs, the Java classes with the parsed
JSON objects, and a set of Java template classes. The former
classes map JSON objects to Java objects by the Jackson
Annotation Framework (Section 3.2.1), while the latter Java
classes are used for the template processing that will be used
for generating all instructions, operands, and mappers. Note
that this is an automatic process, and it builds all classes the
first time that the library is built while accepting a grammar
JSON file as input.

4

Beehive SPIR-V Toolkit VMIL ’23, October 23, 2023, Cascais, Portugal

SPIRV Grammar

InstructionsMagic Number Operand Kinds

Name Operands CapabilitiesOpCode

Kind Name Quantifier

Category Kind Bases Enumerant

Name Value Params

Kind Name

Capabilities

Figure 3. Block categories of the JSON file format that specifies the grammar of the SPIR-V Intermediate Language.

Listing 1. Pseudocode for the Instruction Generator.
1 Template t = openTemplate("instruction.template");

2 forEach (i: grammar.getInstructions())

3 do

4 templateFile = createFile(i)

5 t.eprocess(templateFile, i);

6 t.writeFile();

7 done

Templates for SPIR-V Instructions/Operands. Each SPIR-
V instruction that was parsed from the JSON files corre-
sponds to a new Java class that is generated based on a tem-
plate within the TSE component. Listing 1 shows a pseudo-
code of the TSE component that generates all Java classes
for all the SPIR-V instructions. Line 1 opens a file that repre-
sents the template in which the instructions will be written.
Then, lines 2-7 traverse the array that contains all parsed
instructions from the input JSON file to generate a Java class
per instruction. Each file contains a set of special characters
represented as strings that the TSE takes to substitute for
specific values and new characters. The end result is a set
of valid Java classes that compose the whole SPIR-V Java
library.
As a result of the processing of all the SPIR-V instruc-

tions, the TSE component dynamically generates 366 new
Java classes (all instructions available in the SPIR-V 1.2),
and 667 new Java classes for the 1.6 version of the SPIR-V
standard, while all instruction classes inherit from the same
SPIRVInstruction base class that we provide.
Similarly to the templates for the instructions, the TSE

component generates a set of Java types for all SPIR-V operands
and SPIR-V kinds that will be then copied to a Java sub-
package of the final library. In total, the TSE software compo-
nent generates 34 Java classes for the SPIR-V 1.2 and 44 new

Java classes for the SPIR-V 1.6 standard, that are mapped
to different types of SPIR-V operands, such as SPIRVBuiltin,
and LiteralExtInsInteger. Note that this process is fully
automatic, and it is triggered every time the Beehive SPIR-V
Toolkit is built from the source code.

Templates for Proxy Classes and Mappers. With the
generated Java classes that compose the Java Library for
SPIR-V instructions and operands, it is possible to dynami-
cally build SPIR-V modules just by using the generated com-
posable and functional API. However, the SPIR-V library
can be also used to disassemble SPIR-V binary modules as
well as to assemble modules expressed in a text format. To
achieve that, the TSE software component also generates
proxy classes that map both the description of the input SPIR-
V module in a text format to binary (assembling); and the
reverse action from binary modules to text (disassembling).

The TSE component generates three new classes per Java
Proxy type: one module for the assembler, one module for
the disassembler, and the Java classes that correspond to the
mappers for instructions, operands, and extended OpenCL
instructions (e.g., OpenCL math operations). We define these
proxy classes as Java helpers for writing SPIR-V and dis-
assembling SPIR-V binary modules. As a result, once the
SPIR-V Library is generated, it is ready to be consumed by
client applications.

Porting Different Standard Versions. First, we ported
the SPIR-V 1.2 standard, because all major driver vendors
(e.g., Intel) use this version. However, we also ported to the
latest standard available, 1.6 (also called unified). We expe-
rienced a smooth transition, and we only needed to accom-
modate one of the Java templates due to the addition of a
number at the beginning of a SPIR-V instruction. Since we
map every SPIR-V instruction name to a Java class, we cannot
assign a class name that starts with a number. Thus, in this
case, we start with the symbol underscore for the generated
Java type4.

3.3 SPIR-V Library
Through the generated Java classes and utility classes, the
generated API has two main Java types: i) the instructions
and operands (as we discussed in Section 3.2.2); and ii) the
scopes. A scope data type represents a block of instructions
that defines different visibility regions within the SPIR-V

4https://github.com/beehive-lab/spirv-beehive-toolkit/commit/
217208a2ef9b7a7ec4eb4d59e32c45a2344d8582

5

https://github.com/beehive-lab/spirv-beehive-toolkit/commit/217208a2ef9b7a7ec4eb4d59e32c45a2344d8582
https://github.com/beehive-lab/spirv-beehive-toolkit/commit/217208a2ef9b7a7ec4eb4d59e32c45a2344d8582

VMIL ’23, October 23, 2023, Cascais, Portugal Juan Fumero, György Rethy, Athanasios Stratikopoulos, Nikos Foutris, and Christos Kotselidis

Listing 2. Example of how to build a header for a SPIR-V
module.
1 SPIRVModule module = new SPIRVModule(

2 new SPIRVHeader(

3 1, // SPIRV_MAJOR_VERSION

4 2, // SPIRV_MINOR_VERSION

5 32, // SPIRV_GENERATOR_ID

6 0, // SPIRV_INITIAL_BOUND

7 0)); // SCHEMA_BOUND

module. In turn, there are three main types of scope data
types in SPIR-V: a) modules; b) functions; and c) blocks (basic
block of instructions).
Module Scope. The outermost scope for a SPIR-V is a

module, and it holds the global properties of the kernel
(e.g., header, variables, addressing modes, capabilities, etc.)
that affect the whole binary. The instructions allowed in
this scope are the header declaration, the capabilities for the
module (e.g., a compute kernel, a shader, enabling fp64, etc),
decorators (e.g., to specify memory alignment of variables),
types and composite declaration and function declarations.
The module scope also handles the declaration of the device’s
local memory (e.g., shared memory on a GPU device).

