Muscle strength, physical performance and physical activity as predictors of future knee replacement: a prospective cohort study

DOI:
10.1016/j.joca.2016.04.001

Document Version
Accepted author manuscript

Link to publication record in Manchester Research Explorer

Citation for published version (APA):

Published in:
Osteoarthritis and Cartilage

Citing this paper
Please note that where the full-text provided on Manchester Research Explorer is the Author Accepted Manuscript or Proof version this may differ from the final Published version. If citing, it is advised that you check and use the publisher's definitive version.

General rights
Copyright and moral rights for the publications made accessible in the Research Explorer are retained by the authors and/or other copyright owners and it is a condition of accessing publications that users recognise and abide by the legal requirements associated with these rights.

Takedown policy
If you believe that this document breaches copyright please refer to the University of Manchester’s Takedown Procedures [http://man.ac.uk/04Y6Bo] or contact uml.scholarlycommunications@manchester.ac.uk providing relevant details, so we can investigate your claim.
Muscle strength, physical performance and physical activity as predictors of future knee replacement: a prospective cohort study

S.T. Skou †‡*, B.L. Wise §, C.E. Lewis ||, D. Felson ¶, M. Nevitt #, N.A. Segal ††, for the Multicenter Osteoarthritis Study Group

ARTICLE IN PRESS

Osteoarthritis and Cartilage

Muscle strength, physical performance and physical activity as predictors of future knee replacement: a prospective cohort study

S.T. Skou †‡*, B.L. Wise §, C.E. Lewis ||, D. Felson ¶, M. Nevitt #, N.A. Segal ††, for the Multicenter Osteoarthritis Study Group

† Research Unit for Musculoskeletal Function and Physiotherapy, Institute of Sports Science and Clinical Biomechanics, University of Southern Denmark, Denmark
‡ Clinical Nursing Research Unit, Aalborg University Hospital, Aalborg, Denmark
§ Center for Musculoskeletal Health, University of California, Davis School of Medicine, Sacramento, CA, USA
|| University of Alabama at Birmingham, Birmingham, AL, United States
¶ Boston University School of Medicine, Boston, MA, United States
University of California, San Francisco, San Francisco, CA, United States
†† University of Kansas, Kansas City, KS, United States

A R T I C L E I N F O

Article history:
Received 2 September 2015
Accepted 2 April 2016

Keywords:
Osteoarthritis
Knee
Prognosis
Arthroplasty, Replacement
Muscle strength
Motor activity

S U M M A R Y

Objective: To investigate associations between lower levels of muscle strength, physical performance and physical activity and the risk of knee replacement (KR) in older adults with frequent knee pain.

Method: Participants from the Multicenter Osteoarthritis Study (MOST) with knee pain on most of the past 30 days at baseline were included (n = 1257; mean (SD) age of 62.2 (8.2)). We examined the association between (1) baseline peak isokinetic knee extensor strength, (60°/sec, maximum out of four trials), (2) best time to stand in timed chair stand (2 trials of five repetitions), and (3) baseline Physical Activity Scale for the Elderly score (PASE) with incident KR between baseline and the 84-month follow-up.

Results: 1252 (99.6%) participants (1682 knees) completed the follow-up visits. 331 participants (394 knees) underwent a KR during the 84 months (229 women and 102 men). The crude analysis demonstrated a decreased risk of KR in women (P < 0.0001) with higher knee extensor strength (Hazard Ratio (HR; 95% CI) 0.99 (0.98–0.99)). The risk remained significant (P = 0.03) when adjusting for age, BMI, race, clinic site, education, occupation, previous knee injury, previous knee surgery, and WOMAC pain (HR (95% CI) 0.99 (0.98–0.99)), but not when adjusting for Kellgren–Lawrence grade (P = 0.97).

Conclusion: Lower levels of chair stand performance and self-reported physical activity are not associated with an increased risk of KR within 7 years, while the independent effect of knee extensor strength on risk for KR in women is non-significant after adjusting for radiographic severity.

