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Abstract—Three-phase three-wire power flow algorithms, as 

any tool for power systems analysis, require reliable impedances 
and models in order to obtain accurate results. Kron’s reduction 
procedure, which embeds neutral wire influence into phase wires, 
has shown good results when three-phase three-wire power flow 
algorithms based on current summation method were used. 
However, Kron’s reduction can harm reliabilities of some 
algorithms whose iterative processes need loss calculation (power 
summation method). In this work, three three-phase three-wire 
power flow algorithms based on power summation method, will 
be compared with a three-phase four-wire approach based on 
backward-forward technique and current summation. Two four-
wire unbalanced medium-voltage distribution networks will be 
analyzed and results will be presented and discussed. 
 

Index Terms-- Distribution networks, losses, unbalance, three-
phase power flow, distribution line models. 

I.  INTRODUCTION 

OWER flow is a very important and fundamental tool for 
analysis of any power system. Several efficient power flow 

solution techniques for radial or weakly meshed distribution 
networks have been developed over the last few decades. 
Moreover, in order to consider the inherently unsymmetrical 
line segments and typically unbalanced loads, power flow 
algorithms had to be expanded to consider three-phase three-
wire systems or even three-phase four-wire systems, with 
explicit neutral wire. However, it must be understood that the 
results of the power-flow studies will only be as reliable as the 
impedances and models that will be used. 

Some three-phase power flow algorithms are based on the 
power loss calculation within the iterative process in order to 
consider the total power demand [1], [2], [3] (power 
summation method). In these algorithms, when neutral wire is 
merged into phase wires using Kron's reduction for obtaining 
impedances, loss calculation, computed as the phase resistance 
times the current squared (I2R), could harm their reliability 
affecting final values of voltages and currents. 

In this work, reliability of three three-phase three-wire 
power flow algorithms based on power summation method, 
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will be compared with a three-phase four-wire approach based 
on backward-forward technique and current summation 
(avoiding loss calculation within the algorithm) [4]. A special 
focus on the reduced impedances influence will be given. Two 
four-wire unbalanced medium-voltage distribution networks 
will be analyzed and results will be presented and discussed. 

II.  THREE-PHASE THREE-WIRE POWER FLOW ALGORITHMS 

Single-phase power flow algorithms from [1] (Cespedes), 
[2] (Baran and Wu) and [3] (Luo and Semlyen) for balanced 
distribution networks are extended for an unbalanced scenario 
where computations of phase state variables are needed. 

In this work, each line to be used in the following three-
phase three-wire power flow algorithms will be represented by 
the following 3x3 matrix: 

[ ]
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
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



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
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=×

lll

lll

lll

l

ccZbcZacZ

bcZbbZabZ

acZabZaaZ

Z 33  where 
a, b, c – phase lines 

A.  Cespedes’ Power Flow Algorithm 

The basic formula for single-phase solution is used for the 
three phases. Considering Fig. 1, the following equations will 
be applied for the forward sweep in the Cespedes’ three-phase 
three-wire power flow algorithm. 

 
jQaPaaS +=

bS
cS

1+i node
jXaRaaaZ +=

bbZ
ccZ

i node

Va
Vb
Vc

 
Fig. 1.  Three-phase three-wire section for Cespedes’ algorithm. 
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The above equations do not depend on the phase angle and 
have straightforward solutions. Equivalent power at node i+1 
is calculated by summing all loads of the network fed through 
the node, including losses. 

The solution method has the following steps: 
1. Assume a voltage magnitude for the initial load 
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estimation. 
2. Calculate the equivalent power for each node. This is 

the backward sweep, from end nodes to source nodes. 
3. Starting from the source(s) node(s) and using (1), (2) 

and (3), calculate the equivalent power voltage for all 
nodes. This is the forward sweep, from source nodes 
to end nodes. 

4. With the new voltages, recalculate the losses. If the 
total losses variation with respect to the previous 
iteration is greater than a specified error, go to step 2.  

Since this work is aimed at maintaining Cespedes’ original 
equations, they cannot be directly adapted for considering 
matrix 3x3 mutual impedances influences. Therefore, only self 
impedances are considered in the presented formulation. A 
way to insert mutual impedances influences is the method 
proposed in [7]. 