Listing 2 shows an example of how to build the header for
a new SPIR-V module using the Beehive SPIR-V Toolkit API.
A SPIR-Vmodule receives as a parameter, a SPIR-V header ob-
ject, which is also a Java type provided by the SPIR-V Library.
The SPIR-V header arguments specified in the constructor
of the object correspond to the parameters specified in the
SPIR-V standard, exactly in the same order. Thus, this makes
it easier to follow the SPEC along with the API definition of
the Beehive SPIR-V Toolkit.

Function Scope. Regarding the function scope, it handles
the declaration of the parameters passed and declared at the
function level and the function body. The instructions al-
lowed in this scope are declaration SPIRVOpFunction and its
parameters through the instruction SPIRVOpFunctionParam-
eter.
Block Scope. Finally, the block scope handles the rest

of the instructions of a basic block. In this paper, a basic
block corresponds to a sequence of instructions that are
executed one after the other and it does not contain control
flow divergence. As soon as there is a new basic block, a new
SPIR-V label must be instantiated, and therefore, the new
instruction will be enclosed in a new block scope.
3.3.1 Enabling Function Composition. To enable the
function composition of SPIR-V instructions, we designed a
Java common interface (called SPIRVInstScope) for all types
of SPIR-V scopes within the library. This interface contains
abstract methods for adding new instructions to a SPIR-V
module and registering new identifiers (IDs) in the SPIR-V
module.

Listing 3. Java Instruction Scope Interface to allow instruc-
tion composition.
1 public interface SPIRVInstScope {

2 // Add a new instruction

3 SPIRVInstScope add(SPIRVInstruction var1);

4 // Generate a new ID for the next instruction

5 SPIRVId getNextId();

6 }

Listing 4. Example of obtaining new a new ID for the next
instruction within a SPIR-V module.
1 SPIRVId idLabel = module.getNextId();

2 SPIRVOpLabel newLabel = new SPIRVOpLabel(idLabel);

3 functionScope.add(newLabel);

Listing 3 shows a simplified view of the SPIRVInstScope
Java interface that the Beehive SPIR-V Toolkit library pro-
vides. There are two main methods for this interface: one for
adding instructions (add), and another one for registering
new IDs within the SPIR-V module that is being built (using
the getNextId method).

Handling SSA Variables. In the Beehive SPIR-V Toolkit
API, each instruction and kind have a unique SPIR-V identi-
fier (ID). The reason is that SPIR-V binaries follow the SSA
(Static Single Assignment) representation [29], in which each
SPIR-V construct is assigned once.

Thus, to facilitate unique ID management, all new IDs are
requested at the module level, which has the whole view
of all instructions, operands, and kinds being used. Every
time a new SPIR-V instruction is instantiated (a new Java
object), the SPIR-V ID returned by the module is assigned
to it (the new instruction). Additionally, since instructions
are added within one of the three aforementioned scopes
(module, function or block scopes), the moment that an in-
struction is added to the list of instructions that belong to
the current scope, it also copies the ID into the module scope.
In this way, the Beehive SPIR-V Toolkit library can perform
checks on whether an ID is valid to be in the block that is
being added.
Listing 4 shows an example of how to obtain a new ID

for the next instruction within a function scope level. In
this case, we want to add a new SPIR-V label instruction.
Thus, we request, at the module level, a unique ID. Recall
that new IDs are requested from the module level, which has
the global view of all IDs being used. This ID is then used to
instantiate a new label instruction.

The add, and getNextId methods in combination with all
the instructions and operands generated by the TSE com-
ponent, enable developers to compose SPIR-V modules and
store them in binary format from Java.

6

Beehive SPIR-V Toolkit VMIL ’23, October 23, 2023, Cascais, Portugal

3.3.2 Dis/Assembler. As we introduced in Section 3.2.2,
the TSE component also generates two Java packages with
all the logic regarding the assembler and disassembler. These
two packages mainly contain the Proxy (or mapper) Java
classes to transform from a) a text file that describes a SPIR-V
module to a SPIR-V binary (assembler); and b) from a SPIR-V
binary to a text file. Note that, if developers want to generate
new SPIR-V modules in an instruction-by-instruction man-
ner, the use of these mapper classes is not needed. However,
these mapper Java classes are required in order to assemble
or disassemble a SPIR-V binary code (from SPIR-V text to
binary and vice-versa).
In order to generate the correct SPIR-V binary file from

a text file that describes a SPIR-V module, the mapper Java
classes contain helper methods. These methods are used to
transform each token (i.e., instruction from the input file)
to a SPIR-V instruction class by composing instructions of
modules, functions and blocks (as explained in the previous
section). Additionally, the Java mapper classes for the assem-
bler keep a mapping between all unique IDs from the input
text file in order to be used by the instructions that require
these IDs as operands. For example, when a new variable is
declared, the mapper Java class creates a mapping between
the assigned string name and a new SPIRVId object that is
created, and it is stored in an internal hash table. Then, when
the requested ID is passed as an argument to any SPIR-V
operation, the mapper recovers the SPIRVId by performing
a lookup in the hash table.

