Routing Algorithms for Recursively-Defined Data Centre Networks

Citation for published version (APA):

Published in:
host publication

Citing this paper
Please note that where the full-text provided on Manchester Research Explorer is the Author Accepted Manuscript or Proof version this may differ from the final Published version. If citing, it is advised that you check and use the publisher's definitive version.

General rights
Copyright and moral rights for the publications made accessible in the Research Explorer are retained by the authors and/or other copyright owners and it is a condition of accessing publications that users recognise and abide by the legal requirements associated with these rights.

Takedown policy
If you believe that this document breaches copyright please refer to the University of Manchester’s Takedown Procedures [http://man.ac.uk/04Y6Bo] or contact uml.scholarlycommunications@manchester.ac.uk providing relevant details, so we can investigate your claim.

Download date:22. Oct. 2023
Routing Algorithms for Recursively-Defined Data Centre Networks

Alejandro Erickson and Iain A. Stewart
School of Engineering and Computing Sciences
Durham University, Science Labs, South Road
Durham DH1 3LE, U.K.
Email: {alejandro.erickson,i.a.stewart}@durham.ac.uk

Abbas Kiasari and Javier Navaridas
School of Computer Science
University of Manchester, Oxford Road
Manchester M14 9LP, U.K.
Email: {abbas.kiasari,javier.navaridas}@manchester.ac.uk

Abstract—The server-centric data centre network architecture can accommodate a wide variety of network topologies. Newly proposed topologies in this arena often require several rounds of analysis and experimentation in order that they might achieve their full potential as data centre networks. We propose a family of novel routing algorithms on two well-known data centre networks of this type, (Generalized) DCell and FiConn, using techniques that can be applied more generally to the class of networks we call completely connected recursively-defined networks. In doing so, we develop a classification of all possible routes from server-node to server-node on these networks, called general routes of order r, and find that for certain topologies of interest, our routing algorithms efficiently produce paths that are up to 16% shorter than the best previously known algorithms, and are comparable to shortest paths. In addition to finding shorter paths, we show evidence that our algorithms also have good load-balancing properties.

I. INTRODUCTION

The explosive growth of online services powered by data centres (web search, cloud computing, etc.) has motivated intense research into data centre network (DCN) design over the past decade and brought about major breakthroughs. For example, fat-tree DCNs, introduced in [1], use commodity off-the-shelf (COTS) servers and switches in a fat-tree (topology), and have resulted in an evolutionary shift in production data centres towards leaf-spine topologies, built from COTS hardware. COTS fat-tree DCNs are not a panacea, however; for example, fat-trees are difficult to scale.

Research on DCN architecture is ongoing and each new architecture invites the use of certain classes of topologies. Indirect networks, where servers are the terminals connected to a switching fabric, are the prevailing example. Fat-trees are among the topologies that can be implemented in indirect network architectures. A host of alternative topologies can be implemented as indirect networks, including random regular graphs ([2]) and butterfly networks ([3]). Likewise, the optical-switch hybrid DCN Helios ([4]) can be seen as an architecture with the capacity to accommodate a variety of topologies (both in the wired links as well as in the optical switch itself). Each architecture sets constraints on the topology in a variety of ways; for example, by the separation of switching nodes from server nodes or the number of ports in the available hardware.

The server-centric DCN (SCDCN) architecture, introduced in [5], accommodates a great variety of network topologies and has resulted in a number of new DCN designs, both derived from existing and well-understood topologies in interconnection networks as well as topologies geared explicitly towards DCNs (e.g., [5–10]).

Only dumb crossbar-like switches are used in an SCDCN and the servers are responsible for routing packets through the network. Therefore, the switches have no knowledge of the network topology and are only connected to servers. Servers, on the other hand, may be connected to both switches and servers. These parameters, which make up part of the SCDCN architecture, invite sophisticated topologies from abstractions as graphs, along with accompanying analyses. We are concerned primarily with routing algorithms for two well-known SCDCNs, DCell ([5]) and FiConn ([6]), and the topologies called Generalized DCell ([11,12]).

We characterise (Generalized) DCell and FiConn as a special case of completely connected recursively-defined networks (CCRDN), which we use to develop a classification (which, to our knowledge, is novel) of all possible routes from server-node to server-node in the DCNs (Generalized) DCell and FiConn. Our main result pertains to a specific family of routing algorithms, called PR (or ProxyRoute), which we develop with the primary aim of improving upon the originally proposed (and best known) routing algorithms, as regards hop-length. This goal is achieved with improvements as high as 16% for certain topologies and paths that are comparable, in length, to shortest paths. In addition, we give empirical evidence that the path diversity provided by PR does a better job of balancing load than DCellRouting. Hitherto, the only algorithms for balancing communication load in (Generalized) DCell and FiConn are the adaptive routing algorithms DFR and TAR presented in [5,6], so PR is also novel in this respect.

Two of our instances of PR called GP_I and GP_0, exploit the topological structure of (Generalized) DCell and FiConn in order to find short paths efficiently by means of an intelligent search (see Section V-A) of sub-structures called “proxies”. We then empirically compare the results of our intelligent versions of PR with a shortest path algorithm, a brute force version of PR and the routing algorithms that were originally proposed in [5,6,12].