B.  Baran-Wu’s Power Flow Algorithm 

Considering Fig. 2, where the power supplied by the 
substation and root nodes of laterals and sublaterals are 
assumed to be known, three-phase power flow in a radial 
distribution network can be described by the following 
recursive equations: 
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Where 

kaS , kbS , kcS  : complex power flows for phases a, b 
and c into the sending end of branch k+1 
connecting node k and node k+1. 

kVa , kVb , kVc  : bus voltage magnitudes for phases a, b 
and c at node k. 

1+kaaZ  : self impedance in phase a of branch k+1. 

1+kabZ  : mutual impedance between phases a and 
b of branch k+1. 

 

000 jQPS +=

0V 1V
kV 1+kV

nV

1kV
knV

1+LkS

1+kS

LkS

kS

0kS

 

Fig. 2.  One line diagram of a section for Baran-Wu’s algorithm. 

In Fig. 2, 0V  represents the substation bus voltage 

magnitude that is assumed to be constant. Terminal condition 
for the iterative process is having leaving complex powers at 
end nodes smaller than a specified error. 

The solution method has the following steps: 
1. Calculate the equivalent power (sum of fed loads) for 

each root node (substation and initial nodes of laterals 
and sublaterals). 

2. Assume a voltage magnitude for the substation node. 
3. Solve power flow in the main feeder by using (4), (5) 

and (6). Solve power flow in laterals and sublaterals 
considering the voltages magnitudes obtained in the 
previous calculation (e.g. main feeder). 

4. If the leaving end-nodes complex powers are greater 
than a specified error, add the total losses of the 
analyzed set of branches to the equivalent powers of 
each root node and go to step 3. 

Since this work is aimed at maintaining Baran-Wu’s 
original voltage equations and power equations (4), (5) and 
(6), they cannot be directly adapted for considering matrix 3x3 
mutual impedances influences. A way to insert mutual 
impedances influences is the method proposed in [7]. 

C.  Luo-Semlyen’s Power Flow Algorithm 

This algorithm considers backward and forward sweeps for 
computing complex powers and voltages, respectively. The 
backward sweep serves to sum the load powers and the power 
losses from the end nodes to the root. The forward sweep 
establishes the nodal voltages from the root to the end nodes 
based on the power flows obtained in the backward sweep. 

In Fig. 3, phase complex powers with index i+1 are the sum 
of loads in the downstream nodes (including node i+1) and 
losses in the downstream branches (calculated with an 
specified initial voltage). 

 

1+i node
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Fig. 3.  Three-phase three-wire section for Luo-Semlyen’s algorithm. 

In the backward sweep, the upstream node phase complex 
powers (node i) are calculated from: 
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In the forward sweep, with the upstream node phase 
voltages known (node i), the phase voltages in node i+1 are 
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computed from: 
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In this extended approach of Luo-Semlyen’s algorithm 
nodal voltages are considered as complex variables, and 
influence of mutual impedances is inserted in the voltage drop 
calculation. 

After performing the backward and forward sweeps 
computation total losses are calculated. If total losses variation 
with respect to the previous iteration is greater than a specified 
error, another backward-forward process has to be performed. 

III.  THREE-PHASE FOUR-WIRE POWER FLOW ALGORITHM 

In order to compare results obtained with above power flow 
algorithms, the backward-forward based three-phase four-wire 
power flow algorithm, which uses 5x5 network representation, 
described in [4] was adopted. 

Since ground currents analysis is not part of this work 
focus, for this algorithm each line will be represented by a 4x4 
matrix: 
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where 
a, b, c – phase lines 
n – neutral wire 

Fig. 3 shows the line model used for this power flow 
algorithm: 
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b c 

n 

node i node j 

aaZ
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b c 

n 

bbZ

ccZ

nnZ

iaS

ibS

icS

jaS

jbSjcS

→laJ

→lbJ

→lcJ

lnJ←

 
Fig. 4.  Model of the three-phase four-wire isolated-neutral distribution line. 

Assuming the root node to be the slack node with known 
voltage magnitude and angle, the 4x4 iterative algorithm to 
solve the radial system consists of three steps, is as follows. 

At iteration k: 
1. Nodal current calculation 
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where 

iaI , ibI , icI  : current injections for phases a, b and c at 
node i. 

inI  : current injection for neutral wire at node i. 

iaS , ibS , icS  : complex power injections (loads) for 
phases a, b and c at node i. 

iaV , ibV , icV  : voltages for phase a, b and c at node i. 