Note that the input text file must represent a valid SPIR-V
code. This is similar to the spirv-as LLVM utility command
from the Khronos SPIR-V utilities [16], in which the SPIR-V
text file can be manipulated and tested before integrating
optimizations in the compiler pipelines of the optimizing
compilers, thereby facilitating fast debugging. Since SPIR-V
is an IR in binary format, it is not easy to try out new opti-
mizations and reordering operations without changing and
adapting the compiler infrastructure. However, the proposed
approach via mappers allows developers of JIT compilers
to test new optimizations, measure performance and then
integrate the changes in the compilation pipeline while using
the Java software ecosystem.
The disassembler mapper classes work in a similar way

to the assembler mapper classes but in the reverse order.
The mapping classes contain the logic to transform SPIR-V
opcodes (integer values) into text format.

Listing 5 shows an example of how to disassemble a SPIR-V
binary file into text. Line 1 creates a Java object for selecting
the options for the disassembler. The constructor accepts
some utilities that can be configured, such as syntax high-
lighting, indentation, turning off the header, etc. Lines 8-11
create the SPIR-V disassembler object and line 12 invokes the
runner. When lines 8-11 are executed, it prints the SPIR-V
text file that corresponds to the input binary in the selected
output (e.g., standard output).

Listing 5. Code snippet that shows how to invoke the disas-
sembler.
1 SPIRVDisassemblerOptions opt =

2 new SPIRVDisassemblerOptions(

3 true, // Syntax Highlight

4 true, // Show Inline Names

5 false, // Turn Off Indentation

6 true, // Should Group

7 false); // No Header

8 SPIRVTool spirvTool = new Disassembler(

9 reader, // input binary file

10 System.out, // output

11 opt); // options

12 spirvTool.run();

3.3.3 Validation Rules. The Beehive SPIR-V Toolkit also
provides some validation methods for the generated SPIR-V
binary modules. The validation rules provided are as fol-
lows: the SPIR-V module must have at least one function
declared, at least one capability declared, the memory model
must be defined and it should contain at least one entry
point. Furthermore, the generated SPIR-V binary modules
can be validated using the Khronos SPIR-V Tools, such as
spirv-val. The validation of the generated modules is im-
portant to ensure the fidelity of the code generator. Our
validator is complementary to the SPIR-V Khronos valida-
tor. For instance, our validator also checks for instruction
capabilities and dependencies before storing the final SPIR-V
binary. The dependencies are retrieved from the JSON file
that describes the SPIR-V grammar. Through this validation,
we were able to detect circular dependencies in the latest
SPIR-V standard (1.6).

3.3.4 SPIR-V Client Utility. The Beehive SPIR-V Toolkit
also contains a standalone module that includes a client
application for assembling and disassembling SPIR-V code.
The client application acts as a command line utility that
invokes the assembler and disassembler components from
the library.

4 Use case: Integration into TornadoVM
Once we developed the library generator, we integrated it
into the TornadoVM JIT compiler. TornadoVM [7, 13] is a
Java parallel programming framework that transforms, at
runtime, Java bytecode into OpenCL and PTX code. To do so,
TornadoVM accelerates a subset of Java by offloading code
to be executed on CPUs, GPUs and FPGAs.

We extended the TornadoVM project with a new backend
for dispatching SPIR-V code through the Intel Level Zero [27]
API (a new low-level API developed by Intel to manage het-
erogeneous devices). Although the Level Zero API is not
attached to any specific hardware accelerator, it is currently
only available for Intel-integrated GPUs. Thus, we prototype

7

VMIL ’23, October 23, 2023, Cascais, Portugal Juan Fumero, György Rethy, Athanasios Stratikopoulos, Nikos Foutris, and Christos Kotselidis

// Java Application
class Compute {
 void task1(...) {...}
 void task2(...) {...}
 void run(ImmutableTaskGraph itg) {
 executionPlan.execute(itg);
 }
}

; MagicNumber: 0x7230203
; Version: 1.2
; Generator ID: 32
; Bound: 79
; Schema: 0
OpCapability Addresses
OpCapability Linkage
OpCapability Kernel
OpCapability Int64
%1 = OpExtInstImport "OpenCL.std"
OpMemoryModel Physical64 OpenCL
…

Figure 4. SPIR-V JIT Compilation Process in TornadoVM.

the SPIR-V backend for integrated GPUs with support for
Level Zero and SPIR-V. In the future, we plan to also inte-
grate the SPIR-V backend to be also dispatched through the
OpenCL runtime.

SPIR-V Compilation Process for TornadoVM. Since the
TornadoVM JIT compiler extends the Graal JIT compiler [10],
and it is fully implemented in Java, we imported our library
as a new dependency for the new SPIR-V backend in Tor-
nadoVM JIT compiler. We implemented the new backend
following the templates for the existing OpenCL and CUDA
PTX backends.

