Correlative Multi-scale Imaging of Shales: A Review and Future Perspectives

Ma, Lin1,2, Fauchille, Anne-Laure1,3, Dowey, Patrick J. 2, Figueroa Pilz, Fernando1,3, Courtois, Loic1,3, Taylor, Kevin G.2*, Lee, Peter D.1,3,

1Manchester X-ray Imaging Facility, School of Materials, University of Manchester, Manchester, M13 9PJ, UK
2School of Earth and Environmental Sciences, University of Manchester, Manchester, M13 9WJ, UK
3Research Complex at Harwell, Rutherford Appleton Laboratory, Harwell, Oxfordshire, OX11 0FA, UK

* Corresponding author

Abstract:
As the fastest growing energy sector globally, shale and shale reservoirs have attracted the attention of both industry and scholars. However, the strong heterogeneity at different scales and the extremely fine-grained nature of shales makes macroscopic and microscopic characterisation highly challenging. Recent advances in imaging techniques have provided many novel characterisation opportunities of shale components and microstructures at multiple scales. Correlative imaging, where multiple techniques are combined, is playing an increasingly important role in the imaging and quantification of shale microstructures (for example, one can combine optical microscopy, SEM/TEM and X-ray radiography in 2D, or XCT and 3D-EM in 3D). Combined utilization of these techniques can characterize the heterogeneity of shale microstructures over a large range of scales, from macroscale to nanoscale (~100 - 10-9 m). Other chemical and physical measurements can be correlated to imaging techniques to provide complementary information for minerals, organic matter and pores. These imaging techniques and subsequent quantification methods are critically reviewed to provide an overview of the correlative imaging workflow. Applications of the above techniques for imaging particular features in different shales are demonstrated and key limitations and benefits summarized. Current challenges and future perspectives in shale imaging techniques and their applications are discussed.

Keywords: shale, correlative imaging, quantification, multi-scale, microstructure, microscopy, X-ray computed tomography,
Shales are widespread in sedimentary basins, and unconventional shale-gas and shale-oil reservoirs are playing an increasingly important role in oil and gas production globally (EIA 2015). Technological advances in horizontal drilling and hydraulic fracturing have greatly promoted their exploitation (Curtis et al. 2010; Clarkson et al. 2012; EIA 2015). Shales are also important in carbon sequestration (Chadwick et al. 2004) and as potential repositories for nuclear waste (Mallants et al. 2001; Bossart and Thury 2007).

The integrated characterization of shale reservoir properties is critical for improved reservoir prediction and enhanced recovery; however, the extremely fine-grained nature of shales makes precise quantification challenging (Sondergeld et al. 2010a; Chiou et al. 2012). Advanced imaging and image-based quantification techniques have become a key solution for the macroscopic and microscopic characterisation of shale reservoirs (Curtis et al. 2012). Traditional two-dimensional (2D) imaging techniques such as optical microscopy (OM) and scanning electron microscopy (SEM) have proved the feasibility of imaging microstructures in single planes (Krisnley et al. 1983; Milner et al. 2010b; Klaver et al. 2012). Other techniques including X-ray radiography and transmission electron microscopy (TEM) further expand the spatial scales and image resolutions that can be achieved (Algeo et al. 1994; Bernard et al. 2013a). To provide morphological and topological information on fine-grained components, three-dimensional (3D) imaging techniques such as X-ray computed tomography (XCT) and 3D electron microscopy (EM) have been used in many shale plays (Sok et al. 2010; Keller et al. 2013b; Ma et al. 2016).

Key features in shales include fractures, pores, organic matter and minerals; and these are highly heterogeneous on a range of scales. Multi-scale image analysis has the potential to significantly improve geological models in these systems (Ross and Bustin 2009; Sondergeld et al. 2010b; Slatt 2011). Used in isolation, each imaging technique has particular applications and limitations. 2D imaging techniques are generally easier to access but cannot provide information on the spatial distribution and connectivity of shale components (Klaver et al. 2015). Large SEM image mosaics at high resolutions can be acquired on shales to provide representative mineral phase distributions and capture mineralogical heterogeneities (Fauchille et al. 2014). XCT can provide 3D images of core samples but cannot resolve below 50 nm (Withers 2007; Landis and Keane 2010). 3D- EM can be used to image pores and clay minerals at the nanometre scale but cannot provide a large field of view of microscale structures (Curtis et al. 2012; Zhang et al. 2012).

