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Abstract 

 

The control of translation is a crucial point of regulation of gene expression in the 

Drosophila embryo, but no method exists to examine it either on a single mRNA level 

or in live embryos. The SunTag method was recently developed by several groups to 

image translation at single-mRNA resolution in tissue culture cells. This project aims 

to adapt the SunTag system to the Drosophila embryo to study the translation 

dynamics of maternal and zygotic hb mRNAs. The Hunchback (Hb) transcription 

factor is crucial for anterior-posterior (AP) patterning of the Drosophila embryo. The 

maternal hb mRNA acts as a paradigm for translational regulation due to its 

repression in the posterior of the embryo. However, little is known about the 

translatability of zygotically transcribed hb mRNAs.  

Using single-molecule imaging in fixed and live embryos, evidence is found for 

translational repression of zygotic SunTag-hb mRNAs. Whereas the proportion of 

SunTag-hb mRNAs translated is initially uniform, translation declines from the 

anterior over time until it becomes restricted to a posterior band in the expression 

domain. Moreover, ribosome number in translation sites is estimated, revealing that 

SunTag-hb mRNAs are most efficiently translated in nc13, and that there are 

significantly less ribosomes per translated transcript in the anterior in nc14. Removal 

of the hb 3’UTR from the transgene suggests it plays a role in the timing of 

translational repression.  

Translation of maternal hb mRNAs is also imaged. This reveals the previously 

characterised translation repression in the posterior of the embryo. Unexpectedly, 

however, repression is incomplete, with the small proportion of mRNAs translated in 

the posterior translated as efficiently as mRNAs in the anterior. In addition, it is found 

that there are fewer ribosomes on the maternal transcript than the zygotic transcript, 

which differ in their untranslated regions (UTRs). 

Overall, the results show how use of the SunTag method on fixed and live embryos 

is a powerful combination for elucidating spatiotemporal regulation of mRNA 

translation in Drosophila. 
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Chapter 1: Introduction 

1.1 ANTERIOR-POSTERIOR AXIS PATTERNING IN DROSOPHILA 
MELANOGASTER EARLY EMBRYOGENESIS  

Early embryogenesis of the Drosophila melanogaster (referred to hereafter as 

Drosophila) embryo, up to gastrulation, consists of 14 synchronous mitoses known 

as nuclear cycles (nc). The first 8 nuclear cycles occur rapidly in the interior of the 

embryo at the preblastoderm stage. From nc8 to nc10, nuclei migrate to the periphery 

of the embryo, following which nuclear cycles gradually increase in length until nc13, 

which is 20 minutes in length, and nc14, which lasts ~70 minutes (Foe and Alberts, 

1983) (Figure 1.1A). Nuclear cycles up to nc13 occur without cellularisation in a 

syncytial blastoderm where nuclei are not separated by cell membranes (Foe et al., 

1993). At nc10, the pole cells form at the posterior, and lose mitotic synchronicity with 

the embryonic syncytium (Figure 1.1A). The mitoses from nc8 to 13 occur in mitotic 

waves which originate from the anterior and posterior poles. Nuclei in these areas 

enter mitosis first, with nuclei in the centre of the embryo last to enter mitosis (Foe 

and Alberts, 1983). During nc14, the previously spherical nuclei elongate, and cell 

membranes progressively form by ingression from furrows in the apical plasma 

membrane (Loncar and Singer, 1995). When cellularisation is complete at ~1 hour 

into nc14, gastrulation movements begin.  

Initial stages of embryogenesis proceed without zygotic transcription, relying on 

mRNA expressed by the mother and maternally deposited within the oocyte. Zygotic 

genome activation (ZGA), the onset of zygotic transcription, also known as the 

maternal to zygotic transition (MZT), begins to occur with limited numbers of genes 

as early as nc8 (the minor wave of ZGA). Gradually more genes are switched on until 

~950 genes have been transcribed by nc13 (Kwasnieski et al., 2019). The bulk of 

ZGA occurs in mid-nc14 (the major wave), with ~7000 genes expressed (Forbes 

Beadle et al., 2022, reviewed in Tadros and Lipshitz, 2009) (Figure 1.1). Early 

expressed zygotic genes are generally short in length and have few introns due to 

the limited amount of time to transcribe them in early nuclear cycles (De Renzis et al., 

2007, Kwasnieski et al., 2019). Many early genes contain promoter binding sites for 

the pioneer transcription factor Zelda, which has a key role in ZGA (Liang et al., 2008). 

During the MZT, approximately 35% of maternally deposited transcripts are 

destabilised (De Renzis et al., 2007, reviewed in Tadros and Lipshitz, 2009), and ~2% 

of the maternal proteome is also degraded (Cao et al., 2020), allowing for rapid 

changes in the overall protein content of the embryo.  _______________________________
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Figure 1.1 Overview of the early embryogenesis of Drosophila
Schematic of early Drosophila development to gastrulation, with nuclear cycles and 
key developmental events labelled.
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The clearance of maternal mRNAs is orchestrated by RNA-binding proteins such as 

Brain tumor (Brat) (Laver et al., 2015), and miRNAs (Bushati et al., 2008). 

The patterning of the anterior-posterior (AP) axis of the Drosophila embryo (Figure 

1.2A) is a well characterised process mediated by a cascade of temporally and 

spatially regulated gene expression. Genes affecting AP patterning have been 

classified into 4 major groups based on mutant phenotypes (Figure 1.2B). Maternal 

effect genes cause phenotypes when the mother is homozygous for the mutation, 

and generally act to organise the major axes of the embryo. Gap genes affect the 

patterning of multiple segments, pair-rule genes affect pattern formation in pairs of 

segments along the AP axis, and segment polarity genes affect the development of 

elements within each segment (Nusslein-Volhard and Wieschaus, 1980). 

1.1.1 The maternal effect Bicoid gradient patterns the anterior of the embryo 

The development of the anterior structures of the Drosophila embryo relies on the 

maternal factor bicoid (bcd). bcd mRNA is expressed in nurse cell nuclei and then 

localised anteriorly in oocytes and early embryos. The mRNA is present up to nc13 

and disappears in early nc14 during nuclear elongation (Berleth et al., 1988). Correct 

localisation of the mRNA requires the factors Swallow (Swa) and Exuperentia (Exu) 

(Berleth et al., 1988). The activity of posterior genes, such as Vasa (Vas), destabilises 

any bcd mRNA that is not localised correctly to the anterior (Berleth et al., 1988).  

Bcd protein forms a concentration gradient along the AP axis with approximately 

exponential decay, and neighbouring nuclei experience Bcd concentration 

differences of ~ 10% (Gregor et al., 2007a). Bcd is a transcription factor generally 

thought to act as a morphogen, with target genes responding to concentration 

thresholds. Increasing the copy number of Bcd causes the expression boundary of 

the target gene hunchback (hb) to move posteriorly, arguing that it responds to a 

threshold of Bcd concentration (Struhl et al., 1989). A two-fold difference in Bcd 

expression appears to be sufficient to distinguish between on or off states of hb 

expression (Struhl et al., 1989). Measurement of Bcd concentration showed that the 

concentration near the threshold for hb expression was 8 ± 1 nM (Gregor et al., 

2007a). Bcd profiles in the centre of the embryo would allow read out of positional 

information with an accuracy of 2% embryo length (Gregor et al., 2007a). Varying Bcd 

concentration in a genetic background where the levels are flattened across the 

embryo (vas exu mutants) leads to target genes hb, giant (gt), and Krüppel (Kr), 

responding in an ‘all-or-nothing’ fashion (Ochoa-Espinosa et al., 2009). 

_______________________________
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Figure 1.2: The anterior-posterior patterning cascade
A: Representation of axes positions of Drosophila embryo.
B: Schematic showing embryos with example expression patterns of maternal, gap, 
pair-rule and segment polarity genes, along with known regulatory interactions within 
the gene groups. 
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Target gap genes of Bcd cross-regulate each other’s expression to precisely position 

their domain borders. Hb represses transcription of Kr and knirps (kni) (Hulskamp et 

al., 1990, Hulskamp et al., 1994). Kni also represses hb expression in return, perhaps 

in co-operation with Kr (Clyde et al., 2003). The reciprocal repression of Hb and Kni 

positions the Kni domain between the two Hb domains in the anterior and posterior 

of the embryo (Clyde et al., 2003).  