2. Backward sweep – section current calculation 
Starting from the line section in the last layer and moving 

towards the root node, the current in line section l is: 
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where 

laJ , lbJ , lcJ  : current flows for phases a, b and c on line 
section l. 

lnJ  : current flow for neutral wire on line section 
l. 

M  : set of line sections connected downstream 
to node j. 

3. Forward sweep – nodal voltage calculation 
Starting from the first layer and moving towards the last 

layer, the voltage at node j is: 
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Convergence criterion 
After these steps are executed in one iteration, the power 

mismatches at each node for all phases, neutral wire and 
ground are calculated. 

If the real or imaginary part of any of the power mismatches 
is greater than a convergence criterion, steps 1, 2 and 3 are 
repeated until convergence is achieved. 

The initial voltage for all nodes should be equal to the root 
node voltage magnitude considering angular displacement for 
each phase. Neutral voltage at root node is equal to zero. 

IV.  TEST NETWORKS 

Described three-phase three-wire power flow algorithms 
will be applied on the following two medium voltage 
distribution networks: 

MV-475: 475-bus real-life four-wire three-phase MV 
system from Assis city, SP-Brazil (data supplied by Grupo 
Rede). The MV-475 is mainly a rural network with total 
demand of 6248.79 kW. Almost 75% of the loads are 
concentrated in a radius of 10 km from the root node (the 
most distant node is 16.5 km from the substation). Line-to-
line base voltage is Vb = 13.8 kV; and 

IEEE-34: 34-bus IEEE four-wire three-phase MV feeder 
(Fig. 5) [5]. The total demand is 1770.0 kW, and 72% of 
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the loads are concentrated 56 km far away from the root 
node (the most distant node is 59 km from the substation). 
Line-to-line base voltage is Vb = 24.9 kV. 
Simplifying, the autotransformer 24.9/4.16 kV/kV in the 

original IEEE-34 test feeder is replaced with the line and the 
network is modeled with the single voltage level. The 
automatic voltage regulator is also not represented. 
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Fig. 5.  IEEE-34 test feeder. 

V.  APPLICATIONS 

Cespedes, Baran-Wu and Luo-Semlyen’s three-phase three-
wire power flow algorithms will use the elements of 3x3 
matrix line impedance produced by performing Kron’s 
reduction from a 4x4 matrix which includes the neutral wire, 
i.e. matrix [ ] 33×lZ  presented in section II is obtained by 

performing Kron’s reduction from matrix [ ] 44×lZ  presented in 

section III. 
Three-phase four-wire power flow algorithm previously 

presented will use the original 4x4 matrix line impedance, 
considering neutral wire. Calculation of the 4x4 matrix line 
impedance will consider 100 Ω-m of ground resistivity [6]. 

Loads for the test networks IEEE-34 and MV-475 were 
modeled as constant power. Errors used for the convergence of 
the four algorithms were 0.5 kW and 0.5 kVAr. 

Fig. 6 shows the voltage magnitudes of phase c computed 
with the four described algorithms for MV-475 network. 
Selected path presented the greater voltage magnitude 
mismatches respect to the three-phase four-wire algorithm, 
since is the longer feeder in the network. Mismatches were 
greater in phase c, than in phases a and b. 

Results obtained for Cespedes and Baran-Wu’s algorithms 
were almost the same. However, when comparing those results 
with the three-phase four-wire algorithm the greatest mismatch 
was 2.2%. Luo-Semlyen’s approach presented even greater 
difference with a maximum mismatch of 2.5%. 

Fig. 7 shows the voltage magnitudes of phase b computed 
with the three described algorithms for IEEE-34 network. 
Selected path presented the greater voltage magnitude 
mismatches respect to the three-phase four-wire algorithm, 

mainly due to the load concentration and the long distance that 
raises the magnitude of the voltage drops. Mismatches were 
greater in phase b, than in phases a and c. 

Results obtained for Cespedes and Baran-Wu’s algorithms 
were very similar. Nevertheless, results compared with those 
from the three-phase four-wire algorithm the greatest mismatch 
was 8.3%. Luo-Semlyen’s algorithm presented a better 
performance than the Cespedes and Baran-Wu’s approaches 
with a maximum mismatch of 2.5%. 
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Fig. 7.  Phase-b voltage magnitude for IEEE-34 network. 

