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ABSTRACT: Land Use Regression (LUR) models have been used increasingly for modeling
small-scale spatial variation in air pollution concentrations and estimating individual exposure
for participants of cohort studies. Within the ESCAPE project, concentrations of PM2.5, PM2.5
absorbance, PM10, and PMcoarse were measured in 20 European study areas at 20 sites per area.
GIS-derived predictor variables (e.g., traffic intensity, population, and land-use) were
evaluated to model spatial variation of annual average concentrations for each study area. The
median model explained variance (R2) was 71% for PM2.5 (range across study areas 35−94%).
Model R2 was higher for PM2.5 absorbance (median 89%, range 56−97%) and lower for
PMcoarse (median 68%, range 32− 81%). Models included between two and five predictor
variables, with various traffic indicators as the most common predictors. Lower R2 was related
to small concentration variability or limited availability of predictor variables, especially traffic
intensity. Cross validation R2 results were on average 8−11% lower than model R2. Careful
selection of monitoring sites, examination of influential observations and skewed variable
distributions were essential for developing stable LUR models. The final LUR models are used to estimate air pollution
concentrations at the home addresses of participants in the health studies involved in ESCAPE.

1. INTRODUCTION

Epidemiological studies have shown adverse health effects of
long-term exposure to air pollution.1,2 Air pollution from
motorized road traffic is a main public health concern in Europe.3

Many studies have demonstrated large within-city contrasts in
traffic related air pollutants in European and U.S. cities.3−11 Land
Use Regression (LUR) modeling has been used frequently to
explain these spatial contrasts, using predictor variables derived
from geographic information systems (GIS).6,7,11 LUR models
make use of a spatially dense network of measured air pollution
concentrations. Each monitoring site is characterized by a set
of potential predictors such as population density, land use and
various traffic-related variables. Statistical modeling is used to
determine which predictors best explain the pollution concen-
trations.6,7,11 LUR modeling has generally been able to explain
a large amount of spatial variability. An increasing number of
epidemiological studies make use of LUR models for estimating
outdoor air pollution concentrations at the home addresses of
cohort subjects.12,13

Many LUR studies have used data on nitrogen oxides, usually
because these can be easily obtained using low-cost passive
samplers.7 While health effects are probably more related to
particles,14,15 LUR models for particulate matter and absorbance
are less numerous because they require a more intensive
monitoring effort.7 Routine monitoring networks often do not
offer the required spatial density, do not measure all components
of interest (e.g., soot) or do not measure at sites relevant for
population exposure. Within Europe there is still a lack of PM2.5
monitoring and PM monitoring is performed with continuous
monitors that require correction factors and differ per country.16

So far, there are few LUR studies on the coarse fraction of
particulate matter,17 while there is increasing epidemiological
evidence showing that coarse particles are associated with acute
respiratory health effects.18 Long-term effects of PMcoarse have

not been studied extensively, partly because of a lack of spatially
resolved data on coarse particle concentrations.18

The ESCAPE project (European Study of Cohorts for Air
Pollution Effects, www.escapeproject.eu) was designed to study
the effects of long-term air pollution exposure on health. ESCAPE
makes use of health data from existing cohort studies. Exposures
to air pollution were assessed for study participants' individual
home address with LURmodels based upon standardized specific
PM monitoring campaigns in each of the study areas.
This paper describes the development and performance of

the LUR models of 20 European study areas for PM2.5, PM2.5
absorbance, PM10, and PMcoarse. The ESCAPE database is
currently the largest database of spatially resolved PM data in
Europe, allowing development of LUR models. We will discuss
issues in LUR model development, such as influential observa-
tions, which have not often been addressed in the LUR literature.
Results of the ESCAPE PM pollution measurements were
recently accepted for publication.19