1.1.2 Nanos patterns the posterior of the embryo     

Posterior patterning is directed by the morphogen Nanos (Nos) (Wang and Lehmann, 

1991). Correct expression and localisation of Nos requires the activity of several 

posterior genes, including oskar (osk), cappuccino (capu), vas and staufen (stau) 

(Wang et al., 1994). Nos acts to repress translation of maternally deposited hb in the 

posterior of the embryo (discussed in more detail in Section 1.4.2) (Irish et al., 1989). 

Embryos that lack nos or vas can develop normally if they also lack maternal 

expression of hb, suggesting that the primary function of Nos and the posterior 

determinant system is to prevent the posterior production of Hb protein (Irish et al., 

1989, Struhl, 1989).   

1.2 TRANSLATION          

Translation is the process by which protein is synthesised from mRNAs. This section 

will discuss the mechanism of translation initiation, how it is regulated, and the 

importance of the regulation of translation on overall protein content in the cell.  

1.2.1 The mechanism of translation initiation      

Most mRNAs undergo cap-dependent initiation of translation (Jackson et al., 2010, 

Hinnebusch, 2014). The ribosome consists of two subunits – the 40S small subunit 

and the 60S large subunit, each containing many ribosomal proteins and RNAs. The 

40S subunit is loaded onto the mRNA first as part of the 43S pre-initiation complex, 

followed by the 60S subunit after 5’UTR scanning and start codon recognition. 

Several initiation factors (eIFs) are also required for translation to proceed.  

The loading of the 43S pre-initiation complex requires eIF4F, a complex consisting of 

eIF4E, which binds to the mRNA 5’ cap, eIF4A, an RNA helicase, and eIF4G, a 

scaffold protein (Figure 1.3A). eIF3, eIF1A and eIF1 are recruited to the 40S subunit, 

along with the initiator eIF2-Met-tRNA, which is bound to eIF2-GTP. An interaction 

between eIF4G and eIF3 is thought to mediate 43S attachment. eIF1 and eIF1A 

induce conformational changes to the ‘open latch’, which is optimal for attachment to 

the mRNA. After attachment, the 43S complex scans the 5’UTR for the start codon. _______________________________
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Scanning of 5’UTRs with any secondary structure requires the RNA helicase activity 

of eIF4A and ATP to unwind it. Highly structured 5’UTRs may require further proteins 

to assist the 43S complex in scanning (Jackson et al., 2010, Hinnebusch, 2014).  

Once the start codon is recognised, eIF1 is displaced, causing a conformation change 

to the ‘closed’ structure of the subunit that promotes stable base pairing of the codon-

anticodon pair. eIF5 mediates commitment to the start codon by activating eIF2 

GTPase activity. The 60S large subunit is then recruited, mediated by eIF5B, and 

eIF1, eIF1A, eIF3 and eIF2-GDP dissociate (Jackson et al., 2010, Hinnebusch, 2014).  

Translation is cyclical, with ribosomal subunits recycled after elongation for use in 

initiation. During recycling, eIF3, eIF1 and eIF1A promote separation of the 40S and 

60S subunits and dissociation from the mRNA, binding to the 40S subunit and priming 

it for re-recruitment to the cap (Jackson et al., 2010, Hinnebusch, 2014).  

Since cap binding proteins interact with Poly(A)-binding protein (PABP), it has been 

hypothesised that translation occurs in a ‘closed-loop’ to facilitate recycling of 

ribosomal subunits (Wells et al., 1998). Closed-loop structures are found to be formed 

during translation initiation in yeast cell-free extracts (Amrani et al., 2008). The closed-

loop formation of mRNAs has been detected in vivo in yeast for several mRNAs by 

the quantification of mRNA ends bound to eIF4F or PABP after RNase digestion, 

where presence of both ends indicates a closed-loop conformation (Archer et al., 

2015). However, imaging techniques (discussed in Section 1.5.2) show that mRNAs 

are less compact while translating than when untranslated, with a longer distance 

between the 5’ and 3’ end, contrasting with a model of a stable closed-loop structure 

during translation (Adivarahan et al., 2018, Khong and Parker, 2018).  

1.2.2 A brief overview of translation regulation      

Translation efficiency of transcripts can vary widely between different mRNAs. Whole 

genome studies (using methods discussed in Section 5.1) show up to 30-fold 

differences in the translation efficiency of mRNAs. The translation efficiency of a 

transcript can depend on many parameters, including the ribosome initiation rate, the 

elongation rate – which is site specific and may vary along the transcript, and the 

termination rate. However, it is generally accepted that initiation is the rate limiting 

step and the modulation of translation initiation rate is the primary way in which the 

translation efficiency of a transcript is regulated (Shah et al., 2013). 

In addition, the translation of specific mRNAs may be regulated spatially or 

temporally. This regulation can be particularly important for rapid transitions in gene _______________________________
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expression, as the activation or repression of translation bypasses several steps in 

the gene expression pathway, such as transcription, splicing and export, which may 

slow down responses to stimuli. This is true in the case of, for example, stress  

(Harding et al., 2000), developmental transitions (Teixeira and Lehmann, 2019), or 

the immune response (Piccirillo et al., 2014).  

In this section, some factors affecting the efficiency of translation for individual 

mRNAs are discussed.  

1.2.2.1 mRNA sequence        

Sequences within the mRNA may influence the efficiency of translation, for example 

by acting as ‘landing pads’ for RNA binding proteins or by forming structures that 

influence the ability of the ribosome to initiate or elongate. Many sequences affecting 

translation occur in untranslated regions (UTRs) of the transcript. These regions are 

not translated into protein and therefore have no effect on the protein that is produced 

from the transcript, but are highly conserved, indicating important functional output 

(Mayr, 2017, Leppek et al., 2018). In addition, median 3’UTR length correlates with 

the number of cell types found in an organism – a proxy for developmental complexity 

– indicating the importance of UTRs for gene regulation (Mayr, 2017).  

One such example of sequences within UTRs that have a significant effect on 

translation efficiency are upstream open reading frames (uORFs). These occur when 

an AUG or any non-cognate start codon appears in 5’UTRs upstream of the start 

codon. Ribosomes may initiate on these uORFs, inhibiting translation on the 

downstream coding sequence. uORFs therefore have a generally repressive effect 

on translation of their mRNAs, including in Drosophila, where genes with ribosome 

protected fragments (see Section 1.5.1) mapping to uORFs display significantly lower 

translation efficiency of the main ORF (Zhang et al., 2018). In contrast, another study 

in Drosophila did not find a correlation between changes in translation of uORFs and 

of the main ORF in most cases (Patraquim et al., 2020). 14,881 potential uORFs with 

AUG start codons in 5’UTRs have been identified in Drosophila, with 2708 translated 

in S2 cells as identified by the presence of ribosome footprints (Aspden et al., 2014). 

The majority of uORFs transcribed in the Drosophila embryo show ribosome binding 

in embryogenesis, but only 15% show productive translation as identified by in frame 

codon phasing of ribosome footprints (Patraquim et al., 2020). This may indicate a 

difference between ribosomes that are scanning or stalled on the uORF sequence, 

and ribosomes that initiate translation of the uORF. The use of uORFs can be 

regulated, for example through changes in uORF translation at different temperatures _______________________________
22

_______________________________CHAPTER 1: INTRODUCTION



in yeast (Kulkarni et al., 2019), or by RNA-binding proteins (RBPs). The protein Sex 

lethal (Sxl) promotes translation of a uORF (and therefore inhibiting translation of the 

coding sequence) on the msl-2 mRNA in Drosophila (Medenbach et al., 2011). In 

addition, high throughput methods measuring translation efficiency from thousands 

of 5’UTRs has identified potential translation enhancer and silencer sequence 

elements (Niederer et al., 2022).  

Many genes have alternatively spliced or alternatively polyadenylated mRNA 

isoforms that differ in the UTR regions, leading to sequence variation that can alter 

the translation efficiency of the mRNA. For example, analysis of translation efficiency 

from alternative 5’UTRs using an in vitro luciferase assay showed that long and short 

isoforms from the same genes could have translation differences of up to 100-fold 

(Rojas-Duran and Gilbert, 2012). Sequencing of mRNAs from polysome fractions with 

different numbers of ribosomes showed that isoforms with longer 3’UTRs tend to be 

less translated (Floor and Doudna, 2016). Regulatory sequences in 3’UTRs may be 

added by longer isoforms, or shorter isoforms may increase availability of regulatory 

regions that were inaccessibly in longer versions due to RNA structure (Mayr, 2017). 