We give definitions in Sections II–III, where we abstract the DCNs (Generalized) DCell and FiConn as graphs which can
be characterised as CCRDNs. Section IV describes previously-known routing algorithms for these DCNs, in the context of CCRDNs, and our classification of routes in CCRDNs is given in Section IV-B, as \textit{general routes of order} \textit{t}. We present our main contribution in Section V: the design of \textit{PR}. Our empirical work is described and evaluated in Section VI and future avenues for research are identified in the conclusion.

II. \textbf{SERVER-CENTRIC DCNs}

Our results and experiments are concentrated on graph-theoretical abstractions of certain SCDCNs. Therefore, it is appropriate that we define this abstraction precisely.

An SCDCN consists of switches, which act only as crossbars and have no routing intelligence, and servers. These components are linked together, with the only restriction being that a switch cannot be linked directly to another switch; we assume all links are bidirectional. As such, an SCDCN is abstracted here by an undirected graph $G = (W \cup S, E)$, with two types of nodes called \textit{switch-nodes}, \textit{W}, and \textit{server-nodes}, \textit{S}. Naturally, each switch of the SCDCN corresponds to a switch-node, \textit{w} \in \textit{W}, and each server corresponds to a server-node, \textit{x} \in \textit{S}. Each link of the SCDCN corresponds to an edge \textit{e} of \textit{E}, which, for convenience, we shall also call a link. The condition that switch-to-switch links are not allowed implies that $\exists (u, v) \in E$ such that \textit{u}, \textit{v} \in \textit{W}. See [13] for undefined graph-theoretic terms.

Also relevant to our discussion of routing algorithms in SCDCNs is the fact that (1) packets are sent and received only by servers, and (2) packets endure a negligible amount of processing time in each switch, compared to the time spent in each server. The reason for (2) is that we assume the packet is routed in the server's operating system, either via a table look-up or computation. This could be done, e.g., by a dedicated virtual machine or a specialised hypervisor with the capability to route packets. In any case, we may assume that with today's COTS servers, a packet spends much more time at servers than in switches.

The outcome of (1) is that we need only discuss routing algorithms that construct paths whose endpoints are server-nodes. That is, a \textit{route} on \textit{G} is a path whose endpoints are server-nodes. The outcome of (2) is that a \textit{hop} from server-node to server-node is indistinguishable from one that also passes through a switch-node.

III. \textbf{RECURSIVELY-DEFINED NETWORKS}

Our results are concerned with network topologies of a certain form that have arisen frequently in the area of interconnection networks, and recently as SCDCNs.

\textbf{Definition III.1.} A family $X = \{X(h) : h = 0, 1, \ldots\}$ of interconnection networks is recursively-defined if $X(h)$, where $h > 0$, is the disjoint union of copies of $X(h - 1)$ with the addition of extra links joining nodes in the different copies. We call a member of X a recursively-defined network (RDN). A family of RDNs X is a completely-connected RDN (CCRDN) (see, e.g., [14]) if there is at least one link joining every copy of $X(h - 1)$ within $X(h)$ to every other copy.

A. \textbf{The DCNs DCell}

The DCNs DCell ([5]) were the first family of SCDCNs to be proposed, and their graphs form the family of CCRDNs described below.

Fix some $n \geq 2$. The graph $\text{DCell}_{0,n}$ consists of one switch-node connected to n server-nodes. For $k \geq 0$, let t_k be the number of server-nodes in $\text{DCell}_{k,n}$. For $k = 0$, the graph $\text{DCell}_{0,n}$ consists of $t_{k-1} + 1$ disjoint copies of $\text{DCell}_{k-1,n}$, labelled D_{k-1}^i, for $0 \leq i \leq t_{k-1}$, and each pair of distinct D_{k-1}^i, ns is joined by exactly one link, called a \textit{level-k link}, whose exact definition is given below, in terms of the labels of the server-nodes.

Label a server-node of a $\text{DCell}_{n,k}$, for some $k > 0$, by $x = x_k x_{k-1} \cdots x_0$, where $x_{k-1} x_{k-2} \cdots x_0$ is the label of a server-node in D_{k-1}^0, and $0 \leq x_0 < n$ and $0 \leq x_1 < g_k$ for $i \geq 0$, where $g_k = t_{k-1} + 1$. The labels of $\text{DCell}_{n,k}$ are mapped bijectively to the set $\{0, 1, \ldots, t_k - 1\}$ by $\text{uid}(x) = x_k t_{k-1} + x_{k-1} t_{k-2} + \cdots + x_0 t_0 + t_0$. Label and \textit{uid} are combined in the notation $[x_k, \text{uid}_{k-1}(x_{k-1} x_{k-2} \cdots x_0)]$.

Let $0 \leq x_k < y_k < \text{uid}_{k-1} t_k + 1$ be the indices of the $\text{DCell}_{n,k}$, labelled D_k^x and D_k^y, respectively. A level-k link connects node $y_k - 1$ in D_{k-1}^x to node x_k in D_{k-1}^y. This is the link $(y_{k-1} + x_k t_{k-1}, x_k + y_k t_{k-1})$.

1) \textbf{Generalized DCell:} The definition of the DCNs DCell generalises readily; see [11,12]. The key observation is that the level-k links are a perfect matching of the server nodes in the disjoint copies of the $\text{DCell}_{k-1,n}$, so that every pair of distinct $\text{DCell}_{k-1,n}$ is connected by a link. Many such matchings are possible. A given matching ρ_k which satisfies the stated properties defines the level-k links and is called a ρ_k-connection rule ([12]).