2. MATERIALS AND METHODS
For 20 study areas across Europe (Figure 1), LUR models were
developed for PM2.5, PM2.5 absorbance, PM10 and PMcoarse based
upon measured annual average concentrations. LUR models
were developed using a range of GIS-derived predictor variables,
from consistent European data sets compiled through ESCAPE
and local data sets. Models were developed using a supervised
stepwise method that maximized model explained variance,
with a priori specified signs of slopes (e.g., positive for traffic
intensity). Models were optimized locally with no attempt to
force a commonmodel to all study areas. This decision was based
on the diversity of study areas and differences in available GIS
predictor variables. LUR models were developed locally at each
center, following a commonmanual (http://www.escapeproject.
eu/manuals/). A workshop was attended by all local centers to
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standardize GIS analyses and LUR model development.
Finalized LUR models were sent to the coordinating center for
evaluation.
Air Pollution Measurement Data. The ESCAPE measure-

ments and sampling site selection have been described
previously.19 Briefly, particulate matter (PM) was measured
between October 2008 and April 2011. Twenty PM sampling
sites were selected in each study area. In the larger study areas of
The Netherlands and Belgium and Catalunya, forty sites were
measured. Study areas were defined to represent the spatial
distribution of the cohort addresses. We selected regional
background, urban background and traffic sites. Traffic sites were
overrepresented, and we selected a range of traffic intensities to
limit outliers in modeling. Measurements in traffic sites (>10 000
vehicles.day−1) were made at building faca̧des, rather than the
kerbside. A detailed description of each study area is given in
the Online Supplement of Eeftens et al.19 Most study areas
comprised a major city and surrounding smaller towns. Each
selected site was measured three times for 14 days, in the cold,
warm and intermediate seasons. Two fractions of particulate
matter (smaller than 2.5 μm (PM2.5) and smaller than 10 μm
(PM10)) were sampled using Harvard Impactors. The coarse
fraction (PMcoarse) was calculated as the difference between PM10
and PM2.5. Reflectance was measured on PM2.5 filters and trans-
formed into absorbance.19 For each site, results from the three
measurements were averaged to estimate the annual average,
adjusting for temporal variation using a centrally located back-
ground reference site, which was operated for a whole year.8,19

A temporal correction was calculated as the difference of each
individual reference site measurement from the annual mean at the

reference site. The calculated correction was then subtracted from
all measurements that took place in that particular round.

GIS Predictor Data. Positioning of Measurement Sites.
Multiple GPS measurements were taken at every site, but all
positions were corrected manually to ensure an accurate position
relative to roads on the detailed local road maps. This was done
by someone who had personally visited the site.

Predictor Variables. Predictor variables were calculated for
each site, using the site coordinates and digital data sets within a
GIS. We used a combination of European data obtained centrally
and local data. Local source data were collected because some
data were not available on a European level or were more precise
or more up-to-date. For traffic variables, we calculated circular
buffers with radii of 25, 50, 100, 300, 500, and 1000 m around
each monitoring site. For land use and population, we calculated
buffers of 100, 300, 500, 1000, and 5000m. A detailed description
and an overview of all calculated variables, is shown in Supporting
Information (SI) SI1.
The following GIS source data were available centrally:

1 Digital road network Road data were available at 1:10 000
resolution from Eurostreets version 3.1 digital road
network, derived from the TeleAtlas MultiNet data set
for the year 2008. The network includes road class but not
traffic intensity.

2 Land use dataCORINE (COoRdination of INformation
on the Environment) land cover data were available from
the European Environment Agency (EEA) for the year
2000.20,21 We used six land use categories: high density

Figure 1. ESCAPE study areas.
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residential land, low density residential land, industry,
ports, urban green and natural land.20,21

3 Population density data Population data modeled at a 100
m grid were based upon land cover and the 2001
population density available from the EEA.22,23

4 Altitude Digital elevation data (SRTM 90 m) were
obtained through the Shuttle Radar Topographic Mission,
and available globally from CGIAR-CSI GeoPortal
(http://srtm.csi.cgiar.org/). The map has a resolution of
90 m at the equator.