© 2016 Osteoarthritis Research Society International. Published by Elsevier Ltd. All rights reserved.

Introduction

Due to demographic changes, the burden of symptomatic osteoarthritis (OA) is expected to increase rapidly in the future1. Concurrently, the number of knee replacements (KR), an increasingly common treatment for end-stage knee OA2, is expected to increase by almost 700% in the coming decades3. This suggests a need for a paradigm shift towards early-stage treatment strategies4. Muscle strength deficits have been demonstrated to be associated with knee joint space narrowing over 2.5 years5 and worsening knee pain over five years6, two factors considered in KR decision making. Early identification of those at higher risk of OA progression could be a way to enable treatment at an earlier disease stage. Previous prospective studies aimed at identifying risk factors for OA progression have utilized change in radiographic knee OA, self-reported symptomatic knee OA or KR due to knee OA as criteria for OA progression. While radiographic findings are poorly correlated with symptoms7 and the validity of self-reported OA can be
stiffness and Kellgren Lawrence grade ≥2, and the response was coded as yes or no. This binary classification was used for the subsequent analysis.

Participants

Participants in MOST were asked about the presence of knee pain or stiffness twice in two separate interviews, one the initial telephone interview and a second time at the baseline clinic visit. If they responded positively in both interviews that they had pain or stiffness on most of the past 30 days, they were deemed eligible for this study. Participants with and without radiographic knee OA were included.

Outcome variable

KR was assessed by self-report at baseline and at follow-ups after 15, 30, 60, 72 and 84 months and confirmed by radiograph or by medical record documentation. Only incident KR during follow-up was included in the analysis (77 knees had KR at baseline and was excluded from the analyses).

Predictor variables

Knee extensor strength

Isokinetic knee extensor strength for both limbs were measured by trained and certified staff using a Cybex 350 computerized dynamometer at baseline and 60 months (at 60 months mainly measured on the right side; HUMAC software version 4.3.2/Cybex 300 for Windows 98, Avocent, Huntsville, AL)36. After three familiarization trials, the participants completed four repetitions at 60°/sec using a standardized protocol to assure uniformity among test sites. The peak torque (Nm) out of the four repetitions at each time point was used as the strength variable for analyses as this is the variable most closely associated with muscle strength as well as risk for knee OA48.

Timed chair stand

The timed chair stand (45 cm seat height) was used to assess physical performance at baseline and 60 months46. Two trials of five repetitions were completed and the best time to stand five times without using hands at each time point was included in the analysis.

PASE

PASE was applied as a measure of physical activity at baseline and 60 months. PASE is a reliable and valid self-reported questionnaire for older people, assessing occupational, household and leisure items of physical activities during the last 7 days47. Scores are calculated from weights and frequency values of each type of activity assessed. In MOST, scores ranged from 0 to 573.2 (worst to best).

Statistical analysis

In sex-stratified survival analyses, we examined the association between (1) baseline knee extensor strength, (2) baseline timed chair stand, and (3) baseline PASE score with incident KR (for knee strength: ipsilateral KR) using Cox proportional hazards model to get hazard ratios (HR). The incident KR surgery (including both total and partial replacement) was considered as the end point. The knees without incident KR were censored at the last visit when a subject was contacted during follow-up or the last follow-up visit (84-month visit) in the MOST study, whichever occurred first. The robust sandwich estimate was used to control for the clustered events of the same subject. Crude and adjusted analyses were conducted treating the predictor variables as continuous. The analyses were adjusted for age (continuous), Body Mass Index (BMI, continuous), race, clinic site, education (in three levels: high school graduate or below, some college, college graduate or above), occupation (in three levels: labor, non-labor, “other”), previous knee injury, previous knee surgery, Western Ontario and McMaster Universities Osteoarthritis Index (WOMAC) knee pain subscale (continuous), and Kellgren–Lawrence (KL) grade.