A \textit{Generalized DCell}, for $k \geq 0$, except that the level-k links may satisfy an arbitrary ρ_k-connection rule. Note that we insist that there be only one connection rule for each level k, so that a given family of Generalized DCCells can be specified by a set of connection rules $\{\rho_1, \rho_2, \rho_3, \ldots\}$.

This is in accordance with Definition 1 in [12], with two exceptions. We model Generalized $\text{DCell}_{n,k}$ as a switch-node connected to n server-nodes, rather than modelling it as K_n, and we require $n > 2$.

In order to demonstrate the impact of different connection rules on the routing algorithms presented in Section IV, it suffices to consider just one connection rule besides the one for DCell. For this purpose, we use β-DCell, defined by the β-connection rule given in [12].

The β-connection rule is (perhaps not obviously) as follows: Let $0 \leq x_k < y_k < \text{uid}_{k-1} + 1$ be the indices of the β-$\text{DCell}_{n,k}$, labelled $D_k^{x_k}$ and $D_k^{y_k}$. A level-k link connects node $y_k - x_k - 1$ in $D_{k-1}^{x_k}$ to node $t_{k-1} - y_k + x_k$ in $D_{k-1}^{y_k}$. This is the link $(y_k - x_k - 1 + x_k t_{k-1}, t_{k-1} - y_k + x_k + y_k t_{k-1})$.

B. \textbf{The DCNs FiConn}

One of the issues with (Generalized) $\text{DCell}_{k,n}$ is that each server-node has degree $h + 1$. This requires that each server
has \(k+1 \) NIC ports, which is not typically the case for COTS servers when \(k > 1 \).

FiConn, proposed in [6], is a CCRDN that requires at most two ports per server; it uses only half of the available server-nodes (those of degree one) in each copy of FiConn\(_{k-1,n} \) when building FiConn\(_{k,n} \). This, in turn, leaves server-nodes of degree one available to build the next level. We describe FiConn below.

Fix some even \(n > 3 \). FiConn\(_{k,n} \) is the network consisting of one switch-node connected to \(n \) server-nodes. Let \(b \) be the number of available server-nodes in FiConn\(_{k-1,n} \) for \(k > 0 \). Build FiConn\(_{k,n} \) from \(b/2 + 1 \) copies of FiConn\(_{k-1,n} \), labelled \(F_{k-1,n}^i \) for \(0 \leq i \leq b/2 \). From [6] we have that \(b/2 + 1 = t_{k-1}/2^k + 1 \), so that the label of a server-node \(x \) of a FiConn\(_{k,n} \) is expressed as the \((k+1)\)-tuple \(x = x_kx_{k-1}\cdots x_0 \), where \(x_kx_{k-1}\cdots x_0 \) is a server-node in \(F_{k-1} \) and we have \(0 \leq x_0 < n \), but \(0 \leq x_i < g_k \), where \(g_k = b/2 + 1 = t_{k-1}/2^k + 1 \) (diverging slightly from the labels in DCell). We have \(u(x) = x_kx_{k-1}+x_{k-2}+\cdots+x_10+x_0 \) and \([x_k, u(x) = (x_kx_{k-1}x_{k-2}\cdots x_0)] \) to label server-nodes, once more.

Let \(0 \leq x_k < y_k < t_{k-1}/2^k + 1 \) be the indices of the FiConn\(_{k-1,n} \)s \(F_{k-1}^{x_k} \) and \(F_{k-1}^{y_k} \). A level-k link connects a server-node \((y_k - 1)2^k + 2^{k-1} + 1 \) in \(D_{k-1}^x \) to server-node \(x_k2^k + 2^{k-1} + 1 \) in \(D_{k-1}^y \). This is the link \((y_k - 1)2^k + 2^{k-1} + 1 + x_k2^k + 2^{k-1} + 1 + y_k2^k \).

IV. ROUTING

CCRDNs feature a class of routing algorithms that emerges naturally from their definition, called dimensional routing.

A. Dimensional routing

Definition IV.1. Let \(\mathcal{X} = \{ X(h) : h = 0, 1, \ldots \} \) be a family of CCRDNs, and let \(X_h \) be a copy of \(X(h) \), for some fixed \(h > 0 \). Let \(X_{h-1}^a \) and \(X_{h-1}^b \) be disjoint copies of \(X(h-1) \) in \(X_h \), and let \(\text{src} \) and \(\text{dst} \) be nodes of \(X_{h-1}^a \) and \(X_{h-1}^b \), respectively. Since \(X_h \) is completely connected, there is a level-\(h \) link in \(X_h \) incident with a node \(\text{dst}' \) in \(X_{h-1}^a \) and a node \(\text{src}' \) in \(X_{h-1}^b \). If \(h = 1 \) then either \(\text{src} = \text{dst}' \) or \(\text{src}, \text{dst}' \) is a link, and otherwise a path \(P_a \) from \(\text{src} \) to \(\text{dst}' \) can be recursively computed in \(X_{h-1}^a \). This same method provides a path \(P_b \) from \(\text{src}' \) to \(\text{dst} \) in \(X_{h-1}^b \). A dimensional routing algorithm on \(\mathcal{X} \) is one which computes paths of the form \(P_a + (\text{dst}', \text{src}') + P_b \), between any source-destination pair of nodes in a member of \(\mathcal{X} \), and is denoted \(DR_\mathcal{X} \). A dimensional route is one that can be computed by a dimensional routing algorithm.