A detailed overview of the local GIS variables can be found in
SI SI2. We required a spatial resolution of at least 100 m. Local
GIS data included land use, population and household density,
altitude and study-area specific variables such as distance to the
sea. Detailed local road networks with linked traffic intensity
were available for most areas. To account for variation in regional
background in The Netherlands/Belgium, 10 regional back-
ground sites were measured, which allowed us to use an inverse
distance weighted regional background concentration.24 In the
other (smaller) study areas, few regional background sites were
measured as we anticipated little variation in regional back-
ground. We evaluated whether adding geographical coordinates
to the final GIS model improved prediction, and if these trends
were consistent with known pollution patterns.
LUR Model Development. Linear regression models were

developed using a supervised stepwise selection procedure,
first evaluating univariate regressions of the corrected annual
average concentrations with all available potential predictors
following procedures used before.21 The predictor giving the
highest adjusted explained variance (adjusted R2) was selected
for inclusion in the model if the direction of effect was as defined
a priori. We then evaluated which of the remaining predictor
variables further improved the model adjusted R2, selected the
one giving the highest gain in adjusted R2, and the right direction
of effect. Subsequent variables were not selected if they changed
the direction of effect of one of the previously included variables.
This process continued until there were no more variables with
the right direction of effect, which added at least 0.01 (1%) to the
adjusted R2 of the previous model.
As final steps, variables with a p-value above 0.10 were

removed from the LUR model. If the Variance Inflation Factor
(VIF) was higher than 3 −indicating collinearity-, the variable
with the highest VIF was removed and the model re-evaluated.
Cook’s D statistics were used to detect influential observations.
Cook’s D values above 1 were further examined by assessing the
changes in model coefficients on excluding the responsible site.
If removal of this site caused large changes in a specific variable’s
coefficient, the modeling procedure was repeated using all sites,
but now without offering this variable.
Overall model performance was evaluated by leave-one-out

cross validation (LOOCV): each site was sequentially left out
from the model while the included variables were left unchanged.
The Moran’s I statistic was calculated to indicate spatial auto-
correlation of the model residuals.

3. RESULTS

Within-Area Concentration Contrasts. Pollutant ranges
are shown in Tables 1−3 for each study area and in more detail in
Eeftens et al.19 For most areas, substantial variation was present
within the area. Within-area contrasts were largest for PMcoarse
and PM2.5 absorbance. Within-area contrasts differed between

areas, for example, for PM2.5 lower contrasts were found in
Manchester, Ruhr Area, Gyor and Turin.

Available Predictor Variables. In 18 of the 20 study areas
local traffic intensity data was collected. Exceptions were
Heraklion and Catalunya. In many study areas, few sites were
within 100, 300, or 500 m of a port, forest or industrial area,
resulting in many 0-values. Similarly, for several areas a large
number of 0-values occurred for major roads in small buffer
(25 or 50 m). Generally, variables with less than 4−5 nonzero
values were not offered in the modeling, but we evaluated the
stability of parameter estimates for each model.

Land Use Regression Modeling. The LUR models for
PM2.5, PM2.5 absorbance, and PMcoarse are described in Tables
1−3 and those for PM10 in SI SI3, Table 1. Descriptive statistics
of the predictor variables used in the models can be found in
SI SI4. In four areas, one site was excluded from modeling
because only one successful measurement was available (Lugano,
Oslo) or the site was too influential and was considered a non-
representative site (Stockholm County, Manchester), further
discussed in the modeling experiences section in the Discussion.

PM2.5 Models. In most study areas, a substantial fraction of
the measured spatial variability was explained by the available
GIS predictor variables (Table 1). The median model explained
variance (R2) was 71% and ranged from 35% (Manchester) to
94% (Stockholm County).The variation in R2 is partly related
to the limited availability of relevant predictors, especially local
traffic intensity data. The two areas without local or limited traffic
intensity data (Heraklion, Catalunya) both had R2 below the
median. In Barcelona (part of the Catalunya study area), local
traffic data was available and a much better model could be
developed. Small variation of measured concentrations may have
contributed to lower R2 in some areas, such as Manchester, but
overall the association is not strong (Table 1). There was no clear
geographical pattern of the magnitude of R2 across Europe.
For most models, the differences between themodelR2 and the

leave-one-out cross validation R2 was less than 15%, indicating
stable models. Models included two to five predictor variables.
Traffic indicators were included in 18 of the 20 models, with
traffic intensity in various buffer sizes included in most models.
Less often included predictors were residential land use,
population density, industrial/port and natural land use.