Nevertheless, translation rates of isoforms with alternative 3’UTRs were found to be 

highly correlated in fibroblasts (Spies et al., 2013). It is possible that alternative UTR 

choice could play a larger role when gene expression is dynamic, such as in 

development. Alternative 3’UTRs are often expressed in a cell-type specific manner, 

providing an extra layer of regulation. In addition, developmentally regulated isoform 

pairs were identified that have translational differences in HEK cells, potentially 

allowing for control of protein production during development via alternative isoform 

transcription (Floor and Doudna, 2016).  

1.2.2.2 RNA binding proteins       

RBPs bind to sequences within mRNAs, often in the UTRs, and modulate features of 

mRNA function, including splicing, translation, and degradation. In vivo, mRNAs are 

generally coated in RBPs, forming a ribonucleoprotein complex (mRNP) (reviewed in 

Erickson and Lykke-Andersen, 2011). The RBP composition bound to an mRNA is 

dynamic and can change depending on for example post translational modifications, 

other RBPs and RNA structure. In yeast, RBPs have been shown to interact with 

specific sets of < 10 to > 1000 mRNAs and mRNAs on average associated with 3 of 

the 40 RBPs analysed (Hogan et al., 2008), indicating that mRNPs are generally 

complex and diverse. Many RBPs are evolutionarily conserved, indicating their 

importance in general cellular function (Matia-Gonzalez et al., 2015). RBPs generally 

_______________________________
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recognise short sequences within their target genes. Often these sequences are 

degenerate and interactions do not have high affinity, but the specificity of interactions 

can be affected by RNA structure, other RBPs and the concentration of the mRNA 

and RBP, meaning that the affinity of binding can substantially change in vivo 

(Jankowsky and Harris, 2015). Studies in Drosophila embryos have identified > 500 

expressed RBPs (Sysoev et al., 2016, Wessels et al., 2016).  

RBPs can act to inhibit translation by preventing translation initiation. A well-

characterised example is the iron response element (IRE), found in many mRNAs 

including ferritin, which forms a hairpin structure (Ke et al., 1998). When cellular iron 

levels are low, the RBPs IRP-1 or IRP-2 bind to the IRE, which is located in the 5’UTR 

near the cap structure (Goossen and Hentze, 1992), preventing the recruitment of the 

small ribosomal subunit (Gray and Hentze, 1994). The cap-binding complex eIF4F 

can assemble when IRP-1 is bound, but interactions between the cap-binding 

complex and the small ribosomal subunit cannot occur (Muckenthaler et al., 1998). 

RBPs can also regulate translation of mRNAs by modulating their adenylation and 

decay. For example, the binding of PUF family RBPs is correlated with the removal 

of the poly(A) tail from mRNAs. PUF proteins interact with components of the CCR4-

NOT deadenylase complex, enhancing mRNA deadenylation and destabilisation 

(Goldstrohm et al., 2006).  

RBPs often act with distinct cofactors to repress specific mRNAs. For example, 

d4EHP acts with Bcd to repress caudal (cad) translation in the anterior of the 

Drosophila embryo but with Pumilio (Pum), Nos and Brat to repress hb translation in 

the anterior (Cho et al., 2005, Cho et al., 2006) (discussed further in Sections 1.3.5.1 

and 1.4.2). Pum and Nos also act to repress the translation of cyclin-B mRNA but do 

not recruit Brat, which is required in hb repression (Sonoda and Wharton, 2001, 

Kadyrova et al., 2007). Pum and Brat act independently of Nos to repress translation 

of targets including mothers against decapentaplegic (mad) in the Drosophila 

germline stem cell (Harris et al., 2011). Translational regulators often act on many 

mRNAs, requiring different co-factors to provide spatial and temporal specificity.  

1.2.2.3 microRNAs         

microRNAs (miRNAs) are ~21nt small RNAs that bind to sequences, typically within 

the 3’UTR, of an mRNA and post-transcriptionally regulate its expression through 

decay or translation. The miRNA interacts with the mRNA as part of a large miRNP 

complex, which includes members of the Argonaute (Ago) protein family. miRNAs 

inhibit translation through interaction of Ago proteins with the cap, competing with _______________________________
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eIF4E for cap binding and repressing translational initiation (Meister, 2007). Some 

miRNA targets undergo a modest amount of translational repression without 

detectable changes in mRNA levels, but mRNAs that are highly translationally 

repressed generally also undergo mRNA destabilisation (Baek et al., 2008). In 

mammalian cells, ≥ 84% of decrease in protein production after miRNA targeting is 

accounted for by decreasing mRNA levels (Guo et al., 2010). It has been suggested 

that miRNA binding sites in the CDS are more effective at triggering translation 

inhibition, whereas binding sites in the 3’UTR act through mRNA decay (Hausser et 

al., 2013). Overall, miRNAs generally act by repressing the translation of their targets 

followed by deadenylation and decay of the mRNA (Bazzini et al., 2012). 

miRNAs are particularly important during the MZT to facilitate the clearance of 

maternally loaded transcripts. In zebrafish (Danio rerio), miR-430 acts to accelerate 

deadenylation and decay of several hundred maternal mRNAs (Giraldez et al., 2006). 

miRNAs also act during the MZT of Drosophila, where a cluster of zygotically 

expressed miRNAs (the miR-309 cluster) targets maternal mRNAs for degradation 

(Bushati et al., 2008). In addition, the pioneer transcriptional activator Zelda activates 

transcription of many miRNA clusters that act in further embryonic patterning – for 

example, a double knock out of miR-9a and miR-1 results in defects in gastrulation 

(Fu et al., 2014). Drosophila miRNAs show spatially specific expression patterns 

during embryonic development (Aboobaker et al., 2005), and are predicted to target 

30% of Drosophila 3’UTRs. 5000 miRNA binding sites were experimentally identified 

in Drosophila S2 cells (Wessels et al., 2019).  

1.2.2.4 Specialised ribosomes       

Recently, it has been appreciated that ribosomes are heterogeneous (Shi et al., 

2017), and the specialisation of ribosomes can contribute to the regulation of 

translation. Ribosomes can be specialised by additional protein components (Simsek 

et al., 2017), for example the addition of Dap1b and Habp4 which inhibit and stabilise 

ribosomes in the zebrafish egg (Leesch et al., 2021). Specific ribosomal subunits or 

paralogs being incorporated into the ribosome can lead to the preferential translation 

of certain subsets of mRNAs. For example, mutations in RPL38 in mice cause a 

decrease in translation efficiency and polysome association of certain Hox mRNAs, 

whereas global levels of protein synthesis remain unchanged (Kondrashov et al., 

2011). Internal ribosome entry sites (IRESes) in the 5’UTRs of Hox mRNAs are 

thought to allow cap independent translation by RPL38 containing ribosomes (Xue et 

al., 2015). However, recent results have cast doubt on whether the identified IRES 
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sequences are included in transcript 5’UTRs (Akirtava et al., 2022). Ribosome 

containing RPL10A also preferentially translate subsets of mRNAs (Shi et al., 2017). 

rRNA modifications and the post-translational modification of ribosome proteins can 

also modify ribosome function (Bates et al., 2018).  

In Drosophila, the ribosome is made up of 80 proteins and 5 rRNAs. 13 ribosomal 

proteins have additional paralogs that can be differentially incorporated into the 

ribosome, raising the possibility of specific functions for ribosomes containing each 

paralog. It has been shown that some paralogs have distinct expression 

domains, especially in the gonads (Hopes et al., 2022). Many paralogs show 

enrichment in testes or ovarian ribosomes compared to other tissues using 

analysis of RNA-seq and mass spectrometry data, for example RpL37b and 

RpL22-like in the testes and RpS5b and RpL24-like in the ovaries (Hopes et al., 

2022). The function of some of these paralogs has been further investigated. 

The ribosomal protein paralogs RpS5a and RpS5b are nearly identical but have 

distinct N-terminal domains of approximately 40 amino acids. RpS5b is expressed in 

the ovaries and the testes and is the predominant isoform in 0 - 2 hour embryos. 