In a secondary analysis, the association between exposures and the risk of incident KR in two time-periods, 0–30 months and 30–84 months was investigated.
Participant characteristics

Of 1257 participants with knee pain on most of the past 30 days at baseline 1252 (99.6%) participants (1682 knees) with a mean (SD) age of 62.2 (8.2) completed the follow-up visits (65.3% were women). Of these 1108 participants (1480 knees) had ipsilateral knee strength measurement and 1173 (1564 knees) had chair stand time measurement at baseline. 331 participants (394 knees) underwent a KR during the 84 months (229 women and 102 men). Participant characteristics for the primary analysis are presented in Table I.

<table>
<thead>
<tr>
<th>Characteristics</th>
<th>Participants with FKP*</th>
<th>Women with FKP</th>
<th>Men with FKP</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>No KR</td>
<td>KR</td>
<td>All</td>
</tr>
<tr>
<td>Age (years), mean (SD)</td>
<td>61.5 (8.4)</td>
<td>64.1 (7.4)</td>
<td>62.2 (8.2)</td>
</tr>
<tr>
<td>BMI (kg/m²), mean (SD)</td>
<td>31.2 (6.5)</td>
<td>33.0 (6.9)</td>
<td>31.7 (6.7)</td>
</tr>
<tr>
<td>Females, N (%)</td>
<td>589 (640)</td>
<td>229 (69.2)</td>
<td>818 (65.3)</td>
</tr>
<tr>
<td>WOMAC knee pain</td>
<td>6.9 (3.8)</td>
<td>7.7 (3.4)</td>
<td>7.1 (3.7)</td>
</tr>
<tr>
<td>KL grade, N (%)</td>
<td>0 454 (35.2)</td>
<td>8 (2.0)</td>
<td>462 (27.5)</td>
</tr>
<tr>
<td></td>
<td>1 199 (15.5)</td>
<td>9 (2.3)</td>
<td>208 (12.4)</td>
</tr>
<tr>
<td></td>
<td>2 235 (18.2)</td>
<td>45 (11.4)</td>
<td>280 (16.6)</td>
</tr>
<tr>
<td></td>
<td>3 262 (20.3)</td>
<td>164 (41.6)</td>
<td>426 (25.3)</td>
</tr>
<tr>
<td>Symptomatic tibiofemoral OA, N (%)</td>
<td>4 138 (10.7)</td>
<td>262 (20.3)</td>
<td>400 (23.7)</td>
</tr>
<tr>
<td>Knee extensor strength (Nm), mean (SD)</td>
<td>74.3 (38.3)</td>
<td>68.3 (39.7)</td>
<td>107.0 (39.8)</td>
</tr>
<tr>
<td>Chair stand time (s), mean (SD)</td>
<td>12.2 (4.1)</td>
<td>12.7 (3.8)</td>
<td>12.4 (4.1)</td>
</tr>
<tr>
<td>PASE (range 0–573.2), mean (SD)</td>
<td>171.9 (89.8)</td>
<td>162.1 (83.2)</td>
<td>169.3 (88.2)</td>
</tr>
<tr>
<td>Race, N (%)</td>
<td>0 693 (75.2)</td>
<td>286 (86.4)</td>
<td>979 (78.2)</td>
</tr>
<tr>
<td></td>
<td>1 208 (22.6)</td>
<td>43 (13.0)</td>
<td>251 (20.0)</td>
</tr>
<tr>
<td></td>
<td>2 18 (2.0)</td>
<td>3 (1.0)</td>
<td>3 (0.2)</td>
</tr>
<tr>
<td></td>
<td>3 1 (0.1)</td>
<td>0 (0.0)</td>
<td>1 (0.1)</td>
</tr>
<tr>
<td>Other, N (%)</td>
<td>0 1 (0.1)</td>
<td>0 (0.0)</td>
<td>1 (0.1)</td>
</tr>
<tr>
<td>Don't know/refused, N (%)</td>
<td>0 1 (0.1)</td>
<td>0 (0.0)</td>
<td>1 (0.1)</td>
</tr>
<tr>
<td>Education, N (%)</td>
<td>0 254 (27.6)</td>
<td>92 (27.8)</td>
<td>346 (27.6)</td>
</tr>
<tr>
<td></td>
<td>1 172 (18.9)</td>
<td>55 (16.1)</td>
<td>227 (17.5)</td>
</tr>
<tr>
<td></td>
<td>2 372 (40.4)</td>
<td>126 (38.1)</td>
<td>408 (39.8)</td>
</tr>
<tr>
<td>College Graduate or Higher, N (%)</td>
<td>0 340 (36.9)</td>
<td>126 (38.1)</td>
<td>462 (37.2)</td>
</tr>
<tr>
<td></td>
<td>1 131 (14.1)</td>
<td>42 (12.7)</td>
<td>173 (29.4)</td>
</tr>
<tr>
<td></td>
<td>2 293 (32.7)</td>
<td>78 (23.6)</td>
<td>265 (21.2)</td>
</tr>
<tr>
<td></td>
<td>3 432 (33.7)</td>
<td>154 (39.5)</td>
<td>586 (35.0)</td>
</tr>
<tr>
<td>Previous knee injury, N (%)</td>
<td>0 203 (15.8)</td>
<td>127 (32.2)</td>
<td>330 (19.6)</td>
</tr>
<tr>
<td></td>
<td>1 172 (18.9)</td>
<td>55 (16.1)</td>
<td>227 (17.5)</td>
</tr>
<tr>
<td>Clinic site, N (%)</td>
<td>0 254 (27.6)</td>
<td>92 (27.8)</td>
<td>346 (27.6)</td>
</tr>
<tr>
<td></td>
<td>1 172 (18.9)</td>
<td>55 (16.1)</td>
<td>227 (17.5)</td>
</tr>
<tr>
<td></td>
<td>2 372 (40.4)</td>
<td>126 (38.1)</td>
<td>408 (39.8)</td>
</tr>
<tr>
<td>UAB</td>
<td>567 (61.6)</td>
<td>167 (50.5)</td>
<td>734 (58.0)</td>
</tr>
<tr>
<td>UIowa</td>
<td>354 (38.4)</td>
<td>164 (49.5)</td>
<td>518 (41.4)</td>
</tr>
</tbody>
</table>

