Abnormalities of selenium but not of copper homeostasis may drive tissue fibrosis in patients with systemic sclerosis

Link to publication record in Manchester Research Explorer

Citation for published version (APA):

Published in:
Rheumatology (Oxford)

Citing this paper
Please note that where the full-text provided on Manchester Research Explorer is the Author Accepted Manuscript or Proof version this may differ from the final Published version. If citing, it is advised that you check and use the publisher's definitive version.

General rights
Copyright and moral rights for the publications made accessible in the Research Explorer are retained by the authors and/or other copyright owners and it is a condition of accessing publications that users recognise and abide by the legal requirements associated with these rights.

Takedown policy
If you believe that this document breaches copyright please refer to the University of Manchester’s Takedown Procedures [http://man.ac.uk/04Y6Bo] or contact uml.scholarlycommunications@manchester.ac.uk providing relevant details, so we can investigate your claim.

Download date:05. Apr. 2024
Abnormalities of selenium but not of copper homeostasis may drive tissue fibrosis in patients with systemic sclerosis

TABLE 1

<table>
<thead>
<tr>
<th>Biochemical parameter</th>
<th>Patient</th>
<th>Control</th>
<th>P-value</th>
</tr>
</thead>
<tbody>
<tr>
<td>Copper, µmol/l</td>
<td>16.4 (15.3–18.5)</td>
<td>16.3 (14.7–19.6)</td>
<td>0.901</td>
</tr>
<tr>
<td>Ceruloplasmin, g/l</td>
<td>0.19 (0.18–0.24)</td>
<td>0.19 (0.16–0.21)</td>
<td>0.352</td>
</tr>
<tr>
<td>Zinc, µmol/l</td>
<td>11.6 (11.0–12.8)</td>
<td>13.1 (11.6–13.8)</td>
<td>0.085</td>
</tr>
<tr>
<td>Selenium, µmol/l</td>
<td>0.84 (0.80–0.95)</td>
<td>1.05 (0.95–1.10)</td>
<td>~0.001</td>
</tr>
<tr>
<td>HbA1c, mmol/mol</td>
<td>37.0 (36.0–40.0)</td>
<td>36.5 (34.0–39.0)</td>
<td>0.365</td>
</tr>
<tr>
<td>Sodium, mmol/l</td>
<td>141 (139.5–143.0)</td>
<td>141 (140.0–142.0)</td>
<td>0.636</td>
</tr>
<tr>
<td>Potassium, mmol/l</td>
<td>4.2 (4.1–4.5)</td>
<td>4.4 (4.3–4.5)</td>
<td>0.360</td>
</tr>
<tr>
<td>Urea, mmol/l</td>
<td>4.7 (3.9–5.3)</td>
<td>4.4 (4.1–5.7)</td>
<td>0.849</td>
</tr>
<tr>
<td>Creatinine, µmol/l</td>
<td>73.0 (61.5–79.0)</td>
<td>70.0 (64.5–78.5)</td>
<td>0.988</td>
</tr>
<tr>
<td>Alanine aminotransferase, U/l</td>
<td>20.0 (16.0–22.5)</td>
<td>23.0 (16.5–28.0)</td>
<td>0.220</td>
</tr>
<tr>
<td>ALP, U/l</td>
<td>54.0 (47.5–69.5)</td>
<td>60.0 (50.0–75.0)</td>
<td>0.511</td>
</tr>
<tr>
<td>Total bilirubin, µmol/l</td>
<td>7.0 (6.0–10.0)</td>
<td>9.0 (6.0–10.5)</td>
<td>0.385</td>
</tr>
<tr>
<td>Total protein, g/l</td>
<td>67.0 (66.0–69.5)</td>
<td>69.0 (66.0–72.5)</td>
<td>0.289</td>
</tr>
<tr>
<td>Albumin, g/l</td>
<td>43.0 (42.0–44.5)</td>
<td>45.0 (43.0–46.5)</td>
<td>0.010</td>
</tr>
</tbody>
</table>

Values are median (interquartile range).
a matching healthy control were excluded from the analysis (in error; 24 h urinary copper was not processed for the patient).

Nineteen patients with SSC [10 female (9 dcSSc and 10 lcSSc; 9 early disease and 10 late disease)] were included in the final analysis. The median age for patients was 54 years [interquartile range (IQR) 49.5–59.5 (range 28–75)] and for controls was 55 years [IQR 50–60 (range 30–70)].

Urinary copper was undetectable (<0.1 μmol/l) for 13 (68%) patients and 7 (37%) controls. There was little variation in urinary copper evident in either group (range from below the detection limit to 0.3 and 0.2 in patients and controls, respectively). Median urinary copper for the patient group was <0.1 μmol/l and for the control group was at the level of the detection limit of 0.1 μmol/l (P = 0.19).

No difference was observed between patients and controls for serum copper, ceruloplasmin, zinc or HbA1c (Table 1). Serum albumin was lower in patients compared with controls, however, no other differences were observed in other liver or renal function tests (Table 1). CRP was undetectable in 2 (11%) patients and 6 (32%) controls, with a median CRP of 1.9 mg/l in both groups (P= 0.265). Serum selenium was significantly lower in patients compared with controls (Table 1).

In conclusion, our data do not support the hypothesis that copper homeostasis is dysregulated in patients with SSC. Although serum albumin was lower in patients than controls, possibly reflecting the high prevalence of gastrointestinal disease in patients with SSC and the chronic disease process, this is unlikely to be clinically relevant given that all albumin values were within the reference range. The key finding from our study was that serum selenium was significantly reduced in patients with SSC, in keeping with previous studies [6, 7]. Selenium deficiency has been implicated (through free radical damage and tissue fibrosis) in the pathogenesis of myxoedematous cretinism [8]. Future research is warranted to examine the role of selenium deficiency in the pathogenesis of SSC and also to explore the relationships between selenium levels and disease subtype, autoantibody status and internal organ involvement (our study was not powered to explore these relationships). If reduced selenium levels are contributory to oxidative stress (implicated in the pathogenesis of SSC) and to fibrosis, then supplementation could represent a new, simple, therapeutic target for intervention.

Acknowledgements

Garth J. S. Cooper’s research is facilitated by the Manchester Biomedical Research Centre and the NIHR Greater Manchester Comprehensive Local Research Network.

Disclosure statement: The authors have declared no conflicts of interest.

Michael Hughes, Garth J. S. Cooper, Jack Wilkinson, Paul New, John M. Guy and Ariane L. Herrick

1 Centre for Musculoskeletal Research, Salford Royal NHS Foundation Trust, Manchester Academic Health Science Centre, University of Manchester, Manchester, 2 Centre for Endocrinology and Diabetes, Institute of Human Development, Faculty of Medical and Human Sciences, University of Manchester, Manchester, 3 Centre for Advanced Discovery and Experimental Therapeutics (CADET), Central Manchester University Hospitals NHS Foundation Trust, Manchester Academic Health Sciences Centre, Manchester, 4 Research and Development, 5 Rheumatology Directorate and 6 Department of Clinical Biochemistry, Salford Royal NHS Foundation Trust, Salford, UK.

Revised version accepted 23 October 2014

Correspondence to: Michael Hughes, Manchester Academic Health Centre, Salford Royal NHS Foundation Trust, Stott Lane, Salford, Manchester M6 8HD, UK.

E-mail: michael.hughes-6@postgrad.manchester.ac.uk

References