RpS5a is the widespread isoform expressed somatically (Kong et al., 2019). In the 

ovary and testes, RpS5b is expressed in the germline and RpS5a in the somatic cells 

as well as to some extent in the germline. RpS5b mutants have a specific germline 

phenotype, with female sterility and egg chambers that do not complete oogenesis 

(Kong et al., 2019), although RpS5a can substitute for RpS5b in the germline if it is 

overexpressed. Immunoprecipitation of mRNAs associated with RpS5a and RpS5b 

in the germline showed that mRNAs involved in oxidative phosphorylation were 

enriched in association with RpS5b, suggesting that ribosomes containing each 

isoform may preferentially translate certain transcripts (Kong et al., 2019).  

The ribosome paralogs RpL22 and RpL22-like, which are 45% identical (Hopes et al., 

2022), also have different expression patterns, with both paralogs being expressed in 

the germline in the testes and only RpL22 in the soma (Mageeney and Ware, 2019). 

Some mRNAs appear to preferentially associate with RpL22-like containing 

ribosomes compared to RpL22 containing ribosomes when tested in Drosophila S2 

cells (Mageeney and Ware, 2019), suggesting this could function similarly in 

spermatogenesis.  

Additional protein components have also been shown to engage with ribosomes in 

specific tissues in Drosophila, perhaps regulating their function. Comparison of Cryo-

EM structures of testis and ovarian ribosomes showed an additional protein, IFRD1, _______________________________
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in only testis monosomes (Hopes et al., 2022), which was absent in testes polysomes 

and ovarian monosomes and polysomes. IRFD1 is present in the P and E sites of the 

ribosome, which, along with its presence in only monosomes, suggests it may be 

involved in a mechanism of translation repression in the testes (Hopes et al., 2022). 

1.2.3 Importance of translation in the regulation of gene expression   

Gene expression can be regulated at many steps along the expression pathway, 

including at mRNA transcription, export, mRNA decay, protein translation and protein 

decay. Attempts to quantify the relative importance of regulation of each of these 

steps to the overall protein content of a cell have been made by correlating mRNA 

levels with protein levels. mRNA and protein levels are imperfectly correlated across 

all biological systems studied (reviewed in Larsson et al., 2013). The amount of 

variance in protein expression that can be explained by mRNA expression can be 

estimated by the correlation coefficient (R2) of mRNA and protein levels, which has 

been measured at between 0.27 – 0.46 in multicellular organisms (Larsson et al., 

2013). The remaining variation, assuming that technical and biological noise is 

absent, will be explained by post transcriptional regulation, whether through mRNA 

stability and decay, translation, or protein turnover. A study that quantified mRNA and 

protein expression levels, as well as their turnover, by pulse labelling with heavy 

amino acids and nucleoside analogues estimates that approximately 40% of variance 

in protein levels is explained by mRNA expression levels (Schwanhausser et al., 

2011). When translation rates are considered, the amount of variance that can be 

explained increases to approximately 90%, leading this study to suggest that 

translation rates have as much of an impact on protein expression as transcription 

levels do.  

However, (Li et al., 2014) used individual measurements for 61 housekeeping 

proteins to rescale the data from (Schwanhausser et al., 2011) Their corrected protein 

abundance estimates show a higher correlation with mRNA abundance than 

uncorrected data, and they estimated that when taking into account error, mRNA 

levels explain at least 56% of the differences in protein abundance. In addition, 

(Csardi et al., 2015), using reanalysis of existing data to account for noise, find that 

in exponentially growing budding yeast, mRNA levels account for 85% of the variation 

in protein levels. mRNA abundance and protein-synthesis rate have also been found 

to be highly correlated (Weinberg et al., 2016). Overall, it appears that mRNA and 

protein levels may be globally well-correlated, but this does not necessarily apply to 

individual genes, which may show very different translation efficiencies. Whole 
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genome profiling methods (discussed in Section 1.5.1) of translation have allowed 

estimates of the range of translation efficiency (TE) across mRNAs. In yeast, the 

range of TEs was found to be ~15-fold (Weinberg et al., 2016), and in mouse 

embryonic stem cells, an ~10-fold range was found (Ingolia et al., 2011).  

mRNA and protein abundance measurements have also been made in Drosophila 

embryogenesis in two-hour time windows (Becker et al., 2018). mRNA levels better 

correlate with protein levels at timepoints approximately 4 hours later than at the same 

timepoint, indicating a delay in protein production. The median correlation of mRNA 

and protein levels when maximum correlation over time shifts was considered was 

0.58. Mathematical modelling to describe regulation estimated that 54% of mRNA 

protein pairs show continuous protein synthesis from the mRNA, indicating control is 

transcriptional. 8% of genes show no protein synthesis, either with or without 

degradation of the protein, 21% of genes show delayed translation of an mRNA, and 

16% of genes do not fit a simple model, suggesting that they are under complex post-

transcriptional control (Becker et al., 2018). When excluding data from before the 

maternal-to-zygotic transition (MZT), only 2% of genes do not fit a simple model, and 

fewer genes show delayed translation. This indicates that most post-transcriptional 

control occurs prior to the MZT in Drosophila embryos. However, to be modelled, 

mRNA/protein pairs had to be detected reproducibly in 10 time points, potentially 

omitting genes that are more dynamically expressed, which may undergo post-

transcriptional regulation.   

Even without regulated protein translation or turnover, mRNA and protein may have 

lower correlation due to the temporal delay from when an mRNA is transcribed to 

when the protein is translated – for example, the processes of transcription, splicing 

and export from the nucleus. Therefore, mRNA correlation to protein levels is 

particularly low during times when transcription is very dynamic, for example in 

cellular transitions, as mRNA and protein levels have not had time to establish a 

steady state. Because most eukaryotic mRNAs have a half-life of more than 2 hours, 

the control of translation is important for rapid regulation of the protein content of the 

cell. The control of translation is also an important metabolic consideration, as protein 

synthesis comprises a large proportion of the energy use of a cell. Therefore, there is 

a need for control of the protein content at the level of translation, rather than of 

protein degradation rate, as this would be metabolically costly and inefficient. 

Subsequently, when rapid changes in the gene expression of a cell are required, such 

as in developmental transitions (Teixeira and Lehmann, 2019), under stress (Harding 
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et al., 2000), or the immune response (Piccirillo et al., 2014), translational regulation 

is often utilised.  

1.3 REGULATION OF TRANSLATION IN DROSOPHILA     

1.3.1 Oogenesis          

Localisation of mRNA and control of translation combine to form protein gradients or 

confine proteins to specific locations within the oocyte (Lasko, 2012). Oogenesis and 

the development of the early embryo occur in the absence of transcription, meaning 

that the control of translation of maternally loaded mRNAs is one of the primary 

means for regulating gene expression both spatially and temporally. During oocyte 

maturation, ribosome profiling experiments show that approximately half of mRNAs 

have net changes in their translation efficiency (Eichhorn et al., 2016, Kronja et al., 

2014). The polyadenylation and deadenylation of mRNAs are important regulators of 

translation during oogenesis. Poly(A) tail length and translation efficiency are well 

correlated at this time (Eichhorn et al., 2016). However, this study also shows that 

mRNAs with the same average tail length can span a broad range of translational 

efficiencies, indicating that additional control mechanisms are involved in the 

regulation of translation in the oocyte. 

1.3.2 Oocyte-to-Embryo transition       

The oocyte-to-embryo transition (OET) marks the onset of organismal development 

and the change from a differentiated oocyte to a totipotent embryo, characterised by 

the completion of oocyte meiosis and the onset of mitotic divisions. The OET occurs 

in the absence of both transcription and mRNA degradation, leaving control of 

translation as one of the major possible ways that gene expression can be controlled. 

Polysome profiling and ribosome footprinting of mature oocytes and activated eggs 

show widespread changes in the translatome at the OET, with many mRNAs involved 

in embryonic patterning (e.g bcd, hb, and cad) and the cell cycle (e.g cyclin-A and 

cyclin-B) translationally activated, and mRNAs involved in the maturation of the 

oocyte translationally repressed (Kronja et al., 2014). Changes in translation 

efficiency at the OET are large, with changes of as much as 30-fold (Eichhorn et al., 

2016). In this study, further analysis using PAN GU kinase (png) mutant embryos 

showed that many of these changes in translation efficiency are dependent on PNG.   