* FKP = Frequent knee pain; KR = Knee replacement; BMI = Body Mass Index; KL grade = Kellgren-Lawrence grade; PASE = Physical Activity Scale for the Elderly; Symptomatic tibiofemoral OA was defined as daily knee pain/stiffness and Kellgren-Lawrence grade ≥2 on weight bearing, flexion-extension radiographs; UAB = the University of Alabama at Birmingham; and UIowa = University of Iowa.
The study highlights that muscle strength might be a potential predictor of KR in women, but it is not independent of radiographic severity. Furthermore, we found that for a range of covariates, including knee pain, but not when adjusting for KL grade in addition to the other covariates (P = 0.27; Table III).

The fully adjusted analysis demonstrated an increased risk of KR in men within the shorter time frame (P = 0.05) with higher knee extensor strength at baseline (HR (95% CI) 1.01 (1.00–1.02)), but the number of knees with incident KR was low.

The crude analysis demonstrated an increased risk of KR in women within the shorter time frame (P < 0.01) with higher chair stand time at baseline (HR (95% CI) 1.05 (1.01–1.09)). The risk remained statistically significant (P = 0.03) when adjusting for age, BMI, race, clinic site, education, occupation, previous knee injury, and previous knee surgery (HR (95% CI) 1.04 (1.00–1.08)), but not when adjusting for WOMAC knee pain (P = 0.27) and KL grade (P = 0.20; Table III) in addition to the other covariates.

No other significant associations were found in the secondary analysis.

Discussion

We demonstrated that higher knee extensor strength at baseline was associated with a decreased risk of KR in women with knee pain at both short-term (2–2.5 years) and long-term (7 years) follow-ups. The association remained significant when adjusting for a range of covariates, including knee pain, but not when adjusting for radiographic severity. Furthermore, we found that worse chair stand time at baseline was associated with an increased risk of KR in women with knee pain within 2–2.5 years, albeit non-significant after adjusting for knee pain and radiographic severity. The study highlights that muscle strength might be a potential predictor of KR in women, but it is not independent of radiographic severity.