Remarkably (and, perhaps, unfortunately), there are topologies and source-destination pairs for which no dimensional routing algorithm computes a shortest path; a notable example is the family of WK-recursive networks ([15]), for which a shortest path algorithm is developed in [16].

1) Dimensional routing in (Generalized) DCell and FiConn: (Generalized) DCell and FiConn are CCRDNs in which each pair of disjoint copies of DCell\(_{k-1,n} \) within DCell\(_{k,n} \) is joined by exactly one edge. As such, there is only one choice for the edge \((\text{dst}', \text{src}')\), which is computed by the connection rule for level-\(h \) links. Therefore, the connection rules in Sections III-A-III-B suffice to describe dimensional routing for these DCNs.

The dimensional routing algorithms for each of these networks serves as a basis for fault-tolerant and load-balancing routing algorithms \(DFR \) in [5], and \(TAR \) in [6], and it is precisely the algorithm called Generalized DCellRouting, given in [12]. The former two are fault and congestion-tolerant routing algorithms that compute significantly longer paths, on average, than the dimensional routing algorithms.

B. Proxy Routing

A general routing algorithm on a family \(\mathcal{X} = \{ X(h) : h = 0, 1, \ldots \} \) of CCRDNs is of the following form. Let \(X_h \) be a copy of \(X(h) \), for some fixed \(h > 0 \). Let \(X_{h-1}^{c_0} \) and \(X_{h-1}^{c_1} \) be disjoint copies of \(X(h-1) \) in \(X_h \), with \(\text{src}_{c_0} \) and \(\text{dst}_{c_1} \) nodes of \(X_{h-1}^{c_0} \) and \(X_{h-1}^{c_1} \), respectively. Let \(X_{h-1}^{c_0}, X_{h-1}^{c_1}, \ldots, X_{h-1}^{c_t} \) be a sequence of copies of \(X(h-1) \), where \(c_0 = a; c_{t-1} = b; c_t \neq c_{t+1} \), for \(0 \leq i < t \); and \(X_{h-1}^{c_t} \) is disjoint from \(X_{h-1}^{c_{t+1}} \) whenever \(c_t \neq c_{t+1} \).

Every routing algorithm computes a path (we shall assume that there are no repeated nodes) of the form \(P_0 + (\text{dst}_0, \text{src}_1) + P_1 + \ldots + (\text{dst}_{t-1}, \text{src}_{t-1}) + P_t \).

A general route of order \(T \) is one in which \(t \leq T \) for each \(X(h) \), with \(h = 0, 1, \ldots \) and \(t = T \) for at least one of these. A proxy route, computed by a proxy routing algorithm, is a general route of order 3 (and a dimensional route is of order 2).

1) \(DFR \) for DCell and \(TAR \) for FiConn: While we do not provide full details here, we sketch the proxy-routing-like subroutine that is common to \(DFR \) ([5]) and \(TAR \) ([6]). Both \(DFR \) and \(TAR \) are adaptive routing algorithms which compute paths in a distributed manner, making decisions on the fly, based on information that is local to the current location of the packet being routed.

This subroutine computes a part of a proxy route to replace a sub-path of the intended route. In particular, a packet may bypass a level \(m \) link, \(e \), from sub-structure \(D_{m-1}^a \) to \(D_{m-1}^b \) by re-routing through a proxy, \(D_{m-1}^c \), with \(a, b, \) and \(c \) distinct. The decision to bypass is made when the packet arrives at \(e \) (or near \(e \), as determined by a parameter in \(DFR \)), and upon its arrival in \(D_{m-1}^b \), the packet is routed directly to its final destination.

The algorithms \(DFR \) and \(TAR \) produce much longer than \(DR \), on average. The simulations in [5] show that \(DFR \), although fault-tolerant, computes paths that are over 10% longer than the shortest paths, on average, even with as little as 2% failures. The maximum length of a route computed by the implementation of \(TAR \) in [6] (Theorem 7) is \(2\cdot 3^h - 1 \), whilst it is \(2\cdot 2^k - 1 \) for \(DR \) (called \(TOR \) in [6]). This is reflected in their simulations of random and burst traffic, where \(TAR \) computes paths that are 15-30% longer, on average, than those computed by \(DR \).
We propose that proxy routing be used more broadly than it is in DFR and TAR, and with the primary goal of efficiently computing short paths, rather than fault-tolerance and balancing load, by applying it in a fundamentally different manner: firstly, we seek to compute a proxy route at the outset, rather than building the route piecemeal; secondly, we use this pre-planning in order to find a proxy route that offers a high degree of savings over the dimensional route.

One reason for focusing on $t \leq 3$ is that visiting each X_{m-1}^c, for $0 < j < t - 1$, has an associated cost, and when m is small, as it is when our graphs represent DCNs with a realistically deployable number of servers, it becomes less likely that general routes with $t > 3$ will be useful. Furthermore, the methods of searching for a “good” proxy that we explore here may become impractical for $t > 3$, because the search space of potential (multiple) proxies is much larger.

Henceforth we use G-$Cell$ in place of (Generalized) DCell and FiConn whenever we make statements or arguments that apply to all of these.

The following lower bound on the hop-length of a general route of order t is obvious.

Lemma V.1. Let src and dst be server-nodes in a G-$Cell_{k,n}$, with $k > 0$, such that src is in D_{k-1}^a and dst is in D_{k-1}^b, with $a \neq b$. A general route of order t has length at least $2t - 3$. In particular, a dimensional route has length at least 1 and a proxy route has length at least 3.