PNG is required for mitotic divisions to begin at egg activation and is specifically 

implicated in upregulating translation of cyclin-B, promoting the first mitotic cycle 

(Vardy and Orr-Weaver, 2007). Cyclin-B translation is repressed throughout the _______________________________
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Figure 5.10: Translation of the hbP2>SunTag-hb-SV40 transgene
A: Graphs show (i) number of mRNAs, (ii) number of translated mRNAs and (iii) 
percentage of mRNAs translated for three embryos expressing maternally loaded 
scFv-mNG-NLS and heterozygous for the hbP2>SunTag-hb-SV40 transgene at 
nc13. Mean of nuclei in bins of 4% length along AP axis, error bars s.d. 
continued on next page_______________________________
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A B

Figure 5.11 Export and transcription of the hbP2>SunTag-hb-SV40 transgene 
A: Percentage of mRNAs that are nuclearly localised in nc13 embryos expressing 
hbP2>SunTag-hb and hbP2>SunTag-hb-SV40. 
B: Mean number of mRNAs per transcription site in nc13 embryos expressing 
hbP2>SunTag-hb and hbP2>SunTag-hb-SV40. Each point represents the mean from 
one embryo. Mean ± s.d, n = 3. ns: p > 0.05, independent t-test.

Figure 5.10 continued: Translation of the hbP2>SunTag-hb-SV40 transgene
A continued: Graphs show (iv) number of mRNAs, (v) number of translated mRNAs 
and (vi) percentage of mRNAs translated for embryos heterozygous for the 
hbP2>SunTag-hb and hbP2>SunTag-hb-SV40 transgenes at nc13. Mean ± sd of 
embryo means in bins of 4% length along AP axis, n = 2 embryos hbP2>SunTag-hb, 
n = 3 embryos hbP2>SunTag-hb-SV40.
B: Graphs show (i) number of mRNAs, (ii) number of translated mRNAs and (iii) 
percentage of mRNAs translated for three embryos expressing maternally loaded 
scFv-mNG-NLS and heterozygous for the hbP2>SunTag-hb-SV40 transgene at 
nc14. Mean of nuclei in bins of 4% length along AP axis, error bars s.d. Graphs show 
(iv) number of mRNAs, (v) number of translated mRNAs and (vi) percentage of 
mRNAs translated for embryos heterozygous for the hbP2>SunTag-hb and 
hbP2>SunTag-hb-SV40 transgenes at nc14. Mean ± sd of means in bins of 4% length 
along AP axis, n = 3 embryos hbP2>SunTag-hb, n = 2 embryos hbP2>SunTag- 
hb-SV40.
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The two embryos imaged had different translation patterns, with one embryo 

showing translational repression in the anterior in nc14, and one embryo showing 

little repression. This could be due to different timepoints within nc14, or due to 

heterogeneity between embryos. To investigate hbP2>SunTag-hb-SV40 translation 

further, and attempt to distinguish between these two possibilities, a section of an 

embryo expressing maternally deposited scFv-mNG-NLS and His-RFP and 

heterozygous for hbP2>SunTag-hb-SV40 was live imaged (Movie 7). Distinct scFv-

mNG-NLS foci could be seen in the anterior of the embryo, representing translation 

sites (Figure 5.12A). The embryo was imaged from mid nc11 to mid nc14. Regions 

of interest from embryos expressing hbP2>SunTag-hb-SV40 and hbP2>SunTag-hb 

at 35% and 45% EL were compared (Figure 5.12B). In nc12 and 13, translation was 

similar to live imaging for hbP2>SunTag-hb embryos. Limited scFv-mNG-NLS foci 

were seen at 35% EL at nc12 + 5 min in both hbP2>SunTag-hb and hbP2>SunTag-

hb-SV40 embryos, with none at 45% EL (Figure 5.12Bi, ii). At nc13 + 10 min, scFv-

mNG-NLS foci could be seen at 35% and 45% EL in both genotypes (Figure 5.12Bi, 

ii). However, at nc14 translation in the two genotypes differed. At 35% EL, scFv-

mNG-NLS foci can be seen in hbP2>SunTag-hb-SV40 embryos at nc14 and at 

nc14 + 3 min and nc14 + 8 min. In this region of hbP2>SunTag-hb embryos, a 

smaller number of translation sites can be seen at nc14, and none at nc14 + 3 min 

or nc14 + 8 min, indicative of the repression in the anterior seen in these embryos in 

nc14 (Figure 5.12Bi). At 45% EL, where the stripe of translation occurs in 

hbP2>SunTag-hb embryos, hbP2>SunTag-hb embryos show scFv-mNG-NLS foci 

at nc14, nc14 + 3 min and nc14 + 8 min. hbP2>SunTag-SV40 embryos show foci in 

all three of these timepoints, and some foci can also be seen at nc14 + 20 min 

(Figure 5.12Bii). This pilot experiment suggests that translation of hbP2>SunTag-

SV40 may persist in the anterior at nc14, before forming the translation stripe which 

occurs for longer into nc14 in comparison to translation of hbP2>SunTag-hb. 

To test these results across the embryo, scFv-mNG-NLS spots were quantified for 

each timepoint in the hbP2>SunTag-SV40 embryo and binned in 4% bins across 

the AP axis (Figure 5.13). Representative timepoints are plotted along the AP axis 

for nc12, 13 and 14. Translation persists for ~5 min in the anterior, with the stripe 

beginning to form at the 6 minute timepoint (Figure 5.13Aiii). At 3 min post nc14 

onset, there were 557 translation sites at 32 - 36% embryo length, in contrast to 37 

± 31 translation sites in hbP2>SunTag-hb embryos (mean ± s.d, n = 3 embryos).  
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Figure 5.12 Live imaging of hP2>SunTag-hb-SV40 translation 
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Figure 5.12 continued: Live imaging of hbP2>SunTag-hb-SV40 translation 
A: Still from a live imaging movie of an embryo expressing His-RFP (magenta), 
scFv-mNG-NLS (green) and hbP2>SunTag-SV40. Image from late nc13. Scale bar 
20 µm.
B: (i) Stills from movies at the indicated timepoints through embryogenesis of 
hbP2>SunTag-hb-SV40 and hbP2>SunTag-hb embryos at 35% EL, showing 
His-RFP and scFv-mNG-NLS (translation sites). Scale bar 5 µm. (ii) as (i) at 45% 
EL. 

nc12 nc13 nc14

A i ii iii

Figure 5.13: hbP2>SunTag-hb-SV40 translation site number across the AP axis 
A: Numbers of translation sites in 4% EL bins across AP axis for timepoints in (i) nc12, 
(ii) nc13 and (iii) nc14.
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The translation stripe was still seen, but appeared at ~6 min post nc14, and 

persisted until 25 min post nc14, in contrast to hbP2>SunTag-hb embryos, where 

the stripe appeared at the end of nc13 or beginning of nc13 and persisted for 10.3 ± 

3.7 min (mean ± s.d, n = 3 embryos). Here, the stripe was defined as having ≥ 50 

translation sites visible at 44 - 48 % embryo length. This suggests that loss of the 

endogenous 3’UTR affects timing of hb translational repression. Unfortunately, time 

constraints meant that only one embryo could be imaged, and more repeats would 

make this result more robust. It should be noted that the hbP2>SunTag-hb live 

imaging was performed on embryos with an insertion at the 86fb site on the third 

chromosome, whereas hbP2>SunTag-hb-SV40 was inserted on the second 

chromosome, so the chromosomal position was not the same. This should not affect 

translation but may affect mRNA number (Section 4.5, Figure 4.7), as does the 

3’UTR swap (Figure 5.10). Confirmation of these preliminary results and their 

interpretation requires further work. 

In addition, high magnification images in nc13 were taken to investigate whether the 

loss of the endogenous 3’UTR affected ribosome number per translated mRNA 

(Figure 5.14A). Ribosome number was calculated as described in Section 3.6, 

including only high confidence translation sites with > 5 ribosomes. Numbers of 

ribosomes on hbP2>SunTag-hb-SV40 mRNAs were distributed similarly to 

hbP2>SunTag-hb mRNAs, with up to ~30 ribosomes per mRNA (Figure 5.14B). 

There is no significant difference in the mean number of ribosomes per mRNA 

between hbP2>SunTag-hb-SV40 and hbP2>SunTag-hb transcripts (p > 0.05, 

independent t-test, n = 3 for both genotypes) (Figure 5.14C).  