The compilation workflow for SPIR-V is shown in Figure 4.
The Figure shows four blocks: the first block on the left shows
a Java code snippet that represents a program using the
TornadoVM parallel APIs for GPU and FPGA programming.
When the code is first executed, the TornadoVM runtime
system invokes the JIT compiler for each Java method to be
compiled to the target backend (e.g., SPIR-V).

TornadoVM lowers the code from the Java bytecode to the
target backend in different compilation phases or compila-
tion tiers. The first tier is called the sketcher, and it contains
a common representation for all backends (e.g., OpenCL and
SPIR-V). During the sketcher, the TornadoVM JIT compiler
applies common high-level optimizations, such as constant
folding, evaluation of expressions, etc. We did not extend
this phase to adopt the new SPIR-V Backend.

From the sketcher, the TornadoVM JIT compiler starts spe-
cializing the IR per backend. In our case, we extended with
a new set of compiler optimizations and lowering phases to
transform the high-tier compiler IR of the program into the
SPIR-V code. To do so, we followed the compilation pipeline
of TornadoVMwith three new compilation tiers, named high-
tier, mid-tier and low-tier, and added, in total, 58 new com-
pilation phases that are specialized for the SPIR-V backend.
These compilation phases include optimizations for perform-
ing fast math operations, vector operations, and inlining,
among many others.
Once the TornadoVM JIT compiler optimizes the IR, we

generate the corresponding SPIR-V code using our Beehive
SPIR-V Toolkit library. To generate SPIR-V, we traverse the

final IR and build a new list of lowerable Java objects (Java
types provided by GraalVM to generate code) with the spe-
cific instructions to generate SPIR-V code. The final process
is to traverse the final list and invoke the generate method
for each object in the list. The result of this process is a SPIR-
V module that can be dispatched through the Level Zero API
included in TornadoVM.

Advantages of the SPIR-V Backend in TornadoVM.
From our experience porting the SPIR-V backend in Tor-
nadoVM, we see that the structure is much simpler than
the OpenCL C backend. This is because the SPIR-V back-
end generates code at the binary level, while the OpenCL C
code reconstructs source code from the low-level IR of the
TornadoVM JIT compiler.

For instance, the OpenCL C backend contains a lot of
control to cover many corner cases when generating struc-
tured control flow from the unstructured control flow of
the TornadoVM IR, and therefore, the Graal IR [24]. The
SPIR-V backend of TornadoVM dramatically simplifies this
process by allowing conditional and unconditional jumps to
the specific compiler basic blocks.

5 Evaluation
We evaluated the library against the existing OpenCL Back-
end in TornadoVM using same device Intel-integrated GPU
contained in an Intel i9-10885H CPU. The Intel driver used
was 21.38.21026, which is the same for running OpenCL and
SPIR-V applications. The OS used was Fedora Linux 34 with
the Linux Kernel 5.16.18-100. TornadoVM contains a script
for benchmarking, and it includes applications from many
different domains such as machine learning, Fintech, linear
algebra and physics [13].

Performance of the JIT Compiler andCode Generation.
Figure 5 shows the execution time for code generation (the
total time that takes to build either a SPIR-V module or an
OpenCL C kernel from the last compiler phase), and the
driver compilation, which represents the total time that the
GPU driver takes to compile to the final GPU binary. The
SPIR-V backend employs the Beehive SPIR-V Toolkit library,

8

Beehive SPIR-V Toolkit VMIL ’23, October 23, 2023, Cascais, Portugal

Figure 5. Performance evaluation between the code generator of TornadoVM for OpenCL and the SPIR-V. The SPIR-V backend
uses the Beehive SPIR-V Toolkit library. The stack plot displays two types of metrics: a) the driver compilation, which involves
the JIT compilation once the code is generated; and b) the code generation, which contains the total time to generate the code
by using the proposed library. The total time is shown in nanoseconds. The lower, the better.

while the OpenCL C backend of TornadoVM uses an ad-hoc
library of the project (with no decoupling).

In general, the SPIR-V backend performs slower than the
OpenCL when generating the code (black section of the
stacks in Figure 5). This is expected since the Beehive SPIR-V
Toolkit API creates a significant number of Java objects in
order to build SPIR-Vmodules. This is because each identified
and each instruction is a new Java object. However, once
the code has been generated, the driver compilation time
decreases by up to 3.9x compared to OpenCL.
Although the function composition and modularity of

the SPIR-V library come at a performance cost, the most
efficient driver implementation of SPIR-V results in an end-to-
end compilation performance increase of 2.72x (on average)
compared to OpenCL. End-to-end performance speedups,
compared to OpenCL, range from 2.2x% (convolveImageArray
- the third group of bars), to 3x (hilbert - the fifth group of
bars starting from the right-hand side).

Performance of the SPIR-V Backend. We also evaluated
the total time that takes each benchmark to run for each
backend. Figure 6 shows the speedup of each application
using our new SPIR-V backend over the OpenCL C backend
that was already implemented in the TornadoVM project.
Thus, the higher, the better. We executed all benchmarks on
the same Intel HD graphics for both backends.

To measure the performance, we executed the benchmark
script that the TornadoVM provides, which performs a set of
warm-up iterations and then provides the median time for all
executions. Since we provide the median, the JIT compilation
time, which happens in the first iteration, is excluded from
these measurements.

As a disclaimer, note that the SPIR-V backend is dispatched
through the Intel Level Zero API, while the OpenCL C back-
end is dispatched through the Intel OpenCL driver for the
same GPU (Intel integrated GPU). This means that the block
of threads to be deployed on the GPU might differ between
the OpenCL and the Level Zero thread dispatchers.