PM2.5 Absorbance Models. Model R2 was higher for PM2.5
absorbance (median 89%) than for PM2.5, probably related to the
larger spatially variability (Table 2). In Manchester, R2 was high,
whereas no reliable model could be developed for PM2.5.
Explained variance differed across areas from 56% (Heraklion)
to 97% (Ruhr Area). The low value in Heraklion is likely due to
the lack of traffic intensity data. Differences between model R2

and LOOCV R2 were generally lower than 10%, indicating stable
models. Themodels included two to five predictors. In all models
traffic variables were present. With the exception of Heraklion,
all models included small-scale traffic variables, such as traffic
intensity in the nearest street, the product of traffic intensity on
the nearest major street and inverse distance and small buffers
(≤100 m) of traffic intensity. Models also included traffic in
larger buffers and land use predictors.

PMcoarse Models. The median model R2 was 68%, with a range
from 32% (Kaunas) to 81% (Munich/Augsburg) (Table 3).
Model R2 was the lowest from the modeled PM metrics.
Differences between model explained variance and cross valida-
tion were generally larger for PMcoarse than for the other PM
metrics. PMcoarse models generally included two to three predictor
variables, fewer than for the other PM metrics. In all areas except
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Turin, traffic variables were included in the model, probably
reflecting resuspended road dust from tire and break wear. In six
models only traffic variables were included.
PM10 Models. Median model R2 for PM10 was 77%, ranging

from 50% (Kaunas) to 90% (Barcelona, London/Oxford).
Differences between model R2 and LOOCV R2 were generally
below 10% (SI SI3, Table 1). PM10 models included two to four
predictors. Explained variance was slightly higher than for PM2.5.
We found no evidence of spatial autocorrelation in the residuals

as for the large majority of models, Moran’s I was not significant
(p > 0.05). The included predictor variables accounted sufficiently
for the spatial variation within each area. For the few significant
values, the Moran’s I coefficients were negative and small.

4. DISCUSSION
LUR models were developed with moderate to good explained
variance for three size fractions of particulate matter and PM2.5
absorbance. Explained variance of the LUR models was highest
for PM2.5 absorbance (median 89%), followed by PM10 (77%),
and was lower for PM2.5 (71%) and PMcoarse (68%). Variability
in R2 was partly related to limited concentration contrast and
availability of predictor data, in particular traffic intensity. During
model development we encountered challenges including
influential observations related to extreme concentrations or
extreme predictor variables at a single site and predictor variables
with a large fraction of zero values. ESCAPE adds significantly to
a still small number of LUR models for particulate matter air
pollution.
Comparison Across Particle Fractions. Model perform-

ance for PM2.5 absorbance was higher than for PM2.5, which was
also found ina limited number of previous studies.7 It likely
reflects the major impact of motorized road traffic on PM
absorbance as a marker of black carbon and the larger long-range
transport component to PM2.5.

3 In Europe, a substantial fraction
of private cars and most middle and heavy duty vehicles use
diesel. The lower model performance for coarse particles agrees
with a study in Amsterdam, which reported model R2 of 37%
for PMcoarse, 76% for PM2.5 absorbance and 57% for PM2.5.

17 It is
likely that the lack of specific GIS data on local coarse particle
sources has contributed to the lower model performance, such as
the wear of different road surface materials. PMcoarse is calculated
by subtracting PM10 and PM2.5 mass concentrations, so the
precision of these measurements is lower than for the other
components.
Selected Predictor Variables.Although all study areas used

the same procedures for developing LUR models, final models
included different variables. Most models included local in
addition to centrally available variables. One or more traffic
variables were selected in almost all models, reflecting the major
impact of traffic emissions and the overrepresentation of traffic
sites in our site selection. Buffer sizes of 50mweremost common,
but also the largest buffer size of 1000 m was included in many
models. The 25 m buffer size did not enter models frequently,
likely because of limitations in accuracy of GIS road networks.
Therefore, 25 m buffers were not considered in some areas with
insufficient road network accuracy. This buffer size does not
represent the impact of larger ring roads or motorways, but
instead represents the impact of moderately busy inner-city
streets where homes are close to the road. Factors related to
population density and residential land-use were selected in many
models, representing pollution from various activities including
home heating. All buffer sizes appeared, but larger buffers
(1000 and 5000 m) were most common for PM2.5 absorbance.