The remainder of our paper is a comparative empirical analysis of several versions of PR, given in Algorithm 1.

Algorithm 1 PR for G-$Cell$ returns a proxy route if it finds one that is shorter than the corresponding dimensional route.

Require: src and dst are server-nodes in a G-$Cell_{k,n}$.

function $PR(src, dst, m)$

if $m > 0$ and both src and dst are in the same copy of G-$Cell_{m-1,n}$ then

return $PR(src, dst, m - 1)$

either

$D_{m-1}^a \leftarrow GP(src, dst, m)$.

if $D_{m-1}^a = null$ then

return $DR(src, dst)$.

else

D_{m-1}^a the G-$Cell_{m-1,n}$ containing src.

D_{m-1}^b the G-$Cell_{m-1,n}$ containing dst.

(a^c, c^e) the link from D_{m-1}^a to D_{m-1}^c.

(c^e, b') the link from D_{m-1}^c to D_{m-1}^b.

return

$PR(src, a^c, m - 1) + (a^c, c^a) +$

$PR(c^a, c^b, m - 1) + (c^b, b') +$

$PR(b', dst, m - 1)$.

end if

end function

A. **GP: GetProxy**

GP is the subroutine of PR that computes the proxy used in Expression (1), if a proxy is to be used. That is, GP returns either a proxy sub-G-$Cell$, D_{m-1}^c, or it returns null. Obviously, the performance of PR (and its success in producing a shorter route than DR) depends on the proxy returned by GP and how GP is implemented.

Ideally GP would instantly compute a unique proxy sub-G-$Cell$ D_{m-1}^c, if it exists, such that the proxy route through D_{m-1}^c is the shortest one possible. Such an algorithm is unknown to us.

Our strategy, however, is widely applicable, as regards different connection rules and path diversity. Every version of GP that we explore is of the following form. Let (src, dst, m) be the inputs to GP. If $m = 0$, GP outputs null; otherwise, let $m > 0$, so that src is in D_{m-1}^a and dst is in D_{m-1}^b, for some a not equal to b. GP computes a set of candidate proxies, $\{D_{m-1}^{a_1}, D_{m-1}^{a_2}, \ldots, D_{m-1}^{a_n}\}$ (taken from the set of all potential proxy G-$Cell_{m-1,n}$), and then finds a c_i for which the path in Expression (1) is shortest (replacing c by c_i), by constructing the paths explicitly. If the set of candidate proxies is empty, then GP returns null.

The key observation is that we must minimise the number of candidate D_{m-1}s in order to reduce the search space. Our goal is to identify and evaluate general techniques towards this end, and not to catalogue all of the ways to tune GP. Some more complicated techniques are avoided because there is no room to discuss them in this paper; for example when routing in a G-$Cell_{k,n}$ we only apply PR at the top level, whereas slightly shorter paths can be obtained, on average, by using proxy routes in the recursive calls to PR at Expression (1). Other techniques are avoided because they are evidently unprofitable; for example, a much larger search is encountered if GP computes proxy paths for each proxy candidate. We describe three strategies for generating the candidate proxies below.

1) **GP-E as an exhaustive search:** A proxy $D_{m-1,n}$ D_{m-1} can be obtained, naïvely, if GP is implemented as an exhaustive search: that is, we perform the steps described in Section V-A for every c in $\{0, 1, \ldots, t_{m-1}\}\{a, b\}$. Measuring the length of each proxy route has an associated cost, but GP_E provides the optimal proxy route with top-level proxies only against which to test the two strategies given below.

2) **GP-I as an intelligence search:** We propose a general method for reducing the proxy search space, based on the labels of src and dst. In particular, we look at proxies $D_{k-1}^{a_i}$ whose relationship to D_{k-1}^a and D_{k-1}^b is such that at least one of the routes computed by the recursive calls to PR is confined to a G-$Cell_{k-2,n}$ (see Fig. 1).

We first give some notation. Henceforth, let D_k be an instance of G-$Cell_{k,n}$, and let DR be the dimensional routing algorithm on G-$Cell$. For clarity of exposition we describe a method for selecting a proxy D_5^a when routing in a G-$Cell_{k,n}$, with $k = 3$, but the notation extends to all $k > 1$.

Let src and dst be nodes in a G-$Cell_{3,n}$, with $src = a_3a_2a_1a_0$ and $dst = b_3b_2b_1b_0$, so that $uid_3(src) = t_2a_3$ +
where which satisfy Properties (2)–(4) in constant time.

c rules (see Sections III), each namely, that we may write $\beta \alpha p v \beta s q$ with the object of minimising c. Once GP_s is “tuned” to suit a certain application and network size, however, there are several choices for how it can be implemented. How exactly this is done depends on the size of the network and the nature of the application, but we shall remind ourselves of some of the available tools.

The most naïve method is to compute the route at the source-node, by computing the candidate paths explicitly, and measuring their length; however, other methods such as table look-ups must be considered.

GP_s, in particular, leverages the fact that G-Cell$_{k,n}$ grows double-exponentially in k in order to find proxy candidates D_{k-1}^f that are linked to the same copy of G-Cell$_{k-2,n}$ as src or dst. This has a secondary benefit; namely, G-Cell$_{k-2,n}$ (and even G-Cell$_{k-1,n}$) is small, relative to G-Cell$_{k,n}$, and this makes table look-ups feasible for storing the lengths of paths within each copy of G-Cell$_{k-2,n}$, and possibly within each copy of G-Cell$_{k-1,n}$. The whole table must be replicated at each server-node to be used this way, but this is still much smaller than storing every (src, dst)-pair.