5.6 Contribution of the 5’UTR to hb translation regulation    

Since translational repression of hbP2>SunTag-hb in the anterior of the embryo 

persists when the endogenous 3’UTR is removed, albeit at a later timepoint, the 

impact of the 5’UTR on translation was investigated. While less commonly 

identified, sequences within the 5’UTR can regulate translation of specific mRNAs 

(Leppek et al., 2018). For example, the IRE in the 5’UTR of ferritin mRNAs is bound 

by the RBP IRP-1 in low iron conditions, preventing the small ribosomal subunit 

from interacting with the cap binding complex eIF4F (Muckenthaler et al., 1998).  

The endogenous hb 5’UTR in the hbP2>SunTag-hb transgene was replaced by the 

5’UTR from even skipped (eve), a pair rule gene in Drosophila, generating the 

hbP2>eve5’-SunTag-hb transgene (Figure 5.15A).  
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Figure 5.14 Translation efficiency of hbP2>SunTag-hb-SV40 mRNAs
A: High magnification image of region from the anterior of an nc13 embryo 
expressing scFv-mNG-NLS and hbP2>SunTag-hb-SV40, stained with smFISH 
probes against the SunTag sequence (magenta) and anti-mNeonGreen antibody 
(green). Scale bar 5 µm. 
B: Number of ribosomes per ‘high’ translation transcript for individual embryos. Mean 
± s.d shown for each embryo.
C: Mean number of ribosomes per ‘high’ translation transcript. Each point is mean for 
one embryo. Mean ± s.d for means of embryos. ns, p > 0.05 (independent t-test).

ns
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Figure 5.15: Translation of the hbP2>eve5’-SunTag-hb transgene in 
a representative nc14 embryo
A: Structure of the hbP2>eve5’-SunTag-hb transgene.
B: A representative nc14 embryo expressing maternally loaded scFv-mNG-NLS 
and heterozygous for the hbP2>eve5’-SunTag-hb transgene, stained with smFISH 
probes against the SunTag sequence (magenta), anti-mNeonGreen antibody 
(green) and DAPI (blue). Scale bar 50 µm.

B

AUG{

hb P2 enhancer + promoter  eve 5’UTR 24 x SunTag hb CDS hb 3’UTR5’ 3’A

_______________________________
164

_______________________________CHAPTER 5: INVESTIGATING THE REGULATION OF HB TRANSLATION



Virgin females homozygous for the scFv-mNG-NLS transgene were crossed to 

homozygous hbP2>eve5’-SunTag-hb males, resulting in embryos expressing 

maternally loaded scFv-mNG-NLS and heterozygous for the hbP2>eve5’-SunTag-

hb transgene. Staining with smFISH probes against the SunTag sequence and anti-

mNeonGreen antibody in nc14 embryos (n = 3 embryos) showed hbP2>eve5’-

SunTag-hb mRNA in the anterior of the embryo in the same domain as 

hbP2>SunTag-hb mRNA. scFv-mNG-NLS foci were observed in a stripe at the 

posterior edge of the expression domain, similar to scFv-mNG-NLS foci in nc14 

embryos expressing hbP2>SunTag-hb (Figure 5.15B). Unfortunately, staining 

quality in this experiment did not allow the segmentation of individual mRNAs and 

therefore the numbers of mRNAs and translated mRNAs across the AP axis could 

not be quantified. The overall imaging pattern suggests that the transgene is still 

translationally repressed in the anterior in nc14 when the endogenous 5’UTR is 

changed, although more subtle effects on translation cannot be excluded without 

quantification. 

5.7 Translated hbP2>SunTag-hb mRNAs colocalise equally with two 
ribosome protein paralogs         

13 ribosomal proteins in Drosophila have paralogs and these can be differentially 

incorporated into the ribosome. Incorporation of different ribosomal proteins can 

have specific translational effects and target ribosomes to certain mRNA subsets 

(Kondrashov et al., 2011, Shi et al., 2017). Specialised ribosomes have been 

suggested to target specific mRNAs through IRES elements in the 5’UTR of the 

transcript (Xue et al., 2015) , although recent results have disputed whether these 

IRESes are typically transcribed (Akirtava et al., 2022). The ribosomal paralogs 

RpL22 and RpL22-like are both expressed in the early embryo, and it has been 

shown that they may preferentially associate with distinct subsets of transcripts in 

Drosophila S2 cells (Mageeney and Ware, 2019, Hopes et al., 2022). To investigate 

whether hb transcripts had preferential translation by ribosomes containing either of 

the protein paralogs, embryos that expressed maternally loaded scFv-mNG-NLS 

and were heterogygous for the hbP2>SunTag-hb transgene were stained with 

smFISH probes against the SunTag sequence, anti-mNeonGreen and antibodies for 

either ribosomal protein. 

In nc13 embryos, RpL22 was localised in the cytoplasm and excluded from the 

nucleus (Figure 5.16A).  
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anterior of the embryo. One possibility is that there is redundancy between the 

UTRs, and potential mechanisms of repression for further investigation are 

discussed in Chapter 6. The endogenous 3’UTR was replaced by an exogenous 

sequence, but the endogenous 5’UTR was replaced with the 5’UTR of the gene 

eve. It is possible that the eve 5’UTR may also be regulated in Drosophila, although 

it confers no known translational regulation. To exclude this possibility, an 

exogenous sequence should be used to replaced the 5’UTR in future studies.  

Finally, it is shown that hbP2>SunTag-hb translation sites are not enriched for either 

of two ribosomal protein paralogs (RpL22 and RpL22-like), but rather colocalise with 

both proteins at an equal proportion. RpL22 and RpL22-like have been previously 

shown to preferentially associate with certain subsets of mRNAs (Mageeney and 

Ware, 2019). However, according to the immunofluorescence performed, hb 

appears to be equally translated by ribosomes containing RpL22 or RpL22-like. The 

proportion of hbP2>SunTag-hb translation sites colocalising with RpL22-like in nc13 

is more variable than the proportion colocalising with RpL22, which could indicate 

more heterogeneity between embryos, or variation over time. Further investigation 

of the localisation of RpL22-like proteins in more embryos and over time would be 

required to determine this. In addition, RpL22 and RpL22-like have been shown to 

localise differentially in subsets of cells in the testes (Hopes et al., 2022). The data 

presented here show that the proteins do not localise in specific subsets of cells in 

the early embryo, but rather have different subcellular localisation, with RpL22 

localising in the cytoplasm and excluded from the nucleus, and RpL22-like localising 

in puncta in both the nucleus and cytoplasm. This differential localisation could 

suggest that they have specific roles in early embryogenesis. Further analysis could 

also be carried out to test whether mRNA localisation within the cell affects the 

likelihood of translation by either paralog. 

It is unknown whether RpL22 and RpL22-like containing ribosomes will be 

distributed randomly across mRNAs, or if single mRNAs will be translated only by 

ribosomes containing a specific paralog. Since both antibodies used are raised in 

rabbit, it has not been possible in this study to simultaneously stain for both RpL22 

and RpL22-like. Future work to stain for both paralogs would be necessary to 

answer this question. In addition, RpL22 and RpL22-like knock downs in the embryo 

with SunTag transgenes would allow the quantification of their effects on the 

number of mRNAs translated and the efficiency of translation. 
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Chapter 6: General discussion 

6.1 The SunTag system and its use in Drosophila embryogenesis   

The SunTag system has previously been used in tissue culture cell lines and primary 

neurons to image translation at a single mRNA level and in real time (Pichon et al., 

2016, Yan et al., 2016, Wang et al., 2016, Wu et al., 2016). This study uses the 

SunTag system to visualise translation in the early Drosophila embryo (Vinter et al., 

2021b, Vinter et al., 2021a), which, in conjunction with other studies carried out at the 

same time (Formicola et al., 2021, Dufourt et al., 2021), represents the first use of the 

system at a tissue or organismal level. This enables the comparison of translation 

efficiency, live or at a single mRNA level, across different cells within the same tissue, 

allowing investigation of the intra- and inter-cell heterogeneity of translation. The 

SunTag system is superior to TRICK, previously used in Drosophila oocytes 

(Halstead et al., 2015), as TRICK can visualise only the first round of translation. The 

MCP and scFv lines that have been generated will facilitate the quantitative study of 

translation of other Drosophila mRNAs, in live and/or fixed samples.  