Figure 6. Speedup of the our implementation of the SPIR-V
backend for TornadoVM using the Beehive SPIR-V Toolkit li-
brary API over the existing OpenCL C backend on the inte-
grated Intel GPU.

We see that, in general, the SPIR-V backend varies from 2%
slowdown compared to the OpenCLC backend execution (for
the saxpy, addImage and dft benchmarks) to 15% speedup
(for the juliaSet benchmark).

In particular, the SPIR-V performs better than OpenCL for
the convolveArray and blurFilter benchmarks, 1.47x and
1.52x respectively. In contrast, the blackScholes benchmark
performs 50% slowdown compared to the OpenCL C.
Even though we are executing the benchmarks on the

same device, we see different performances. One of the rea-
sons is that the thread block we select for the SPIR-V backend
is different compared to the one that TornadoVM selects for
the OpenCL C backend. This clearly can influence perfor-
mance [34].

6 Related Work
This section presents the most relevant work to the Beehive
SPIR-V Toolkit concerning how it is implemented through
its TSE and used as a library for SPIR-V code generation.
To the best of our knowledge, this is the first Java library
designed for SPIR-V code generation.

Template System Engine (TSE). SPIR-V Tools [16] uses a
similar approach for mapping the code between SPIR-V text
and SPIR-V binary. However, our approach also provides

9

VMIL ’23, October 23, 2023, Cascais, Portugal Juan Fumero, György Rethy, Athanasios Stratikopoulos, Nikos Foutris, and Christos Kotselidis

a functional programming interface to dynamically build
SPIR-V modules embedded in the TSE. We believe this API
offers a cleaner and more concise way to compose SPIR-V
applications.
LLVM TableGen [25] also uses a similar approach to our

TSE. In LLVM, TableGen is a tool provided by the LLVM
compiler infrastructure that can be used to generate code
using the llvm-tblgen utility command. LLVM TableGen is
a more powerful tool than our TSE because it can be used not
only to generate operands and instructions (as the Beehive
SPIR-V Toolkit does), but it can also generate instruction
scheduling information and specific rules for each instruc-
tion. However, our TSE can be extended to accommodate
this kind of functionality by providing the corresponding
templates in Java.
J. Haavisto [17] presented an approach to generate SPIR-

V binary modules using programs written in APL [19] (a
non-imperative and array centric programming language) as
a modelling language. There are two differentiation points
with our work: i) our work exposes a generic and composable
API, rather than the templates themselves generate thewhole
SPIR-V code, and ii) the TSE is generic to support other code
instruction sets and IRs such as OpenCL or CUDA PTX.
SPIR-V ASM/DASM libraries. The Multi-Level IR Com-

piler Framework (MLIR) [23] contains a custom implementa-
tion of a SPIR-V library to generate SPIR-V binary modules
from the MLIR-specific IR. The custom SPIR-V library gener-
ates a dialect of SPIR-V (LLVM IR with SPIR-V intrinsics)5.
MLIR provides utilities to lower the SPIRV-V dialect to stan-
dard SPIR-V modules. The SPIR-V dialect generated by the
MLIR is designed to perform specific optimizations [35]. In
contrast, the prime focus of the proposed TSE is to generate
standard SPIR-V. However, the set of templates in Beehive
SPIR-V Toolkit can be extended to include the emission of
other dialects that can also interact with the MLIR GPU di-
alects for SPIR-V. To do so, we would need to extend the
write methods of each SPIR-V instruction to emit the equiv-
alent SPIR-V dialect instructions.
ViennaCL++ [6] can generate SPIR-V binary modules by

invoking the LLVM SPIR-V compiler for input OpenCL ker-
nels The Beehive SPIR-V Toolkit library can generate SPIR-V
binary modules via a composable and functional Java API.
DCompute [36] is a SPIR-V code generator library that reuses
the LLVM-based D Compiler (LDC) [25] to statically compile
programs written in the D language to SPIR-V. The Beehive
SPIR-V Toolkit, although it provides a Java API, it is language
agnostic, making it suitable for reusing with other JVM lan-
guages such as Scala, R [32], JavaScript and NodeJS [37],
Python or Ruby [26]. Furthermore, DCompute can compile
high-level language constructs, such as lambda expressions.
Unlikely, the proposed library is designed to operate at a
lower-level, and it is intended for compiler engineers who

5https://groups.google.com/g/llvm-dev/c/n0vU71iHNis

need to generate and debug SPIR-V code from managed run-
time programming languages.
The vast majority of the SPIR-V compilers use LLVM

tools [16] to generate, analyze and validate the generated
code. Several compilers that belong to this category are the
Intel SYCL compiler [5], HIPCL [4], ComputeCpp [8, 28],
HipSYCL [1], triSYCL [20] and Intel oneAPI [9]. Our ap-
proach leverages the SPIR-V code generation as a high-level
library for Java and JVM-based programming languages.

7 Conclusions
SPIR-V is an IR in a binary format to express parallel computa-
tions and graphics for execution on heterogeneous hardware.
SPIR-V tools that assemble and disassemble from/to paral-
lel programming and graphics models such as OpenCL and
Vulkan already exist. However, they are primarily designed
for C/C++ and use the LLVM compiler infrastructure and
software ecosystem.