For example, there are $24, 492^2 = 599, 858, 064$ such pairs in G-Cell$_{1,3}$, and $g_{st}^2 = 157 \ast 157 = 3, 820, 752$ pairs confined to sub-G-Cell$_{2,3,n}$, and $g_{st}^2 = 157 \ast 157 = 293, 904$ pairs confined to sub-G-Cell$_{1,3,n}$ (see Table II).

In addition to table look-ups, we also leverage the fact that paths are computed for flows, rather than packets, and in

t_1 a_2 + t_0 a_1 + a_0 and $uid_3(\text{dst}) = t_2 b_3 + t_1 b_2 + t_0 b_1 + b_0$. Let $a_3 \neq b_3$, and note that without loss of generality, we may assume $a_3 < b_3$.

Our convention for denoting the link between two sub-Cell$_s$ is as follows: let D_2^a and D_2^b be G-Cell$_{2,n}$ and recall that we may write $[a, uid_2(v)]$ for a node $v = \alpha a_2 v_1 v_0$ in D_2^a, where $uid_2(v) = t_1 v_2 + t_0 v_1 + v_0$. Let $[\alpha, \alpha^2, [\beta, \beta^2]]$ be the link from D_2^a to D_2^b, with $\alpha^3 = \alpha^2 \alpha_1^0 \alpha_0^0$, and similarly for $\beta^3 = \beta_2 \beta_1 \beta_0$.

GP_s builds its set of proxy candidates on the condition that the source and destination are not near to each other. Let $a = a_3$ and let $b = b_3$. GP_s outputs null if a_3, a_0 is a server-node of $D_1^{a_0}$ or b_3, b_0 is a server-node of $D_1^{b_0}$. That is, when $a_2 = a_2$ and $b_2 = b_2$.

Provided the above condition is avoided, we then select a proxy D_2^a to be a candidate, when c is such that one of the three sub-paths, $\text{PR}(src, [a, a^2])$ or $\text{PR}(c, e^2)$ or $\text{PR}(b, b^2, \text{dst})$, is short; specifically, if at least one of the three sub-paths is contained inside a single G-Cell$_{1,n}$. That is, c satisfies at least one of the following three properties (in a non-trivial way; see discussion below):

\begin{align*}
\text{src} \text{ and } [a, a^2] \text{ are in the same } D_1 : a_2 = a_2^2 \quad & (2) \\
[c, e^2] \text{ and } [c, e^2] \text{ are in the same } D_1 : c_2 = c_2^2 \quad & (3) \\
b, b^2 \text{ and } \text{dst} \text{ are in the same } D_1 : b_2 = b_2^9 \quad & (4)
\end{align*}

where $a_2^2 = [a^2 / t_1]$ and similarly for c_2^2 and b_2^9. Clearly for any G-Cell$_s$ we can verify whether a proxy candidate D_2^a satisfies one (or more) of the Properties (2)–(4), since the numerators are computed directly from the various connection rules of each G-Cell$_s$. However, we wish to compute the set of values c which satisfy Properties (2)–(4) in constant time.

The floor function yields that $[a^2 / t_1] = a_2$ if, and only if, $a_2 t_1 \leq a^2 < (a_2 + 1) t_1$. It happens that for our connection rules (see Sections III), a^2 is piecewise linear (as a function of c), and similarly for b^2, c^2, and e^2, with exactly three cases: namely, $c_3 < a_3 < b_3$; $a_3 < c_3 < b_3$; and, $a_3 < b_3 < c_3$ (where the case $b_3 < a_3$ is treated by swapping src and dst). As a result of this, the set of values c which satisfy Properties (2)–(4) can be computed very efficiently for our connection rules as the union of, at most, a constant number of intervals (see Table I). Note that for the connection rules explored in this paper Property (3) is redundant because it does not narrow the search space; for certain pairs (a, b), all c satisfy Property (3), while no c satisfies it for other pairs.

For the case $k = 3$ and the connection rules for DCell, β-DCell, and FiConn, GP_s considers a small set with around t_0 or $2t_1$ candidate proxies. More generally, a close inspection of Properties (2) and (4) reveals that they each yield exactly t_2 (possibly disjoint) candidate proxies for Generalized DCell and at most t_1 candidate proxies for FiConn. Due to space constraints we omit a full discussion of this, but we remark that a better understanding of this aspect of proxy routes may shed light on the sophisticated relationship between the connection rule and various distance metrics on G-Cell.

3) GP_s level-0 proxy search: We note that for a G-Cell$_{k,n}$, with $k = 2$, the proxy candidates D_2^a computed by GP_s are simply those for which a^2 is in the same copy of G-Cell$_{2,n}$ as src or b^2 is in the same copy of G-Cell$_{2,n}$ as dst or c^2 and b^2 are in the same copy of G-Cell$_{2,n}$. GP_s mimics GP_s, but computes the set of proxies that satisfy at least one of the aforementioned properties, in place of Properties (2)–(4). It is applied only to G-Cell$_{k,n}$ with $k > 2$.