Because of the above limitations, correlative imaging at multiple scales becomes necessary to observe and quantify features in shale studies. The use of multiple scales and techniques has recently been explored by a number of authors (Keller et al. 2013b; Hemes et al. 2015; Ma et al. 2016). The aims of this review are threefold: (i) To critically review 2D and 3D imaging techniques; (ii) to outline how these techniques have been applied to shales to answer fundamental questions on textures and
structure; and (iii) to present future challenges and how new developments and approaches may be applied to address these challenges.

Nature of shales and shale reservoirs

Shale components

Shale has been widely used as a class name for all fine-grained sedimentary rocks, and is defined as a rock in which more than fifty percent of its grains are mud (clay and silt) size (< 62.5 \(\mu \)m) (Lazar et al. 2015). Many shales contain 20 to 60 wt % of clay minerals and 10 to 50 wt% of non-clay grains (Schultz 1964; Shaw and Weaver 1965; Schmitt et al. 1994; Savoye et al. 2001). The proportion of organic matter in shales can be highly variable and depends on a number of factors including geological setting, depositional environment and diagenetic environment during formation. Organic matter provides the source for hydrocarbons in shale reservoirs. Shale microstructure is typically complex, heterogeneous and anisotropic, and can be used to identify sedimentary depositional environments and analyse diagenetic processes (Chiou et al. 2012; Potter et al. 2012). Micro- to nano-scale pores in shales provide hydrocarbon storage capacity, while naturally occurring fractures can improve the permeability of the reservoir (Curtis 2002; Sondergeld et al. 2010a).

Mineral composition

Shale mineral components can include carbonates (e.g. calcite, dolomite), tectosilicates (e.g. quartz, feldspar), phyllosilicates (e.g. illite, smectite, kaolinite, interlayers illite/smectite), sulphides, oxides, and phosphates (Yaalon 1961; Foscolos et al. 1976; Ross and Bustin 2009). The proportions of each mineral vary significantly because of different sedimentary and maturation conditions (Potter et al. 2005; Lazar et al. 2015).

The composition and distribution of these components not only indicate which sedimentary and diagenetic processes formed these shales, they also play a primary role in defining rock properties. Distinction and quantification of clay minerals from non-clay minerals is important as both have very different mechanical behaviours due to their structure, morphology and chemical composition.

Shales with a high concentration of clay minerals have relatively high specific surface areas and low permeability (Pusch 2006). Non-clay mineral grains (rigid inclusions) can also affect the fluid transport and mechanical properties of the rock (Horsetman et al. 1996; Vasin et al. 2013).

Organic matter

Organic matter is present in oil- and gas-bearing shales. Organic matter particle size varies significantly in different shale reservoirs, from a few nanometres to hundreds of microns (Curtis et al. 2014). Sufficient organic matter content, appropriate kerogen compositions and adequate thermal
maturity are necessary for organic matter in shales to mature and form hydrocarbons (Tissot et al. 1974; Bernard and Horsfield 2014). Organic matter concentration in shales is described using the chemical measurement of evolved total organic carbon (TOC). Shale gas/oil plays are normally rich in organic matter, with a TOC greater than 2% (Tissot 1984; Gasparik et al. 2014). Reservoir maturity is described through either optical microscope observation (e.g. vitrinite reflectance, \(R_o \)) or pyrolysis measurements (e.g. \(T_{\text{max}} \)) (Vassoyevich et al. 1970; Tissot et al. 1987). Productive shale gas/oil plays are normally mature with \(R_o > 1.2\% \) and \(T_{\text{max}} > 465^\circ \text{C} \) (Jarvie et al. 2007; Bernard and Horsfield 2014). Organic matter compositions also influence shale gas/oil production (Curtis et al. 2011a; Sondergeld et al. 2013). The solubility of organic matter in the presence of organic solvents defines the type of organic matter: insoluble kerogen and soluble bitumen (Curtis et al. 2011a). Kerogen is further divided into four types (I, II, III and IV) based on the relative proportion of hydrogen relative to carbon and oxygen (Tissot et al. 1974).