This paper presents the Beehive SPIR-V Toolkit, a Java pro-
gramming framework that enables the generation of SPIR-
V kernels from programming languages that can run on
top of the JVM (e.g., Java, Truffle Python, Truffle Ruby or
JavaScript). While the technique to automatically generate
programs from JSON files is not new, it has been exploited
to generate a complete API from a specification, allowing
the adoption of new releases of the standards with mini-
mal effort quickly. The Beehive SPIR-V Toolkit is an open-
source project that generates a functional and composable
API for building SPIR-V modules. This paper also described
the overall architecture of the proposed library and presented
a template system engine that can automatically generate a
programming library from a well-specified grammar written
in JSON. Furthermore, the Beehive SPIR-V Toolkit contains a
client utility that can be used as a standalone tool for assem-
bling, disassembling and validating a SPIR-V binary code.
We showcase the integration of our library into the Tor-

nadoVM project, by providing a new backend to compile Java
to SPIR-V. Our experiments show that our library performs
up to 3x compared to the existing OpenCL C code generator
in TornadoVM, and the generated SPIR-V code performs up
to 1.52x faster than the OpenCL C backend when running on
an Intel integrated GPU. In future work, we plan to extend
validation rules. Additionally, we want to expose an API for
checking and validating different sections of the generated
SPIR-V binary modules.

Acknowledgments
This work is partially funded by grants from Intel Corpo-
ration and the European Union’s Horizon 2020 programme
under grant agreement No 957286 (ELEGANT). Additionally,
it is funded by UK Research and Innovation (UKRI) under
the UK government’s Horizon Europe funding guarantee
for grant numbers 10048318 (AERO), 10048316 (INCODE),
10039809 (ENCRYPT) and 10039107 (TANGO)

10

https://groups.google.com/g/llvm-dev/c/n0vU71iHNis

Beehive SPIR-V Toolkit VMIL ’23, October 23, 2023, Cascais, Portugal

References
[1] Aksel Alpay and Vincent Heuveline. 2020. SYCL beyond OpenCL: The

Architecture, Current State and Future Direction of HipSYCL. In Pro-
ceedings of the International Workshop on OpenCL (Munich, Germany)
(IWOCL ’20). Association for Computing Machinery, New York, NY,
USA, Article 8, 1 pages. https://doi.org/10.1145/3388333.3388658

[2] Apache. Last Access: May 2023. Apache FreeMarker Template Engine.
https://freemarker.apache.org/

[3] Ben Ashbaugh. Last Access: May 2022. OpenCL Extended In-
struction Set Specification. https://registry.khronos.org/SPIR-
V/specs/unified1/OpenCL.ExtendedInstructionSet.100.html#_a_id_
math_a_math_extended_instructions

[4] Michal Babej and Pekka Jääskeläinen. 2020. HIPCL: Tool for Porting
CUDA Applications to Advanced OpenCL Platforms Through HIP. In
Proceedings of the International Workshop on OpenCL (Munich, Ger-
many) (IWOCL ’20). Association for Computing Machinery, New York,
NY, USA, Article 18, 3 pages. https://doi.org/10.1145/3388333.3388641

[5] Alexey Bader, James Brodman, and Michael Kinsner. 2019. A SYCL
Compiler and Runtime Architecture. In Proceedings of the International
Workshop on OpenCL (Boston, MA, USA) (IWOCL’19). Association
for Computing Machinery, New York, NY, USA, Article 16, 1 pages.
https://doi.org/10.1145/3318170.3318194

[6] Tai-Liang Chen, Shih-Huan Chien, and Jenq-Kuen Lee. 2018. Vi-
ennaCL++: Enable TensorFlow/Eigen via ViennaCL with OpenCL
C++ Flow. In Proceedings of the International Workshop on OpenCL
(Oxford, United Kingdom) (IWOCL ’18). Association for Comput-
ing Machinery, New York, NY, USA, Article 28, 2 pages. https:
//doi.org/10.1145/3204919.3207894

[7] James Clarkson, Juan Fumero, Michail Papadimitriou, Foivos S. Zakkak,
Maria Xekalaki, Christos Kotselidis, and Mikel Luján. 2018. Exploiting
High-Performance Heterogeneous Hardware for Java Programs Using
Graal. In Proceedings of the 15th International Conference on Managed
Languages & Runtimes (Linz, Austria) (ManLang ’18). Association for
Computing Machinery, New York, NY, USA, Article 4, 13 pages. https:
//doi.org/10.1145/3237009.3237016

[8] Codeplay. Last Access: May 2023. ComputeCpp. https://developer.
codeplay.com/products/computecpp/ce/home

[9] Intel Corporation. Last Access: May 2023. oneAPI. https://www.intel.
com/content/www/us/en/developer/tools/oneapi/overview.html

[10] Gilles Duboscq, Lukas Stadler, Thomas Würthinger, Doug Simon,
Christian Wimmer, and Hanspeter Mössenböck. 2013. Graal IR: An
extensible declarative intermediate representation. In Proceedings of
the Asia-Pacific Programming Languages and Compilers Workshop.

[11] FasterXML. Last Access: May 2023. Jackson Annotation Framework.
https://github.com/FasterXML/jackson

[12] Jean-Marie Favre. 2004. Towards a basic theory to model model driven
engineering. In 3rd workshop in software model engineering, wisme.
Citeseer, 262–271.