This is the first large-scale prospective study assessing the association between both muscle strength, functional performance, physical activity and KR. A previous prospective study of 120 patients with end-stage knee OA demonstrated that quadriceps strength, Timed Up and Go and Stair Climb Test were worse in patients undergoing KR within two years compared to patients that did not. Our study adds to this by demonstrating a significant association between knee extensor strength, timed chair stand and KR in women, but not men, in a larger cohort of persons with or at high risk of knee OA. Consistent with our findings, muscle strength was also predictive of KR in women in OA. Our study adds to the findings of the OAI study, since it investigates the association during a short and a long follow-up period and since it has more KR patients increasing the validity of the findings. Furthermore, in contrast to the OAI study, our study included only those with frequent knee pain strengthening the clinical relevance of the findings. Recently, self-reported functional impairment, closely related to reduced muscle strength in OA, has been demonstrated to be a strong predictor of KR within 30 months in MOST. Furthermore, if KR is thought of as a surrogate measure of end-stage knee OA, the results are consistent with previous reports of associations between knee extensor strength and knee joint space narrowing over 2.5 years and worsening knee pain over five years in MOST.

It is still unclear whether the increase in total joint reaction force from muscle contraction actually accelerates degeneration of the joint cartilage, as suggested by the increased risk of KR in men within 2–2.5 years with higher knee extensor strength at baseline in our study. It is likely that this finding is related to chance, since it was only significant in the fully adjusted model, and since the number of knees with incident KR was much less than the required number by rule of thumb (about 10 outcome events per predictor)

Table II

Associations between the predictor variables and incident KR from 0 to 84 months

<table>
<thead>
<tr>
<th></th>
<th></th>
<th></th>
<th></th>
<th></th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
<td>Hazard ratio (95% CI) P-value</td>
</tr>
<tr>
<td>Men</td>
<td>Knee extensor strength in Nm (119/511)</td>
<td>1.00 (0.99, 1.00) 0.58</td>
<td>1.00 (1.00, 1.01) 0.73</td>
<td>1.00 (1.00, 1.01) 0.54</td>
<td>1.00 (0.99, 1.01) 0.79</td>
</tr>
<tr>
<td></td>
<td>Chair stand time in s. (125/561)</td>
<td>1.02 (0.97, 1.06) 0.43</td>
<td>1.00 (0.95, 1.05) 0.94</td>
<td>0.99 (0.94, 1.05) 0.78</td>
<td>1.00 (1.00, 1.01) 0.71</td>
</tr>
<tr>
<td></td>
<td>PASE (130/586)</td>
<td>1.00 (1.00, 1.00) 0.18</td>
<td>1.00 (1.00, 1.00) 0.67</td>
<td>1.00 (1.00, 1.00) 0.59</td>
<td>1.00 (1.00, 1.00) 0.18</td>
</tr>
<tr>
<td>Women</td>
<td>Knee extensor strength in Nm (220/969)</td>
<td>0.99 (0.98, 0.99) <0.0001*</td>
<td>0.99 (0.98, 1.00) -0.01*</td>
<td>0.99 (0.99, 1.00) 0.03*</td>
<td>1.00 (0.99, 1.00) 0.97</td>
</tr>
<tr>
<td></td>
<td>Chair stand time in s. (232/1,003)</td>
<td>1.01 (0.98, 1.04) 0.04</td>
<td>0.99 (0.96, 1.02) 0.48</td>
<td>0.98 (0.94, 1.01) 0.16</td>
<td>0.98 (0.95, 1.02) 0.34</td>
</tr>
<tr>
<td></td>
<td>PASE (264/1,096)</td>
<td>1.00 (1.00, 1.00) 0.27</td>
<td>1.00 (1.00, 1.00) 0.57</td>
<td>1.00 (1.00, 1.00) 0.37</td>
<td>1.00 (1.00, 1.00) 0.43</td>
</tr>
</tbody>
</table>