Urban green and natural land use were selected particularly
in PM2.5 and PM10 models, often in large buffer sizes (1000 or
5000 m). In areas with major ports (Netherlands and Belgium,
Catalunya) and industrial areas, port and industrial land use were
represented in the LURmodels. As CORINEdoes not distinguish
type of industry, these models can only be applied in the area
where they were developed.20 We did not include industry in
models if local expertise indicated that there was no industry with
significant emissions present. Altitude was present in models for
Lugano, Barcelona and Catalunya, study areas which included a
large variation in altitude among the selected sites.

Area-Specific versus Combined LURModels.There were
differences in available predictors between study areas. Using
only central variables would have resulted in poorer models, as,
for example, indicated by the poorer models in areas without
local traffic intensity data. A study by Vienneau et al. evaluated
a pooled LUR model for Great Britain and The Netherlands, but
concluded that there was no benefit in forcing a model based on
common variables compared to country-specific models.21

Studies on the transferability of LUR models suggest that they
are best developed locally, and perform less well when applied to
other areas.6,7,11 To evaluate the merits of combining study areas,
we developed LUR models for the combined areas of London/
Oxford, The Netherlands/Belgium and the Ruhr Area. We found
highR2’s for PM2.5, PM2.5 absorbance and PM10, and a moderately
high R2 for PMcoarse, (SI SI5). Indicator variables for study area
were important predictors in all models, representing the large
between-area variance.19 We found significant differences in the
effect of the traffic variable across the study areas for PM2.5 and
PM2.5 absorbance. This suggests there are true differences between
parameter estimates for different areas, supporting the ESCAPE
strategy to develop separate models for each area. Furthermore, in
the combined-area model for PM2.5, the well-established regional
background variation in The Netherlands was not included,
indicating that we may miss predictors which are only of local
importance. However, without external validation data it is not
possible to conclude which approach is more valid.

Modeling Experiences. In LUR papers generally little detail
is presented on model diagnostics. We experienced that
especially the use of the Cook’s D influence statistic to identify
influential observations was useful. Influential observations were
due to extreme concentrations at a single site, extreme predictor
variables at a single site and predictor variables with a large
fraction of zero values. The latter two problems were resolved by
not offering these variables as predictor variables. In Stockholm
County and Manchester, we excluded a site with extreme con-
centrations from model development. A site was only removed
from the modeling procedure if (1) the site was very influential
(e.g., model parameters changed heavily, that is lost significance,
changed direction depending on whether that site was included
or excluded), (2) all possible models identified this site as very
influential, and (3) both the local partners and the ESCAPE
exposure working group agreed that in retrospect, the site was
selected at a location which was not representative for residential
exposures. If a site was considered unsuitable, it was removed
from the modeling procedure of all components. Amore detailed
description of the sites which were removed from the modeling
procedure is given in SI SI6. Only two sites (out of a total of 440)
were excluded because of the above criteria. We underline
the importance of a careful selection of measurement sites,
representative for the outdoor concentrations at the home
addresses. Exclusion of sites was considered defensible as the goal
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is to develop stable models that can be applied at residential
addresses.
Cross Validation. The performance of the models was

evaluated using leave-one out cross validation, as in previous
LUR studies.21,25,26 The limited number of PM monitoring sites
made it infeasible to set aside a sufficiently large part of the data
set for hold-out validation. Two recent studies documented that
LURmodels based on a limited number of training sites perform
well in leave-one-out cross-validation, but do worse in hold-out
validation, using an independent external data set.27,28 This is
explained by a risk of overfitting when evaluating a large number
of predictor variables to explain concentrations at relatively
few sites.29 While a minimum of 40−807, or 80 sites has been
suggested,27 there are more examples of LUR studies on fewer
sites, especially for PM.12,24 Most ESCAPE models are based
on 20 sites, which may limit the robustness of the models. We
further expect that the presented cross-validation R2’s of the
models are an overestimation of the hold-out validation R2’s. We
tried to minimize the problem of over fitting by a priori choices in
model development.
Variable Selection. Within ESCAPE, we used a supervised

stepwise selection of variables for the LURmodels. This approach
has been frequently used in previously published LUR models7,
and was motivated by our preference to select models which
were plausible (direction of effect as defined a priori) and
stable (coefficients not dependent on a single observation). We
evaluated a large number of predictors, which were often highly
correlated. While we selected the model with the highest adjusted
R2, we emphasize that there is no single absolute LUR model for
a certain area. Different models with similar performance in
explaining spatial variability in concentrations can be developed.
Other techniques for the selection of predictor variables are