[13] Fumero, Juan and Papadimitriou, Michail and Zakkak, Foivos S. and
Xekalaki, Maria and Clarkson, James and Kotselidis, Christos. 2019.
Dynamic Application Reconfiguration on Heterogeneous Hardware. In
Proceedings of the 15th ACM SIGPLAN/SIGOPS International Conference
on Virtual Execution Environments (Providence, RI, USA) (VEE 2019).
Association for Computing Machinery, New York, NY, USA, 165–178.
https://doi.org/10.1145/3313808.3313819

[14] Khronos Group. Last Access: May 2023. Khronos Group. https:
//www.khronos.org/

[15] Khronos Group. Last Access: May 2023. SPIR-V Specifications. https:
//www.khronos.org/spir/

[16] Khronos Group. Last Access: May 2023. SPIRV Tools. https://github.
com/KhronosGroup/SPIRV-Tools

[17] Juuso Haavisto. 2020. Leveraging APL and SPIR-V languages to write
network functions to be deployed on Vulkan compatible GPUs. Master’s
thesis. Université de Lorraine. https://hal.inria.fr/hal-03155647

[18] The Khronos Group Inc. Last access: May 2023. Vulkan 1.3.250 - A
Specification. https://registry.khronos.org/vulkan/specs/1.3/html/
vkspec.html

[19] Kenneth E. Iverson. 1962. A Programming Language. John Wiley &
Sons, Inc.

[20] Ronan Keryell and Lin-Ya Yu. 2018. Early Experiments Using SYCL
Single-Source Modern C++ on Xilinx FPGA: Extended Abstract of
Technical Presentation. In Proceedings of the International Workshop
on OpenCL (Oxford, United Kingdom) (IWOCL ’18). Association for
Computing Machinery, New York, NY, USA, Article 18, 8 pages. https:
//doi.org/10.1145/3204919.3204937

[21] Chris Lattner. 2008. LLVM and Clang: Next generation compiler
technology. In The BSD conference, Vol. 5.

[22] Chris Lattner and Vikram Adve. 2004. LLVM: A Compilation Frame-
work for Lifelong Program Analysis & Transformation. In Proceedings
of the International Symposium on Code Generation and Optimization:
Feedback-Directed and Runtime Optimization (Palo Alto, California)
(CGO’04). IEEE Computer Society, USA, 75.

[23] Chris Lattner, Jacques A. Pienaar, Mehdi Amini, Uday Bondhugula,
River Riddle, Albert Cohen, Tatiana Shpeisman, Andy Davis, Nicolas
Vasilache, and Oleksandr Zinenko. 2020. MLIR: A Compiler Infras-
tructure for the End of Moore’s Law. CoRR abs/2002.11054 (2020).
arXiv:2002.11054 https://arxiv.org/abs/2002.11054

[24] David Leopoldseder, Lukas Stadler, Christian Wimmer, and Hanspeter
Mössenböck. 2015. Java-to-JavaScript Translation via Structured Con-
trol Flow Reconstruction of Compiler IR. SIGPLAN Not. 51, 2 (oct 2015),
91–103. https://doi.org/10.1145/2936313.2816715

[25] LLVM.org. Last Access: May 2023. The LLVM Compiler Infrastructure.
https://llvm.org/

[26] Kevin Menard, Chris Seaton, and Benoit Daloze. 2018. Specializing
Ropes for Ruby. In Proceedings of the 15th International Conference
on Managed Languages and Runtimes (Linz, Austria) (ManLang ’18).
Association for Computing Machinery, New York, NY, USA, Article
10, 7 pages. https://doi.org/10.1145/3237009.3237026

[27] Intel oneAPI. Last Access: May 2023. Level Zero SPEC. https://spec.
oneapi.io/level-zero/latest/index.html

[28] Ruymán Reyes and Victor Lomüller. 2014. SYCL: Single-source C++
accelerator programming. In Advances in Parallel Computing. Volume
27: Parallel Computing: On the Road to Exascale. 673–682. https://doi.
org/10.3233/978-1-61499-621-7-673

[29] B. K. Rosen, M. N. Wegman, and F. K. Zadeck. 1988. Global Value
Numbers and Redundant Computations. In Proceedings of the 15th ACM
SIGPLAN-SIGACT Symposium on Principles of Programming Languages
(San Diego, California, USA) (POPL ’88). Association for Computing
Machinery, New York, NY, USA, 12–27. https://doi.org/10.1145/73560.
73562

[30] Mark Segal and Kurt Akeley. May 2022. The OpenGL Graphics System:
A Specification (Version 4.6. https://registry.khronos.org/OpenGL/
specs/gl/glspec46.core.pdf

[31] SPIR-V-Khronos. Last Access: August 2023. SPIR-V Headers. https:
//github.com/KhronosGroup/SPIRV-Headers

[32] Lukas Stadler, Adam Welc, Christian Humer, and Mick Jordan. 2016.
Optimizing R Language Execution via Aggressive Speculation. In Pro-
ceedings of the 12th Symposium on Dynamic Languages (Amsterdam,
Netherlands) (DLS 2016). Association for Computing Machinery, New
York, NY, USA, 84–95. https://doi.org/10.1145/2989225.2989236

[33] John E Stone, David Gohara, and Guochun Shi. 2010. OpenCL: A
parallel programming standard for heterogeneous computing systems.
Computing in science & engineering 12, 3 (2010), 66.