Table III

Associations between the predictor variables and incident KR from 0 to 30 and 60 to 84 months (combined)

<table>
<thead>
<tr>
<th></th>
<th></th>
<th></th>
<th></th>
<th></th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
<td>Odds ratio (95% CI) P-value</td>
</tr>
<tr>
<td>Men</td>
<td>Knee extensor strength in Nm (50/658)</td>
<td>1.00 (0.99, 1.01) 0.79</td>
<td>1.01 (1.00, 1.02) 0.19</td>
<td>1.01 (1.00, 1.02) 0.07</td>
<td>1.01 (1.00, 1.02) 0.05*</td>
</tr>
<tr>
<td></td>
<td>Chair stand time in s. (73/882)</td>
<td>1.03 (0.97, 1.07) 0.285</td>
<td>1.01 (0.93, 1.09) 0.805</td>
<td>1.00 (0.92, 1.08) 0.926</td>
<td>1.00 (0.92, 1.09) 0.984</td>
</tr>
<tr>
<td></td>
<td>PASE (75/926)</td>
<td>1.00 (1.00, 1.00) 0.52</td>
<td>1.00 (1.00, 1.00) 0.64</td>
<td>1.00 (1.00, 1.00) 0.48</td>
<td>1.00 (1.00, 1.00) 0.78</td>
</tr>
<tr>
<td>Women</td>
<td>Knee extensor strength in Nm (121/1,285)</td>
<td>0.98 (0.97, 0.99) <0.001*</td>
<td>0.98 (0.97, 0.99) <0.001*</td>
<td>0.98 (0.98, 1.00) <0.01*</td>
<td>0.98 (0.98, 1.00) 0.27</td>
</tr>
<tr>
<td></td>
<td>Chair stand time in s. (149/1,621)</td>
<td>1.05 (1.01, 1.09) <0.01*</td>
<td>1.04 (1.00, 1.08) 0.03*</td>
<td>1.02 (0.98, 1.06) 0.27</td>
<td>1.03 (0.98, 1.07) 0.20</td>
</tr>
<tr>
<td></td>
<td>PASE (174/1,787)</td>
<td>1.00 (1.00, 1.00) 0.91</td>
<td>1.00 (1.00, 1.00) 0.16</td>
<td>1.00 (1.00, 1.00) 0.11</td>
<td>1.00 (1.00, 1.00) 0.26</td>
</tr>
</tbody>
</table>

Significant (P < 0.05) associations are indicated by *. The number of knees with incident KR in men was less than the required number by rule of thumb (10 outcome events per predictor variable). The number of knees in the table corresponds to the number of knees evaluated at 30 or 80 months. KR — Knee replacement; PASE — Physical Activity Scale for the Elderly.

Please cite this article in press as: Skou ST, et al., Muscle strength, physical performance and physical activity as predictors of future knee replacement: a prospective cohort study, Osteoarthritis and Cartilage (2016), http://dx.doi.org/10.1016/j.joca.2016.04.001
variable). The potential protective role of muscle strength is highlighted by Wang et al. demonstrating that an increase in vastus medialis size is associated with reduced pain, reduced cartilage loss and reduced risk of KR, which suggests an effect that is consistent with the finding for women reported here.

Lin et al. found that very high and very low PASE scores were associated with accelerated degenerative changes in the cartilage in asymptomatic, middle-aged persons compared to persons with moderate PASE scores. We did not find an association between physical activity (PASE) and KR, contributing another data point to the inconsistent prior reported results on the association between self-reported physical activity and KR. The measurements of physical activity in the existing studies are all based on self-reports using various questionnaires. This suggests a potential explanation for the varying results, since estimates based on self-reports of physical activity are known to be higher than objectively measured physical activity. Recent studies have demonstrated that physical activity, objectively measured using an accelerometer-based device, are protective against onset and progression of disability and incident functional limitations in persons with or at risk of knee OA.