4) Implementation notes: The savings in hop-length and the benefit to load-balancing come at the cost of searching proxy candidates, whose number is given by p in Fig. 3. For each proxy candidate c, the lengths of sub-paths $\text{PR}(\text{src}, [a, a^2])$ or $\text{PR}(c, e^2)$ or $\text{PR}(b, b^2, \text{dst})$ must be computed; hence the reason for devising GP_s and GP_s with the object of minimising c. Once GP_s is “tuned” to suit a certain application and network size, however, there are several choices for how it can be implemented. How exactly this is done depends on the size of the network and the nature of the application, but we shall remind ourselves of some of the available tools.

The most naïve method is to compute the route at the source-node, by computing the candidate paths explicitly, and measuring their length; however, other methods such as table look-ups must be considered.
certain applications may be re-used for multiple flows among a set of server-nodes that is small, relative to the entire network. In addition, each time we compute a proxy path, we may identify multiple viable proxies (the context of the application and network size defines what this means), and hence, path diversity comes at no extra cost. We may choose from several paths at random, send a probe packet to explore the loads and possible faults on each path before sending a larger flow, or remember proxies for common and recent destinations.

VI. EXPERIMENTS

A. Experimental setup

We compare up to five different routing algorithms for various G-Cell1s. They are: DR; shortest paths, computed by a breadth first search (BFS); PR with GP$_E$; PR with GP$_I$; and, PR with GP$_0$. Each routing algorithm (for a given DCN) is tested with the same 10,000 input pairs, (src, dst). The estimated standard error of the mean is computed by $s_x/\sqrt{\text{trials}}$, where s_x is the sample standard deviation and trials = 10,000. For our purposes of surveying the effects of different instances of GP, this value is negligible, and we therefore omit error bars in Figs. 2–3.

For each algorithm we plot 100($\bar{x}_G - \bar{x}$)/\bar{x}_G in Fig. 2, where \bar{x} is the mean hop-length in the sample of computed routes. In other words, we plot the percent savings in hop-length over DR. Note that GP$_0$ is implicitly plotted for $k = 1$ because it is equivalent to GP$_I$ in this case.

We also plot, in Fig. 3, the mean number of proxies considered by GP$_I$ and GP$_0$ denoted \bar{p}_I and \bar{p}_0, respectively, and the mean number of routes $\mathcal{P}(src, dst)$ found to be no longer than $\mathcal{DR}(src, dst)$, denoted \bar{f}_I and \bar{f}_0, respectively. Note that $\bar{p}_I = \bar{p}_0$ for $k = 2$ and, as such, this value is implicitly plotted for $k = 2$ in Fig. 3.

The two histograms in Fig. 4 show the proportion of links with a given load (number of flows) in β-DCell3,3, under 1 million one-to-one communications, generated uniformly at random; one histogram is for DR and the other one is for PR with GP$_I$.

The networks we tested are given with their basic properties in Table II, and the details of each version of GP* are given in Section V-A.

B. Evaluation

The plots in Fig. 2 show that for many G-Cell topologies, significant savings in hop-length can be made over dimensional routes by using proxy routes, depending on the connection rule, network size, and the parameters k and n. It is immediate that GP$_I$ and GP$_0$ retain some good proxies, in relation to GP$_E$, which tries all of them. Furthermore, GP$_E$ is comparable to BFS. Fig. 3 tells us how much searching each of the methods GP$_I$ and GP$_0$ must do, and how much path diversity they create, on average.

Note that the means plotted in Figs. 2–3 hide the success rate of PR in finding a good proxy path; as a typical example, PR(src, dst) is shorter than DR(src, dst) for approximately 30% of input pairs when using GP$_I$ in DCell3,6.

We highlight (and explain, where possible) some of the trends observable in the plot of Fig. 2: In general, proxy routes are more effective in β-DCell$_k,n$ than in DCell$_k,n$ and FiConn$_k,n$ of comparable size, with fixed k, however, even FiConn$_k,n$ still sees up to a 6–7% improvement.

The apparent weakness of PR in FiConn is partly explained by the fact that for given k and n, there are fewer proxy FiConn$_{m-1,n}$s to consider at level m. On the other hand we find that GP$_0$ considers fewer than $g_1 = 6$ proxies for FiConn$_{3,10}$, while it considers more than $g_1 = 7$ proxies for DCell$_3,6$ and β-DCell$_3,6$. In addition, there are an equal number of potential proxy candidates in β-DCell$_k,n$ and DCell$_k,n$ in general, yet GP$_E$, GP$_I$, and GP$_0$ invariably consider more proxy candidates for DCell$_k,n$, only to produce proxy paths that perform better in β-DCell$_k,n$. We must conclude that the connection rule and topology (FiConn vs Generalised DCell) profoundly impacts the performance of our proxy routing algorithms. This is somewhat unsurprising, however, since the connection rule and topology also affect the shortest paths; for example, the mean distance in β-DCell3,3 is far shorter than in DCell3,3 (see also [12]).

Proxy paths in larger networks (when increasing n) are worse than those in smaller networks, for each DCN with fixed k; for example DCell$_3,3$ and DCell$_3,6$, and also FiConn$_{3,10}$ and FiConn$_{3,16}$.

A related trend appears to be that for each family of DCNs, proxy-path-savings increase with k, in every version of GP*; for example, FiConn$_{3,10}$ and FiConn$_{4,6}$. The main reason for this is that the performance of BFS, relative to DR, also increases with k, thus providing a greater margin for improvement by using PR.