Pores

In shales, pores provide the majority of gas and oil storage space and surface areas for gas adsorption. The network of pores is the key parameter for fluid transport (Bustin et al. 2008). Shale reservoirs typically have pores ranging in size from a few nanometres to a few microns (Javadpour 2009; Clarkson et al. 2013; Jiao et al. 2014), this is typically one thousandth to ten thousandth the size of pores found in a conventional reservoir. A three-category classification of pore sizes is widely used in shale reservoirs: macropores (>50 nm), mesopores (2–50 nm) and micropores (<2 nm) (IUPAC 1994).

Pores in shales are of three main forms: mineral matrix pores (including interparticle pores and intraparticle pores), organic matter pores (pores within or around organic matter) and fracture porosity (Slatt and O’Brien 2011; Loucks et al. 2012; Zhang et al. 2012). Micropores and mesopores are present mostly in organic matter and clay mineral-rich shale. Macropores are commonly reported between mineral grains in silica-rich or carbonate-rich shales (Reed and Loucks 2007; Loucks et al. 2009; Kuila and Prasad 2013).

Intraparticle pores are often located within carbonate phases such as dolomite and calcite, but are also present in pyrite, chlorite and micas. Most small pores (mesopores and micropores) are interparticle pores within clay minerals (for example inside swelling clay mineral particles such as the interstratified illite/smectite) or organic matter pores (Sammartino et al. 2002; Yven et al. 2007; Curtis et al. 2010; Kuila and Prasad 2013; Klaver et al. 2015). However, larger pores (30 nm to 100 nm diameter) within organic grains have also been reported in the Mississipian Barnett Shale (Loucks et al. 2009). Pore morphologies and sizes are related to mineralogy (Loucks et al. 2012), and can change at different scales because of depositional and burial diageneric history (Chioa et al. 2012).

Gas is generally stored in shale reservoirs in three forms: (i) free gas in micro- or nano-pores between or within minerals, (ii) adsorbed gas on the surface of pores in or around organic matter and clay
minerals and (iii) gas dissolved in kerogen bodies (Curtis 2002; Etminan et al. 2014). Gas transport modes differ with pore sizes (Knudsen 1934; Roy et al. 2003; Sondergeld et al. 2010c). Darcy flow is considered to dominate in macropores such as fracture porosity in shale reservoirs. In mesopores flow enters the Knudsen regime, where molecular collisions with pore walls, adsorption and Brownian flow become important (Javadpour et al. 2007; Sondergeld et al. 2010c; Shi et al. 2013).

Within a solid material, volumetric porosity is the ratio between the volume of void space and the bulk volume of the material. The voids or pores can be filled with fluids (liquid or gas), and are either connected or unconnected (Bear and Braester 1972). Porosity in shale reservoirs typically ranges from 2 to 15% (Chalmers et al. 2012; Klaver et al. 2015). Porosity can be measured using helium porosimetry, mercury intrusion porosimetry (MIP), gas adsorption, water adsorption and calculated in 2D through image analysis on SEM and focused ion beam-scanning electron microscopy (FIB-SEM) (Heath et al. 2011b; Chalmers et al. 2012; Mastalerz et al. 2012; Schieber et al. 2012; Clarkson et al. 2013; Klaver et al. 2015).

Microstructure and anisotropy of shales

Shale microstructure, including the morphology, arrangement and distribution of components, can be used to identify the sedimentary environment of deposition and processes which altered the shale during diagenesis (Chiou et al. 2012). Microstructure can be characterised using various property measurements including component (minerals, organic matter and pores) volume fractions, orientations and connectivity (Kaarsberg 1959; Tosaya 1982; Sayers 1994). The anisotropy of shales is likely to be controlled principally by depositional setting (Day-Stirrat et al. 2010) and can be produced during bioturbation and cementation in early diagenesis (Milliken and Day-Stirrat 2013).

In shales, phyllosilicates (clay minerals) can acquire a preferred bedding-parallel orientation during sedimentation and compaction (Sayers 1994). Additionally, dissolution of smectite and precipitation of illite can also result in the anisotropy (Aplin et al. 2006; Day-Stirrat et al. 2008). Recent studies have shown that non-clay mineral grains (eg. carbonates, quartz) may also have elongated shapes with bedding-parallel orientation (Klaver et al. 2012; Robinet et al. 2012; Vasin et al. 2013; Fauchille 2015). Pores and kerogen structures have also been reported with strongly anisotropic and complex features (Sayers 1994; Vasin et al. 2013); however in some shales no specific preferred orientation is observed (Slatt and O’Brien 2011).

