e-Labs: Interoperable data, methods and people enabling population-based research

Link to publication record in Manchester Research Explorer

Citation for published version (APA):

Citing this paper
Please note that where the full-text provided on Manchester Research Explorer is the Author Accepted Manuscript or Proof version this may differ from the final Published version. If citing, it is advised that you check and use the publisher's definitive version.

General rights
Copyright and moral rights for the publications made accessible in the Research Explorer are retained by the authors and/or other copyright owners and it is a condition of accessing publications that users recognise and abide by the legal requirements associated with these rights.

Takedown policy
If you believe that this document breaches copyright please refer to the University of Manchester's Takedown Procedures [http://man.ac.uk/04Y6Bo] or contact uml.scholarlycommunications@manchester.ac.uk providing relevant details, so we can investigate your claim.

Download date: 04. Apr. 2024
e-Labs: Interoperable data, methods and people enabling population-based research

NCRI & caBIG Informatics Conference, 13th July 2007

Iain Buchan (Director)
Northwest Institute for BioHealth Informatics
www.nibhi.org.uk
Current position

• Hard to access basic clinical data

• Research fails to harness care data

• Artificially slow & expensive research

• Clinical creativity underused
Example of missing basics

• Hypothesis: Tamoxifen ineffective due to interactions at CyP-26D, e.g. with paroxetine

• Request to cancer registry →
 – Breast cancer recurrence data missing
 – Adjuvant therapy data patchy

• The data are in GP systems
Missing evidence

• Time-course
 – Early natural histories
 – Emergent risks

• Big picture
 – True clinical effectiveness
 – What-if/scenario planning
Treatment response evidence

Predictors of treatment response:
- Fixed risks
- Lifestyle factors
- Co-morbidities
- Co-treatments
- Dose & delivery
- Treatment setting
Givens for NHS data

• Increase in quantity & structure of data (biological; clinical; population)

• Complex errors (miscoding, gaming, change of assay etc.) → need meta-data

• Overloaded with irrelevant information & can’t find timely, relevant information
Opportunity of local collections

There is a trend towards *local* clustering of academic & NHS expertise around...

- tissue banks
- 'omic facilities
- disease registers
Isolated research or care R&D federation?

Or...

Local NHS
Local NHS
Local NHS

Service development

E-Lab
E-Lab
E-Lab

Research Networks

Evaluation
Research

Extract
Building the Informatics Capacity

The Northwest Institute for Bio-Health Informatics (NIBHI) was formed in 2004 to build informatics capacity to leverage the discovery potential of bio-health data...

The stakeholders are:
What is Bio-Health Informatics?

inputs

Data & Information

Computational Thinking

`omics

Health

Statistics

outputs

Knowledge:
- mechanisms
- interventions
- policies
NIBHI objectives

• Create a critical mass of trans-disciplinary informatics expertise

• Build the core e-Labs programme between the NHS and academia

• Deliver proof of principle outputs
 – Findings from novel uses of routine data
 – New software and analytical methods
Discovery themes and platforms

- Obesity
- Inflammation & lipids
- Psychosis
- Drug safety
- New: Cancer...

Population-based E-Labs & E-Epidemiology

Biostatistics & Translational Mathematics

Social BioHealth Informatics
e-Lab Processes

Raw Data
- GPs
- Hospital(s)
- Biobanks
- Surveys
- LA/Council
- National

Enhanced Data
- Link records
- Clean
- Organise
- Add metadata
- Share algorithms

Research
- Safety
- Real effectiveness
- Efficient trials
- Exploratory
- Public health
- Service models

Depersonalise
Integrating Records → Care in Salford

EMIS & Vision

Web view of Patient Record
Web Forms

XML (HL7v3) → Integrated Database (at PCT)

Master Patient Index
Demographic Service
Research & Clinical Audit

XML Journal File
Pseudonymised Repository

Analysis Tools

Optometrist
eye screening
Community
nurses
Podiatry

Hosp. EPR

GP

Web Server
New diagnoses of type 2 diabetes
Proportion of Diabetics Anaemic or Hb < 110

Chronic Kidney Disease Category

- eGFR >= 60
- eGFR 50-59
- eGFR 30-49
- CKD 4
- CKD 5
Research Examples

A) Iterative shaping of hypothesis between biology and medicine, plus enhanced data collection
African cows to Salford ICU

High cholesterol in African cattle identified as a \textit{protective} factor against death from trypanosomiasis

Is high cholesterol a protective factor in humans undergoing extreme inflammation?