Clinical implications

We investigated the association between KR and potentially modifiable factors, which are relatively easily measured in clinical practice. The clinical implications of our study are that isokinetic knee extensor strength could be a potential clinical measure to identify women at risk of future KR, even though adjusting for radiographic severity made the result non-significant. The shortcoming is that the isokinetic measurement of knee extensor strength is not typically available in clinical settings, which is why our findings need to be confirmed using a clinically available isotonic and isometric measurement, such as a handheld dynamometer. Furthermore, the small magnitude of difference in muscle strength between women having and not having a KR of approximately 9 Nm needs to be taken into consideration when interpreting the clinical implications of the results.

When the results were adjusted for radiographic OA severity, the associations were non-significant, highlighting radiographic severity as an important driver of KR as previously demonstrated. As lower knee extensor strength is a known risk factor for OA incidence and progression, adjusting for radiographic severity, an intermediary in the path between lower muscle strength and KR, attenuates the relationship with knee extensor strength. Although associated with an increased risk of KR in women with knee pain within 2–2.5 years it is possible that timed chair stand may not be an independent predictor of KR, since the association was non-significant when adjusting for knee pain and radiographic severity. Since radiographic assessment is associated with some risk due to radiation and cost, and since not all persons with knee pain have had radiographs of their knees, consistent with prior studies, muscle strength may be a useful clinical predictor of KR. In fact, since only 0.5% of radiographs in primary health care reveal treatment-changing pathology and since non-surgical treatment improves pain irrespective of radiographic severity in knee OA, muscle strength could be an important marker at the point of clinical contact to identify women in need of early non-surgical treatment to prevent progression of knee OA.

Strengths and limitations

The diagnosis of symptomatic OA in MOST is based on concurrent symptoms and radiographic changes. While the authors acknowledge that a trauma might have happened before being enrolled in the study or that other causes could explain the pain/stiffness of the participants, it seems likely that OA is the dominant explanation to the symptoms of participants in MOST. By including persons with frequent knee pain from MOST, a large longitudinal cohort of patients with or at elevated risk of knee OA, the findings of this study are generalizable to a clinically relevant group of patients. This cohort is community dwelling and not a clinic sample. However, findings may provide clinicians with the opportunity to identify patients at risk of progression to KR and intervene at an early disease stage with the possibility to prevent or slow the progression of OA. Including participants, both with and without symptomatic knee OA, could affect the conclusions, since different mechanisms of the disease might be involved. However, since an X-ray will not always be available in clinical practice, this enhances the generalizability of the study findings. Another limitation of our study was that isokinetic strength might not represent functional strength used in everyday life; however, functional strength can be difficult to measure in a standardized way. Furthermore, pain during knee extensor strength measurement may inhibit maximum performance thereby introducing bias to the results.

Conclusions

Lower levels of chair stand performance and self-reported physical activity are not associated with an increased risk of KR within 7 years in either men or women. Chair stand performance is predictive of KR within 2–2.5 years in women with frequent knee pain, but not after additionally adjusting for knee pain and radiographic severity. The association of knee extensor strength on risk for KR within 2–2.5 years and 7 years in women with frequent knee pain is independent of pain and other covariates but is non-significant after adjusting for radiographic severity. The study suggests knee extensor strength as a potential clinically relevant parameter to identify women in need of early non-surgical treatment aimed at preventing progression of knee OA. However, further studies are needed to confirm the predictive role of muscle strength as well as the role of other functional tests and physical activity measures.

Author contributions

Conflict of interest

The authors report no conflict of interest.

Acknowledgements

The authors would like to thank the MOST participants and staff as well as the funding sources. NIH grant numbers for the MOST project are: Felson – U01 AG18820; Torner – U01 AG18832; Lewis – U01 AG18947; Nevitt – U01 AG19069. Additional funding for this work came from NIH P50 AR060752 and NIH P50 AR063043.
References