The different mechanical and physical properties of shales (i.e. permeability, hydraulic and electrical conductivities, elasticity, strength) in various orientations are often controlled by the direction of bedding planes and the microstructural anisotropy (Hornby 1998; Pham et al. 2007; Sarout and Guéguen 2008; Hedan et al. 2012; Vasin et al. 2013; Hedan et al. 2014; Cosenza et al. 2015a; Cosenza et al. 2015b; Bonnelye et al. 2016b, a; Fauchille et al. 2016). To fully understand the
microstructure of shales, the application of either 2D or 3D imaging in several orientations is required
(Milner et al. 2010b; Sondergeld et al. 2010a).

History and principles of multi-scale imaging techniques in shales

Definition of multiple scales

Shales are heterogeneous on a wide range of scales (Hornby 1998; Sammartino *et al.* 2002; Giraud *et al.* 2007; Ortega *et al.* 2007; Bobko and Ulm 2008; Robinet *et al.* 2012; Cariou *et al.* 2013). Therefore, qualitative and quantitative information on compositional and textural features requires a multi-scale and correlative imaging approach as shown in Figure 1. Correlative imaging consists of using different imaging modalities such as electron microscopy with X-ray tomography and then combining the results to obtain greater insights. Multi-scale characterization of shales consists of taking images at various scales at different resolutions. For accurate and representative characterization of all shale features, it is essential to consider which features are resolvable at each scale. It is also important to consider how each feature can be related over the range of scales. For example the quantification of the length and aperture of natural fractures (e.g. $10^0 - 10^3$ m) requires different sampling strategies, sample preparations, analytical techniques and data analyses than the study of porosity (e.g. 10^8 to 10^9 m) within the same sample.

There is an inherent scale hierarchy in shales which can be recognized due to their heterogeneity. These scales are defined here and, as outlined below, consist of: macroscale, mesoscale, microscale, low-resolution nanoscale, and high-resolution nanoscale.

The macroscale refers to the length scale of 10^3 m or larger. Natural fractures, lithofacies and bedding or lamina information can be observed at the macroscale (Ortega *et al.* 2010; Kumar *et al.* 2012; Torsaeter *et al.* 2012). At the mesoscale (10^3 to 10^5 m length scale), fractures are still visible, and it is possible to differentiate between the homogeneous matrix and more heterogeneous large non-clay mineral grains (Silin and Kneafsey 2012; Houben *et al.* 2014). At the microscale (10^5 to 10^6 m length scale) sedimentological textures can be imaged and quantified; and the distribution of silt-size minerals grains and organic matter can be imaged (although this is still grain size dependent) (Sakellariou *et al.* 2003; Lemmens and Butcher 2011). At the low-resolution nanoscale (10^6 to 10^7 m length scale), large silt-sized mineral grains cannot be resolved but organic matter and clay minerals distributions can be visualised (Gelb *et al.* 2011; Bin *et al.* 2013). At the high-resolution nanoscale (10^8 to 10^9 m length scale) the majority of pores can be imaged, and the spatial relationship of pores to minerals or organic matter can be analysed (Reed and Loucks 2007; Tariq *et al.* 2011; Bernard *et al.* 2013b).

Although difficult it is possible, through multi-scale characterization, to image the same area or
volume across two or more scales. 2D SEM mosaics were used to characterize the non-clay grains structure at the millimetre scale (Robinet et al. 2012; Fauchille et al. 2014), and the pore structure at the micron scale (Klaver et al. 2012; Houben et al. 2014). However in 3D, it is difficult to cover a large range of scales due to the large numbers of subvolumes at lower scales to cover the whole volume.

Figure 1 Scales and techniques used in correlative multi-scale imaging of shales.
2D imaging techniques

The most common techniques used for 2D imaging of shales are optical microscopy (OM), electron microscopy (EM) including scanning electron microscope (SEM) and transmission electron microscopy (TEM), and X-ray radiography.