ICU data and physicians in Salford ‘E-Lab’ accessible, and physiological ‘clamping’ reduces confounding

Data cleaning, meta-data capture, analysis
Change in total cholesterol

Day 1 to 2

Day 2 to 3

Died

Survived
Cholesterol & inflammation

• Discovery theme growing
 – Shaping and testing hypotheses around causal vs. reverse causal models
 – Speculative trials in mouse model
 – Metabolomic proposal submitted

• Enhanced data collection and coding because it was of BENEFIT TO CARE = data quality by-product of research
Example 2) Discovery from routine data in a long series

Surveillance of obesity in Wirral children whilst the epidemic took hold...
Fifths of IDAC 2004
Proportion of households with children claiming benefits
Red (light) = most deprived
Red (dark)
Purple
Blue (dark)
Blue (light) = most affluent

Child Deprivation (2001 Census)
Adiposity of 3 yr olds 1988 - 1989

Fifths of adiposity
SDS BMI fifth
Red (light) = fattest
Red (dark)
Purple
Blue (dark)
Blue (light) = thinnest
Adiposity of 3 yr olds
1990 - 1991

Fifths of adiposity
SDS BMI fifth
Red (light) = fattest
Red (dark)
Purple
Blue (dark)
Blue (light) = thinnest
Adiposity of 3 yr olds
1992 - 1993

Fifths of adiposity
SDS BMI fifth
Red (light) = fattest
Red (dark)
Purple
Blue (dark)
Blue (light) = thinnest
Adiposity of 3 yr olds
1994 - 1995

Fifths of adiposity
SDS BMI fifth
Red (light) = fattest
Red (dark)
Purple
Blue (dark)
Blue (light) = thinnest
Adiposity of 3 yr olds
1996 - 1997

Fifths of adiposity
SDS BMI fifth
Red (light) = fattest
Red (dark)
Purple
Blue (dark)
Blue (light) = thinnest
Adiposity of 3 yr olds 1998 - 1999

Fifths of adiposity
SDS BMI fifth
Red (light) = fattest
Red (dark)
Purple
Blue (dark)
Blue (light) = thinnest
Adiposity of 3 yr olds
2002 - 2003

Fifths of adiposity
SDS BMI fifth
Red (light) = fattest
Red (dark)
Purple
Blue (dark)
Blue (light) = thinnest
Taller, faster-growing children have carried more of the obesity epidemic.
Faster infant growth and slower early child growth

![Graph showing mean (95% CI) length/height gain (cm) from 1990 to 2000 for two periods: 6 weeks to 8 months and 8 months to 2 years. The graph indicates a general decrease in growth gain over time.]
Obesity and linear growth

• Direct public health / policy use

• New quest to identify the links between growth and obesity - ? targets within individuals or just shared environment

• Mouse equivalent of ‘tall-fat’ child phenomenon identified with knock out of gene on putative pathway - ? target
Discipline-based E-Labs

e.g. PsyGrid
PsyGrid Connectivity Architecture
PsyGrid

• Aim to ‘e-enable’ the world’s largest cohort study of first-episode psychosis

• 2 years in
 – Cohort study running well
 – Two ‘e-enabled’ trials mounted on cohort
 – Extreme care with security
 – Focus on rapid, systematic data capture
 – Adopted by Mental Health Research Network
 – Translating to other networks
Linkage:
Data-data
Researcher-data
Researcher-computation

Engineer a factory,
not just a warehouse...
Variations in DNA sequence, or Single Nucleotide Polymorphisms (SNPs) between individuals can contribute to disease conditions. Many diseases result from complex interactions of multiple SNPs.

The scientific problem

The data

Genotype at each position in genome is encoded by 2-bits. Disease status (+/-) of each individual recorded.