Translation can be visualised on a single mRNA level in the fixed embryo, using 

smFISH to identify individual mRNAs. By using colocalization of individual mRNAs 

with scFv-mNG-NLS spots, the number of mRNAs being translated can be calculated. 

Higher magnification images of regions within the embryo allow the quantification of 

ribosome number on individual translated mRNAs. This allows the investigation of the 

translation efficiency of mRNAs spatially in the Drosophila embryo at much finer detail 

than the comparison of mRNA and protein staining. Protein levels may be influenced, 

for example, by protein stability. In addition, dynamic transcription and rapid mRNA 

degradation, such as the movement of the posterior boundaries of the gap gene 

transcript expression patterns (Fukaya, 2021), can lead to differences in the position 

of mRNA and protein patterns. This may lead to the misidentification of translational 

regulation. The SunTag technique allows for the specific interrogation of the 

translation step in the regulation of gene expression, directly measuring translation 

rather than inferring regulation from the protein and mRNA domains. 

In addition, as shown in this study, the SunTag system is useful for identifying the 

temporal as well as spatial regulation of translation. Both live imaging of translation 

and fixed imaging– using nuclear cycle to stage embryos – can be used to investigate 

translation over time. In this study, translational repression of hb transcripts was 

identified in the anterior of the embryo in nc14, after translation had occurred in this 
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region throughout nc12 and 13. Given that the Hb protein has been estimated to have 

a half-life of ~30 – 40 minutes (Lukowitz et al., 1994), Hb protein would persist in the 

anterior when translation is repressed, meaning this translational repression could not 

be identified by comparison of the mRNA and protein domains. Modelling of 

expression of other gap genes in the Drosophila embryo predicted an increase in 

translation efficiency at early stages (Becker et al., 2013). The SunTag system can 

be used to directly test predictions of temporal translation changes such as this.  

The ability to image translation on a single mRNA also allows for the investigation of 

the localisation of translation within the cell. Many Drosophila mRNAs are localised 

sub-cellularly. For example, in a large-scale study of mRNA localisation, 15.8% of 

expressed genes in the Drosophila embryo were found to have a subcellular 

localisation pattern (Lecuyer et al., 2007). For many genes, it is unknown how 

localisation within the cell may affect translation efficiency, but a study of the gene 

twist using the SunTag imaging system showed that mRNAs near the nuclear 

periphery assembled into ‘translation factories’, with multiple mRNAs and a higher 

translation efficiency (Dufourt et al., 2021). However, this study shows that translation 

of hb is not dependent on localisation within the cell, that the majority of hb transcripts 

are present as single mRNAs, and that an increasing number of hb mRNAs in a foci 

does not increase translation efficiency. This suggests that ‘translation factories’ are 

not generalisable to every gene and further study is required to ascertain what is the 

most common mode of translation for Drosophila genes. 

Some developmental genes are localised within P bodies, which lack ribosomes and 

are enriched for translational repressors, and therefore have been thought to be areas 

of translational repression. Previous work has found that mRNAs can be enriched 

either within the core (e.g bcd) or at the periphery (e.g grk) of the P bodies, and that 

the translational activator Orb was enriched at the P body edge (Weil et al., 2012). 

Therefore, it was suggested that the edge of the P body is competent for translation, 

and the core is translationally repressed. Use of the SunTag method on these mRNAs 

would allow direct testing of this suggestion. Recently, translation of mRNAs in stress 

granules has been shown to occur using the SunTag technique, despite this being 

another mRNA granule that was thought to be translationally repressed, (Mateju et 

al., 2020).  

In this study, the SunTag system was also used to image translation live on single 

mRNAs by anchoring to the plasma membrane using MCP-mRuby3-CAAX. 

Fluorescence intensity of scFv-mNG-NLS could be tracked for up to 6 minutes. These 
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traces mean it could be possible in future work to calculate kinetics of translation such 

as the elongation rate. A study using SunTag in Drosophila used estimation of 

autocorrelation of the fluorescence signal over time to calculate the translation 

elongation rate on the transcript twist and calculated it as 35 amino acids per second 

(aa/s) (Dufourt et al., 2021), which is substantially higher than rates measured in 

human cells, which ranged from 4 to 18 aa/s, averaging 7.3 aa/s in studies reviewed 

by (Morisaki and Stasevich, 2018). Dufourt et al did not utilise anchoring to the 

membrane, meaning that very short traces were necessarily used. The longer traces 

that can be achieved with anchoring may allow more accurate measurement. The 

elongation rate can be used in combination with the number of ribosomes per 

transcript to calculate the initiation rate of ribosomes on the transcript. Using the mean 

number of ribosomes found on SunTag-hb transcripts in nc13 of 13 ribosomes, an 

initiation rate of 1 ribosome every 14 seconds is found using the 7.3 aa/s rate, and an 

initiation rate of 1 ribosome every 2.9 seconds using the Drosophila specific 35 aa/s 

rate. Estimates of initiation rates reviewed in Morisaki et al range from 1 ribosome 

every 10 to 45 seconds. The initiation rate for the gene twist in Drosophila was 

estimated to be 1 every 13 seconds (Dufourt et al., 2021). The first estimate for 

SunTag-hb transcripts fits comfortably within this range, whereas the second is 

substantially faster. It may be that hb is a particularly well translated gene in 

Drosophila, leading to the high initiation rate, or that it has a lower elongation rate 

than that which has been estimated for twist. Since Drosophila nuclear cycles until 

nc14 are very short, it may be that genes expressed prior to nc14 in the early wave 

of zygotic genome activation, such as hb, need to be translated more efficiently 

compared to genes expressed in the later wave of zygotic genome activation, such 

as twist. Future work performing kinetic measurements would allow testing of these 

hypotheses. Modelling on single mRNA translation traces could be used to determine 

whether translation is constitutive or bursty, as has been done for transcription in 

Drosophila (Hoppe et al., 2020, Fukaya et al., 2016, Falo-Sanjuan et al., 2019). 

Finally, the SunTag method could be used to interrogate the specific effects of 

mutations in translational regulators. Translation of maternal hb mRNAs is repressed 

in the posterior of the embryo by Pum, Nos and Brat (Wharton et al., 1998, Sonoda 

and Wharton, 1999, Sonoda and Wharton, 2001), which could be observed using the 

SunTag method in this study. Although early research suggested these proteins 

function in the same mechanism to repress translation (Sonoda and Wharton, 2001), 

recent research found that Brat binds the mRNA independently of Pum and Nos 

(Macosek et al., 2021), suggesting that they may function independently. Introducing 
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the matE>SunTag-hb transgene into pum, nos, and brat mutant backgrounds would 

allow the investigation of how the individual proteins affect hb translation on single 

mRNAs. Along with live imaging of individual mRNAs to calculate the kinetics of 

translation, as described above, this could be used to study how loss of these proteins 

affects parameters such as elongation and initiation rate, allowing more insight into 

the mechanisms of translation repression by RNA-binding proteins.  

6.2 Mechanism of hb repression in the embryo anterior    

Using the SunTag method to visualise translation of zygotically expressed hb 

transcripts revealed an unexpected and previously unidentified repression of hb 

translation at the anterior of the embryo. Data from fixed embryos showed uniform 

translation efficiency of SunTag-hb mRNAs across the expression domain during 

nc12 and nc13. The proximal hb enhancer was used to drive expression, which 

results in broadly uniform mRNA levels that decline towards the posterior border in 

nc12-14 (Bothma et al., 2015, Garcia et al., 2013, Lucas et al., 2018). A similar shape 

of mRNA gradient is observed from the endogenous locus in nc12-13, when a shadow 

enhancer that activates expression in the same pattern to the proximal enhancer is 

also active (Bothma et al., 2015, Perry et al., 2012).  In nc14, less SunTag-hb mRNA 

translation was detected overall and the distribution of translation sites changed. 

Analysis of fixed embryos revealed that SunTag-hb mRNA translation is largely 

repressed in the anterior but persists in a band at the posterior border of the 

expression domain.  

Live-imaging data provided a more complete picture of how the number and pattern 

of translation sites evolve over developmental time. There is an increase in the 

number of translation sites from nc11, with the highest number detected at mid-nc13. 