The difference between GP$_E$ and GP$_0$ grows with k (note that for $k = 2$, they are the same, and hence GP$_0$ is not plotted for $k = 2$). This is because GP$_I$ looks for sub-paths within a copy of G-Cell$_{k-2,n}$, whereas GP$_0$ looks for sub-paths within a copy of G-Cell$_{0,n}$, and as the gap between 0 and $k - 2$ increases, GP$_I$ considers a larger set of proxy candidates. Similarly, we explain how the difference between GP$_E$ and GP$_I$ grows with k, but here it is the double exponential growth of G-Cell that contributes extra proxy candidates to GP$_E$, since the search space for GP$_I$ is proportional to g_k, whereas, GP$_E$ considers exactly g_k.

<table>
<thead>
<tr>
<th>$a_3c_3a_3c_3a_3c_3$ to $[a, a']$</th>
<th>$a_3c_3b_3c_3a_3b_3$ to $[a, a']$</th>
<th>$a_3c_3b_3c_3a_3b_3$ to $[a, a']$</th>
<th>$a_3c_3b_3c_3a_3b_3$ to $[a, a']$</th>
<th>$a_3c_3b_3c_3a_3b_3$ to $[a, a']$</th>
</tr>
</thead>
<tbody>
<tr>
<td>$[c, c']$ to $[c, c']$</td>
</tr>
<tr>
<td>$[c, 3]$ to $[c, 3]$</td>
</tr>
<tr>
<td>$[b, 3b]$ to $b_3b_1b_0$</td>
</tr>
</tbody>
</table>

TABLE I

PROPERTIES (2)–(4) APPLIED TO DCell3,3.
proxy candidates (see Table II). Most notably, however, is the fact that for $G_{-}\text{Cell}2_{a}$, the performance of $GP_{-}E$ is almost identical to the performance of $GP_{-}I$ whereas $DCell2_{43}$ has $g_{1} = 44$, and $g_{2} = 1893$, our results show that optimal proxies are nevertheless considered by $GP_{-}I$ (and hence, $GP_{-}0$).

Although GP^{*} is effective in computing shorter paths and comes fairly close to BFS (typically over 80% of the savings are obtained with PR), we can confirm that the shortest paths for these topologies are not, in general, a proxy route of the form we are considering in this paper as sometimes (e.g. β for these topologies are not, in general, a proxy route of the form we are considering in this paper as sometimes (e.g. β) $DCell3_{3}$ this difference is considerable. This was expected, and provides motivation to explore novel general routing algorithms of order 3 and higher in future work.

![Fig. 2. Percent mean hop-length savings over DR.](image1)

Another benefit of proxy routing is that it also yields some path diversity which can be exploited for load balancing and fault-tolerance purposes. This can be seen in Fig. 3, where \bar{P} is the number of distinct (but not necessarily disjoint) paths considered by PR(src,dst) that are no longer than DR(src,dst). Additional data must be studied, however, to determine exactly how \bar{P} affects the load-balancing properties of the network.

![Fig. 3. Mean number of candidate proxies \bar{P}, and mean number of routes no longer than DR(src,dst), P.](image2)

We computed histograms that show the proportion of links with a given load, under 1 million one-to-one communications, plotted in Fig. 4. The histogram for $GP_{-}I$ is shifted left relative to the histogram for DR, meaning that many links carry less load than in the same scenario for DR. In addition, the maximum load is reduced (in our sample), suggesting many G_{-}Cells have a higher aggregate bottleneck throughput (ABT, introduced in [10], and closely related to the most heavily loaded link in the network) with PR than with DR.

Note that our primary focus is to reduce hop-length and implementation overheads of GP, and that we could increase path diversity even more if we were willing to route on longer paths than DR(src,dst); we do not do this here, but will explore this possibility in future research.

C. Significance

Various aspects of routing in a DCN depend heavily on the availability of short one-to-one paths. For example, minimising latency and energy usage, and building fault-tolerant and load balancing routing algorithms.

While there are inherent trade-offs in computing short proxy routes, there are also multiple benefits: using shorter one-to-one paths in a DCN reduces the average latency of communications, the aggregate load, and thereby the energy usage; and, we obtain a non-deterministic path diversity at no

Table II

| DCN | N | N/n | $|E|$ | d | g_{1} | g_{2} | g_{3} |
|---------|------|-------|-----------|-----|---------|---------|---------|
| $F_{2, 36}$ | 117648 | 3268 | 161766 | 7 | 19 | 172 | |
| $F_{2, 48}$ | 361200 | 7525 | 496650 | 7 | 25 | 301 | |
| $F_{5, 10}$ | 116160 | 11616 | 166980 | 15 | 6 | 16 | 121 |
| $F_{3, 16}$ | 3553776 | 222111 | 5108553 | 15 | 9 | 37 | 667 |
| $F_{3, 16}$ | 857472 | 142912 | 1259412 | 31 | 4 | 7 | 22 |
| $F_{3, 8}$ | 37970240 | 4746280 | 55768790 | 31 | 5 | 11 | 56 |

Properties of the DCNs in our experiments. We use F to abbreviate FiConn, and D to abbreviate (β)-DCell.
to be a dimensional or proxy route, this does not preclude other paths with the same terminal nodes from being dimensional or proxy routes. A deeper mathematical analysis of the DCNs in question may shed light on (1) whether or not higher-order routing algorithms are needed, and (2) how to compute optimal routes of this type efficiently.

References