The computational problem

Modern technology can measure 0.5M SNPs on cohort of 5k individuals. Compute association between disease status and genotype. Significance computed by comparing to 10k random data sets.

The solution

Current technology

- Compute power & Skill set bottlenecks
 - Single locus: 1 day
 - Pairs of loci: 120 yrs

Drip feed of scientific discovery

The data

Person 1 +

\[\text{...ATTAGGAGCAATAAGTCT...} \]
\[\text{...ATTAGGAGCAATAAGTCT...} \]

Person 2 -

\[\text{...ATTAGGAGGAATAAGTCT...} \]
\[\text{...ATTAGGAGGAATAAGTCT...} \]

The computational problem

- Single locus: Cost = 0.5M x 5k x 10k
- Pair of loci: Cost = \(\frac{1}{2} \times 0.5M \times 0.5M \times 5k \times 10k \)

Parallelization for Genome-wide Screening of Common Complex Human Diseases

University of Manchester (NIBHI, ARC), Microsoft Technology Centre (Thames Valley, UK) & Melandra Ltd.

The solution

- Compute power & Skill set bottlenecks
 - Single locus: 1 day
 - Pairs of loci: 120 yrs

Drip feed of scientific discovery

Analysis speed

- Easy access to analysis services by remote collaborating scientists
- Workflows \(\Rightarrow \) User-friendly creation of bespoke analysis routines
- Rapid downstream mining of analysis results \(\Rightarrow \) Rapid biological knowledge discovery
- Increased compute power. Pair interactions = \(1\frac{1}{2} \) days (24 Opteron cores)

Barriers to use

- Comprehensiveness
- Know-how
‘Shared Genomics’ with Microsoft

• Proof of concept goals achieved
 – enabled more powerful SNP interaction studies
 – made the research tools more accessible

• Speed
 – Test set: 100K SNP, 600 samples, 10K permutations
 – 1 – way
 PLINK = 4-5hrs NIBHI = 65 sec
 – 2 – way
 PLINK = 38hrs NIBHI = 11 mins

• Full project: from Oct 2007
 – Web-delivered genetic epidemiology tools
 – Fundamental mathematical and software work
 – Employ more powerful computers
Future: Big, Fast Exploration

Problem
Question
(Hypothesis)

Population
Individual
Molecular

Drill down

Factors

Findings

Mine

Model
Making research more transparent, sharable, reproducible, and easily preserved
Unclear Public Good

- Research
- Health Records

Clear Public Good

- Research Objects
- e-Lab: Population
- Local Ownership
- Asset Enrichment
E-Lab Local Sustainability

Interoperable local e-Labs = confederation

- Research & Development
 - Standards
 - Governance
 - Technical
- Care e-Records
 - Easy, open tools
 - Local use & ownership
 - Compelling findings
- Citizen-driven e-Health
Northwest e-Lab Confederation

<table>
<thead>
<tr>
<th>Technology</th>
<th>Experience</th>
<th>Local ownership</th>
</tr>
</thead>
<tbody>
<tr>
<td>Salford e-Lab pilot: 230k</td>
<td>e-Lab model adopted within key NHS Trusts 1.5M</td>
<td>Regional adoption 3.5-5.0M</td>
</tr>
</tbody>
</table>
Learning from e-Lab pilots

R&D pipelines from/for healthcare =

Data +
Local expertise → meta-data +
Easy collaborative research platforms

Federate local ownership & enrichment
Cancer e-Lab recommendations

• Co-invest to create a critical mass of Social Bio-Health Informatics

• Embed spokes of e-Labs in cancer centres

• Set cancer interoperability tests for wider health intelligence systems – don’t isolate cancer
Future cancer intelligence tests

- Tamoxifen question answered within 3h
- Kaplan-Meier update within 14d of event
- Routine pre-diagnosis signals detected
- Phase IV+: natural control groups identified
- Real-time feasibility analysis
- Real-time workflow-based recruitment
- Long-term content-feeds on trial participants
- >90% of tissue samples registered in e-Lab
- ...
Thanks for your attention

www.nibhi.org.uk