The high mismatch of IEEE-34 network results compared 
with the MV-475 network is due to the inherent differences 
between both networks. As stated before, IEEE-34 has its main 
loads far away from the substation whereas MV-475 has the 
major demand closer to the root node. This load characteristic, 
plus the network length, makes the IEEE-34 network produce 
more losses than MV-475. The greater the looses are, the 
greater the error of Cespedes and Baran-Wu’s algorithms. 
Luo-Semlyen approach shows smaller errors due to the 
presence of mutual line impedance in the voltage calculation. 

Both Cespedes and Baran-Wu extended algorithms, 
obtained very similar results. However, Cespedes’ approach 
was faster, in both computational time and number of 
iterations, than Baran-Wu’s approach. Moreover, Cespedes’ 
approach was simpler for its computational implementation. In 
the other hand, Luo-Semlyen extended algorithm presented 
similar performance than Cespedes’. 

Though the use of the reduced-matrix self impedances in 
both analyzed three-phase three-wire algorithms leads to 
incorrect results, original phase wires impedances could be 
used in order to computed results closer to the three-phase 
four-wire approach. 
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Fig. 6.  Phase-c voltage magnitude for MV-475 network, rural feeder. 

 
 
Fig. 8 shows the new voltage magnitudes of phase c 

computed by using original phase wires impedances in 
Cespedes, Baran-Wu and Luo-Semlyen’s algorithms. Results 
obtained previously with the three-phase four-wire approach 
were maintained. In this case, mismatches diminished (the 
greatest mismatch was 0.9% for Cespedes and Baran-Wu’s 
approaches and 2.0% for Luo-Semlyen’s approach). This 
means that a significant improvement could be made with the 

results if original impedances (no embedded influence of 
neutral wire nor ground resistivity) of phase wires are used in 
analyzed three-phase three-wire power flow algorithms. 

The same improvement was found when original phase 
wires impedances were used for IEEE-34 network (Fig. 9). 
The greatest mismatch was 2.9% for Cespedes and Baran-
Wu’s approaches and 0.9% for Luo-Semlyen’s approach. 
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Fig. 8.  Phase-c voltage magnitude for MV-475 network, rural feeder (improved results). 

 
As presented, both algorithms, Cespedes and Baran-Wu, 

could have their results noticeably improved, however due to 
the neglected influence of mutual impedances in those power 
flow approaches, closer results to the three-phase four-wire 
algorithm cannot be achieved. Though Luo-Semlyen’s 
approach results were improved, it was not significant due to 
already consider line mutual impedances. 

One can notice that Cespedes and Baran-Wu’s approaches 
worked, each one, as three single-phase power flow algorithms 
since no mutual impedance was considered. Another manner to 
improve these three-phase three-wire “decoupled” algorithms 
is by applying the methodology proposed in [7], where effects 
of mutual impedances are modeled as branch voltage sources 

or additional bus injections. 
Finally, it is important to recognize that three-phase three-

wire power flow algorithms are not able to directly compute 
neutral and ground voltages and currents. Those parameters, 
which are important in some distribution power systems 
applications, can be directly obtained by using the presented 
three-phase four-wire algorithm [4]. 
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Fig. 9.  Phase-b voltage magnitude for IEEE-34 network (improved results). 

VI.  CONCLUSIONS 

In this paper it was presented a comparison between the 
three-phase four-wire power flow algorithm and Cespedes, 
Baran-Wu and Luo-Semlyen’s extended algorithms (three-
phase three-wire) when the influence of neutral wire (Kron’s 
reduction) and real ground (ground resistivity) are considered 
in the 3x3 line impedance matrix. 

It was shown that the best manner to compute power flow 
while using those three-phase three-wire approaches, is to 
consider the 3x3 original matrix impedances, neglecting 
ground resistivity and neutral wire influences. 

Both algorithms, Cespedes and Baran-Wu, obtained almost 
the same results, whereas Cespedes’ approaches presented 
better performance in terms of convergence speed and 
computation time. 

Errors obtained from the usage of line impedance matrices 
computed from Kron’s reduction and considering ground 
resistivity in power summation based algorithms appear 
because of the internal loss calculation, which should consider 
the original wires impedances. 
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