[34] Yuri Torres, Arturo Gonzalez-Escribano, and Diego R. Llanos. 2013.
UBench: Exposing the Impact of CUDA Block Geometry in Terms
of Performance. J. Supercomput. 65, 3 (sep 2013), 1150–1163. https:
//doi.org/10.1007/s11227-013-0921-z

11

https://doi.org/10.1145/3388333.3388658
https://freemarker.apache.org/
https://registry.khronos.org/SPIR-V/specs/unified1/OpenCL.ExtendedInstructionSet.100.html#_a_id_math_a_math_extended_instructions
https://registry.khronos.org/SPIR-V/specs/unified1/OpenCL.ExtendedInstructionSet.100.html#_a_id_math_a_math_extended_instructions
https://registry.khronos.org/SPIR-V/specs/unified1/OpenCL.ExtendedInstructionSet.100.html#_a_id_math_a_math_extended_instructions
https://doi.org/10.1145/3388333.3388641
https://doi.org/10.1145/3318170.3318194
https://doi.org/10.1145/3204919.3207894
https://doi.org/10.1145/3204919.3207894
https://doi.org/10.1145/3237009.3237016
https://doi.org/10.1145/3237009.3237016
https://developer.codeplay.com/products/computecpp/ce/home
https://developer.codeplay.com/products/computecpp/ce/home
https://www.intel.com/content/www/us/en/developer/tools/oneapi/overview.html
https://www.intel.com/content/www/us/en/developer/tools/oneapi/overview.html
https://github.com/FasterXML/jackson
https://doi.org/10.1145/3313808.3313819
https://www.khronos.org/
https://www.khronos.org/
https://www.khronos.org/spir/
https://www.khronos.org/spir/
https://github.com/KhronosGroup/SPIRV-Tools
https://github.com/KhronosGroup/SPIRV-Tools
https://hal.inria.fr/hal-03155647
https://registry.khronos.org/vulkan/specs/1.3/html/vkspec.html
https://registry.khronos.org/vulkan/specs/1.3/html/vkspec.html
https://doi.org/10.1145/3204919.3204937
https://doi.org/10.1145/3204919.3204937
https://arxiv.org/abs/2002.11054
https://arxiv.org/abs/2002.11054
https://doi.org/10.1145/2936313.2816715
https://llvm.org/
https://doi.org/10.1145/3237009.3237026
https://spec.oneapi.io/level-zero/latest/index.html
https://spec.oneapi.io/level-zero/latest/index.html
https://doi.org/10.3233/978-1-61499-621-7-673
https://doi.org/10.3233/978-1-61499-621-7-673
https://doi.org/10.1145/73560.73562
https://doi.org/10.1145/73560.73562
https://registry.khronos.org/OpenGL/specs/gl/glspec46.core.pdf
https://registry.khronos.org/OpenGL/specs/gl/glspec46.core.pdf
https://github.com/KhronosGroup/SPIRV-Headers
https://github.com/KhronosGroup/SPIRV-Headers
https://doi.org/10.1145/2989225.2989236
https://doi.org/10.1007/s11227-013-0921-z
https://doi.org/10.1007/s11227-013-0921-z

VMIL ’23, October 23, 2023, Cascais, Portugal Juan Fumero, György Rethy, Athanasios Stratikopoulos, Nikos Foutris, and Christos Kotselidis

[35] Nicolas Vasilache, Oleksandr Zinenko, Aart J. C. Bik, Mahesh Ravis-
hankar, Thomas Raoux, Alexander Belyaev, Matthias Springer, Tobias
Gysi, Diego Caballero, Stephan Herhut, Stella Laurenzo, and Albert
Cohen. 2022. Composable and Modular Code Generation in MLIR: A
Structured and Retargetable Approach to Tensor Compiler Construc-
tion. ArXiv abs/2202.03293 (2022).

[36] Nicholas Wilson. 2018. DCompute: Compiling D to SPIR-V for Seam-
less Integration with OpenCL. In Proceedings of the International Work-
shop on OpenCL (Oxford, United Kingdom) (IWOCL ’18). Association
for Computing Machinery, New York, NY, USA, Article 3, 3 pages.
https://doi.org/10.1145/3204919.3204922

[37] Thomas Würthinger, Christian Wimmer, Christian Humer, Andreas
Wöß, Lukas Stadler, Chris Seaton, Gilles Duboscq, Doug Simon,
and Matthias Grimmer. 2017. Practical Partial Evaluation for High-
Performance Dynamic Language Runtimes. In Proceedings of the 38th
ACM SIGPLANConference on Programming Language Design and Imple-
mentation (Barcelona, Spain) (PLDI 2017). Association for Computing
Machinery, New York, NY, USA, 662–676. https://doi.org/10.1145/
3062341.3062381

Received 2023-07-23; accepted 2023-08-28

12

https://doi.org/10.1145/3204919.3204922
https://doi.org/10.1145/3062341.3062381
https://doi.org/10.1145/3062341.3062381

	Abstract
	1 Introduction
	2 Background and Motivation
	3 Beehive SPIR-V Toolkit
	3.1 System Overview
	3.2 SPIR-V Template Library Generator
	3.3 SPIR-V Library

	4 Use case: Integration into TornadoVM
	5 Evaluation
	6 Related Work
	7 Conclusions
	Acknowledgments
	References

