A decision making model for maintenance strategy: A combined approach analytic hierarchy process (AHP) and fuzzy logic

Citation for published version (APA):

Citing this paper
Please note that where the full-text provided on Manchester Research Explorer is the Author Accepted Manuscript or Proof version this may differ from the final Published version. If citing, it is advised that you check and use the publisher's definitive version.

General rights
Copyright and moral rights for the publications made accessible in the Research Explorer are retained by the authors and/or other copyright owners and it is a condition of accessing publications that users recognise and abide by the legal requirements associated with these rights.

Takedown policy
If you believe that this document breaches copyright please refer to the University of Manchester’s Takedown Procedures [http://man.ac.uk/04Y6Bo] or contact uml.scholarlycommunications@manchester.ac.uk providing relevant details, so we can investigate your claim.
A decision making model for maintenance strategy: A combined approach analytic hierarchy process (AHP) and fuzzy logic

Mohammad Moghaddas-Zadeh Kermani, Dr. Moray W. Kidd

Introduction
The poster aims to compare two tools for decision makers that intend to support decision for the selection of most appropriate maintenance strategy in oil and gas plants. The analytic hierarchy process (AHP) decision making model proposed based on case study that investigate implementation of an integrated condition based maintenance strategy for a plant in oil and gas industry. Moreover fuzzy set theory employed for reducing the vagueness associated with manager preferences elicited via pairwise comparisons. The oilfield developed by British Petroleum(BP) and was brought on stream in June 1990 with the production of 95,000 barrels of stabilised crude oil. 670 tonnes of LPG and 16 million standard cubic feet of sales gas in which the associate gas is then fractionated, the methane and ethane are exported as sales gas directly into the grid, while the propane and butane are liquefied and transported by rail tanker. Since operations began, the traditional cost benefit analysis were considered to evaluate the appropriateness of condition based monitoring strategy for rotating equipments.

The Proposed AHP Model and Findings
Considering the shortcomings of the existing methods above, it is necessary to develop a new evaluation scheme for maintenance strategies. This scheme should include different aspects of maintenance goals, be able to model uncertainty and imprecise judgements of decision makers (i.e. maintenance managers and engineers), and be easy to use.

Combined Fuzzy AHP Results

Existing theories and Gaps in Research
1. The original method for the selection of maintenance strategies for Italian oil refinery was given by (Bevilacqua and Braglia, 2000), but a crisp decision-making method as the traditional AHP is not appropriate because many of the maintenance goals taken as criteria are non-monetary and difficult to be quantified.
2. Al-Najar and Alsyouf (2003), Sharma et al. (2005) assessed the most popular maintenance strategies using the fuzzy inference theory and fuzzy multiple criteria decision-making (MCDM) evaluation methodology. The application of the fuzzy theory for this problem is a good solution. However, only a few failure causes were considered as the criteria in their Studies.
3. Mechefske and Wang (2003), proposed fuzzy methodology to evaluate and select the optimum maintenance strategy and condition monitoring technique which is based on qualitative verbal assessment inputs is more practical than the former, because many of the overall maintenance objectives of the organization are intangible. However, the method of Mechefske and Wang (2003) is very subjective to directly assess the importance of each maintenance goal and the capability of each strategy to achieve each maintenance goal.

Conclusion
a) An optimal maintenance strategy obtained for the BP process plant which can effectively improve availability and reliability levels of plants equipment, and reduce unnecessary investment in condition maintenance techniques.
b) The fuzzy AHP models deal with the uncertainty related to imprecise judgments of decision makers and experts by quantifying the qualitative data obtained through AHP questioners to fuzzy interface model.
c) The result illustrated that CBM is not necessarily improves the safety of plant whereas investment in upgrading the skill of operators could effectively improves the level of safety in the process plant.

Acknowledgements
The authors would like to thank the support from Dr. Moray Kidd which provided the training course in maintenance strategy where the data obtained for the BP process plant case study and also Risk, Reliability and Maintainability training course.

References

PGR Conference, 9 April, 2014 School of MACE C1 George Begg Building