used in which combinations of candidate predictor variables are
evaluated based on their performance in cross-validation.30 This
deletion/substitution/addition algorithm aims to maximize the
cross-validation R2, rather than optimizing the adjusted model R2

in a stepwise manner.30

Su et al. also developed a method for selecting an optimal
buffer size for each candidate predictor, thereby limiting the
number of predictors considered for the LUR model.31 Few
comparisons have been made of the performance of different
selection procedures. A recent comparison of the performance of
the ESCAPE procedure, a procedure based upon maximizing the
cross-validation R2 and the deletion-substitution algorithm found
very small differences in hold-out validation R2.27

We considered a wide range of buffer sizes, based on known
dispersion patterns, but little is known about buffers larger than
5000 m. Su et al. found no larger buffers than 3000 m, but the
maximum distance of influence remains hard to define31. In large
study areas including several metropolitan areas there may be
merit to evaluate larger buffers.
Previous Studies in ESCAPE Areas. LUR models have

previously been published for PM2.5 and PM2.5 absorbance for
The Netherlands, Munich, StockholmCounty, and Ruhr area.25,26

PM2.5 models were comparable in model explained variance
for The Netherlands (73% in 2003 against 67% in this paper),
while they improved for Munich (56−78%), Stockholm County
(50−94%), and drastically for the Ruhr area (17−88%). PM2.5
absorbance models improved for all areas, from 81% to 92% for
The Netherlands, from 67% to 91% for Munich, from 66% to 90%
for Stockholm County, and 82 to 97% for the Ruhr area. The
improvements are likely explained by better available predictor
variables, but might have also been affected by the selection of sites,

which included more street sites in ESCAPE. In the past decade
more and better GIS data sets have become available to derive
potential predictor variables.32 The resolution of GIS data sets has
increased, traffic intensity data are linked to digital road networks,
and some digital data are available through open sources.

Limitations. The main limitation is the restricted number of
20 monitoring sites available for the development of PMmodels.
Although there are no strict rules for a minimum required
number of sites, only few purpose-designed sampling networks
including particulate matter have included 40 sites or more. LUR
models have been developed successfully for studies including
fewer measurement sites.11 Because of the large number of study
areas included in the ESCAPE project, twenty PM sites per study
area was the maximum feasible. As discussed before, the risk of
overfitting is greater when using smaller training sets in model
building.27,28 Our measurement campaign was restricted tempo-
rally, as previous PM sampling campaigns.7 This issue was
addressed by temporal adjustment using a continuous reference
site where measurements were made for a 12-month period.
The ESCAPE project modeled long-term air pollution con-

centrations at the home and/or school address of cohort study
subjects. The modeled individual concentrations do not take
account of time activity patterns and indoor/outdoor differences
and are therefore not equal to personal exposure.
ESCAPE measurements took place between October 2008

and April 2011, while resulting LUR models will be applied
to estimate long-term exposure of cohorts recruited generally in
the mid 1990s. There is limited evidence that LUR models can
accurately estimate spatial pollution contrasts 10 years back in
time.33,34 A separate paper will address this issue in a subset of the
ESCAPE study areas.
Information on the fraction of heavy traffic, average speed, and

street configuration (e.g., canyons) was unavailable for many
study areas. Several European data sets were somewhat older
(2000 for land use and 2001 for population density). However,
changes in land cover between 2000 and 2006 were small (1.24%
of total surface area changed classes).35
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C.; Grazǔlevicǐene,̇ R.; Grivas, G.; Heinrich, J.; Hoffmann, B.; Iakovides,
M.; Ineichen, A.; Katsouyanni, K.; Korek, M.; Kram̈er, U.; Kuhlbusch,
T.; Lanki, T.; Madsen, C.; Meliefste, K.; Mölter, A.; Mosler, G.;
Nieuwenhuijsen, M.; Oldenwening, M.; Pennanen, A.; Probst-Hensch,
N.; Quass, U.; Raaschou-Nielsen, O.; Ranzi, A.; Stephanou, E.; Sugiri,
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