From late nc13, there is a gradual shift in the AP position of the peak of translation 

towards the posterior, culminating in SunTag-hb mRNA translation only being 

detected at the posterior of the expression domain in nc14. The mRNA is transiently 

translated in a stripe at the edge of the expression domain, before being repressed 

in the stripe region at ~10 minutes into nc14. SunTag-hb mRNAs are still present in 

the anterior in nc14, but ~90% are not being translated, suggesting that they are being 

translationally repressed. In addition to the highest number of SunTag-hb mRNA 

translation sites being detected at nc13, analysis of the number of ribosomes 

translating the mRNAs in nc13 and 14 revealed that SunTag-hb mRNAs are more 

heavily translated in nc13. In nc14, the low number of mRNAs that are still being 

translated in the anterior are more poorly translated than those in the posterior, 
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because around half the number of ribosomes on anterior mRNAs are observed 

compared with those at the posterior border.  

To investigate how sequences within the UTRs regulated translation, the endogenous 

5’ and 3’ UTRs within the transgene were swapped for the eve 5’UTR and SV40 

3’UTR respectively. The endogenous 3’UTR was found to be necessary for the timing 

of translation repression, with derepression in the anterior in the early stages of nc14. 

However, repression was still observed at later stages. Removal of the endogenous 

5’UTR did not have any effect. These results were unexpected, as sequences that 

regulate translation are generally found in the UTRs (Mayr, 2017, Leppek et al., 

2018). It may be that there is redundancy between the 5’ and 3’UTR sequences, and 

a transgene with both removed should be tested to investigate whether it is 

translationally repressed in the anterior. Both the 5’ and 3’UTR regulate translation of 

the mRNA pgc in Drosophila germline stem cells, although in this case they are not 

redundant, but are both required for repression (Flora et al., 2018). It has been shown 

in Caenorhabditis elegans that 5’ and 3’UTRs can be redundant in translational 

regulation by the RBP GLD-1, and that the functionality of sites in either UTR can be 

masked by sites in the other (Theil et al., 2018). It is also possible that the coding 

sequence itself contains regulatory sequences, and a transgene with the coding 

sequence changed should be tested for regulation in future work. 

A possibility that has not been controlled for in this study is that the SunTag 

sequences themselves confer a regulatory effect on the SunTag-hb mRNA. Future 

work to insert the SunTag in a transgene not containing any of the endogenous hb 

sequences is essential to rule out this possibility. Regulation conferred by exogenous 

sequences has confounded studies in Drosophila previously, where Zelda (a pioneer 

transcription factor (Liang et al., 2008)) binding sites in the original MS2 sequences 

(which differ from the MS2 loops used in this study) cause ectopic early transcriptional 

activation of the transgene across the whole embryo (Lucas et al., 2013, Lucas et al., 

2018).  

Pum, Nos and Brat are known to bind sites in the 3’UTR of the maternal hb mRNA 

and regulate translation (Wharton et al., 1998, Sonoda and Wharton, 1999, Sonoda 

and Wharton, 2001, Macosek et al., 2021). The zygotic hb P2 transcript used in this 

study uses an alternative polyadenylation site that results in a longer 3’UTR. It is likely 

that the Pum, Nos and Brat binding sites are still available for binding in the zygotic 

transcript, although studies have suggested that lengthening of the 3’UTR can result 

in structures that preclude binding of RBPs to sequences within the short 3’UTR 
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(Mayr, 2019). Nos is localised only in the posterior (Gavis and Lehmann, 1992, 

Bergsten and Gavis, 1999, Crucs et al., 2000), so will not have a role in anterior 

repression of zygotic hb translation. While many translational regulators are degraded 

at the MZT in Drosophila, such as Cup and Me31B, both Pum and Brat are not 

degraded and remain stably expressed (Cao et al., 2020). Pum and Brat are both 

ubiquitously expressed in the embryo and are therefore available to bind the zygotic 

hb transcript in the anterior. Pum and Brat have been shown to work together without 

Nos to repress translation of target genes in the cystoblast and the early embryo 

(Harris et al., 2011, Newton et al., 2015). Pum has also been shown to have a Nos 

and Brat independent mode of translation repression (Weidmann and Goldstrohm, 

2012).  It may be that Pum and/or Brat, with a separate anterior specific regulator can 

regulate the translation of zygotic hb. Testing translation of the hbP2>SunTag-hb 

transgene in Pum and Brat mutant backgrounds would allow investigation of this 

hypothesis.  

A search of FlyBase for RBPs that have transcript expression specifically in the 

anterior of the embryo at early nc14, where SunTag-hb translation is repressed, did 

not find any candidates. However, a study which identified RNA-binding proteins de 

novo by mRNA interactome capture suggests that Hsp83 is an RNA-binding protein 

(Wessels et al., 2016). Hsp83 has an anterior expression pattern at nc14, in the region 

where hb translation is repressed. This may be a candidate to investigate further for 

a potential role in hb translational regulation.  

Biochemical approaches to find RBPs that bind to the hb P2 transcript could also be 

utilised to find candidates for proteins that play a role in translational regulation (Theil 

et al., 2019, Ramanathan et al., 2019), particularly by comparing the complement of 

proteins that bind in nc13, where translation is unregulated, to nc14, where translation 

is regulated. The translation of the hbP2>SunTag-hb transgene could then be 

analysed in mutants of these RBPs, and mutations of their binding sites within the 

transgene investigated. 

6.3 Impact of anterior repression of hb      

Based on the profile detected for the proportion of translated mRNAs, and the 

relatively constant ribosome number on mRNAs at nc13 irrespective of their position 

in the expression domain, this data predicts that Hb protein levels decline between 

∼30% and 50% EL at nc13 (Figure 6.1A). This is consistent with a quantitative 

measurement of Hb levels early in nc14 (Perry et al., 2012). 
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Figure 6.1: Hypothesis for the interplay between transcriptional and 
translational regulation of hb. 
A: (i) Schematic of an embryo showing the area that the graphs in the figure 
represent. (ii) Graphs and embryos show the approximate output from the proximal 
enhancer. The shadow enhancer outputs a similar pattern. In nc13, translation 
efficiency (green) is constant and protein concentration (blue) reflects mRNA 
concentration (pink). In early/mid nc14, efficient translation is limited to the posterior 
edge of the mRNA expression domain, sharpening the protein concentration border 
(dashed blue line indicates a hypothetical output). 
B: Hypothetical relationship to the stripe enhancer mRNA output. Stripe enhancer 
mRNA expression (yellow) occurs at the edge of the anterior expression domain. 
Efficient translation of this mRNA, in the area identified in A (nc14), would enhance 
the sharpness of the protein border.
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As well as the proximal enhancer used to drive transcription in this study, the hb locus 

also has a stripe enhancer that activates transcription in a central and posterior stripe 

at nc14, with the central stripe positioned in the region where the early anterior 

expression domain ends (Margolis et al., 1995; Perry et al., 2012). The increase of 

Hb protein in the 40 – 50% EL region is necessary for the specification of the 

mesothoracic T2 segment by allowing activation of Antennepedia (Antp) (Perry et al., 

2012, Wu et al., 2001).  

We propose that the increased translation efficiency of SunTag-hb mRNAs that is 

detected in the centre of the embryo at nc14, along with the extra transcription from 

the stripe enhancer, will function in nc14 to reduce heterogeneity in Hb protein 

expression across the expression domain and sharpen its boundary (Figure 6.1) 

(Perry et al., 2012; Wu et al., 2001). These mechanisms may also work together to 

filter positional errors in the Bcd gradient, with such a noise-filtering mechanism 

suggested for the generation of a precise Hb boundary (Houchmandzadeh et al., 

2002; Yang et al., 2020). 

Earlier in development, in nc13, the proximal and shadow enhancers that activate 

transcription in the broad anterior domain function additively in the centre of the 

embryo, thereby maximising the transcriptional output where Bcd concentration is 

limiting, whereas the enhancers function subadditively more anteriorly (Bothma et al., 

2015). Therefore, it appears that the embryo uses multiple mechanisms to shape the 

boundary of the anterior Hb expression domain during early embryogenesis. Future 

work using CRISPR to insert the SunTag in the endogenous hb locus, enabling study 

of translation of hb mRNAs transcribed from the endogenous locus, will allow fuller 

dissection of the interplay between transcriptional and translational regulation in 

generating the Hb protein profiles spatiotemporally. 
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