Shale microstructure observations require careful sample preparation. For OM and SEM observations, the surface investigated should be extremely flat and well-polished. This prevents artefacts obscuring the sample, reduces image blurring caused by high surface relief and allows high quality atomic number contrast on SEM images (Krinsley et al. 2005). Sample impregnation with resin followed by sample cutting and mechanical polishing of the thin section surface is the most common way to obtain a flat surface. However, other preparation methods and products can be used to produce samples with different qualities. The impregnation of samples with polymethyl methacrylate (PMMA) resin can significantly improve the quality of petrographic images by preserving the texture without losing the clay confinement or modifying the pore space geometry during sample manipulation (Sardini et al. 2009; Prêt et al. 2010a; Prêt et al. 2010b; Gaboreau et al. 2016). Due to its fissility cutting shale samples for image analysis can be difficult, and because of the typically very low permeability of shales, resin impregnation can be slow (Prêt 2003; Jorand 2006; Prêt et al. 2010a; Prêt et al. 2010b; Gaboreau et al. 2011; Robinet et al. 2012; Gaboreau et al. 2016).

After mechanical polishing, ion beam polishing can significantly improve the quality of the sample polish providing a smoother, lower relief surface (less than 20nm side damage) and minimising curtaining effects. This allows very high-resolution imaging at the nanoscale (Milner et al. 2010b; Sondergeld et al. 2010a; Klaver et al. 2015), enabling quantification of very small shale pores (Loucks et al. 2009; Klaver et al. 2012).

Optical microscopy (OM)

OM has been used to image shales since at least the early 20th century, with the imaging of kerogens, fossils and minerals in oil shales (Conacher 1917; Trager 1924). OM consists of observing thin sections in reflected or transmitted light (polarized). Criteria such as pleochroism, birefringence colour, relief and cleavages, allows large components in shales to be identified. OM provides significant textural information on relatively large areas when compared with higher resolution techniques. Using OM, centimetre- to millimetre-scale textural information and silt-size detrital or authigenic minerals can be observed (Pisciotto 1981; Loucks and Ruppel 2007). In some organic-rich shale samples, microscale kerogen pieces can be imaged and the types and distribution defined (Trager 1924; Buchardt and Lewan 1990). Furthermore, an optical microscope is quick, cheap and accessible to most geoscientists who will also be familiar with its operation from their undergraduate teaching. But at the millimetre scale, microscale and nanoscale components such as individual clay mineral particles and nanopores cannot be resolved. In spite of its relatively low-resolution and
difficulties in image analysis in shales at this scale, OM is still widely used in shale studies, often combined with other high resolution imaging techniques.

Additionally, confocal laser scanning microscopy (CLSM) has showed the potentials in shale studies. A point light source is used to scan the thin section and excite fluorescence in the focal plane. It has been used for kerogen imaging particularly in organic-rich shale samples (Nix and Feist-Burkhardt, 2003).

Scanning electron microscopy (SEM)

Using SEM, higher-resolution details of shale microstructure can be observed (Gipson Jr 1965), both in secondary electron (SE) and back-scattered electron (BSE) modes. SE imaging produces an image of the surface topography (Suganuma 1985; Sealy et al. 2000). This is particularly useful in imaging the pores in shales where the structures, types, sizes and distributions of pores can be observed and measured (Timur et al. 1971; Suganuma 1985; Milliken et al. 2013; Klaver et al. 2015) (Figure 2 a). BSE image intensity (or grey level) corresponds to a mean chemical composition (Donovan et al. 2003), and the BSE mode can also elucidate compositional variability (Scrivener and Pratt 1983; Agar et al. 1989) (Figure 2 b). While standard SEM imaging requires a vacuum (10^-5-10^-6 mbar), environmental-SEM (ESEM) allows humid conditions and gaseous water chambers to observe shales in hydrous states (Nix and Feist-Burkhardt 2003). The SEM provides micro- to nano-scale images of shales, and is the most common imaging technique for shale studies due to the need for widening the fields of view and high image resolution (Milliken and Curtis 2016).

![Figure 2](image)

Transmission electron microscopy (TEM)

TEM produces images through the use of an electron beam that transmits through an ultra-thin sample, hitting a detector on the other side (Curtis et al. 2011b). Minerals with low intensity are shown as bright areas and those with high density are shown as dark areas (Chalmers et al. 2012; Rodriguez et al. 2014). TEM can provide micrometre to sub-nanometre sized images of clay minerals (Lee et al.
1984; Schieber 2010), and kerogen structures, which cannot be imaged using SEM owing to the small de Broglie wavelength of electrons (Williams and Carter 1996). Also, intergranular pores between clay minerals and pores associated with organic matter can be observed (Wu and Aguilera 2012; Ma et al. 2015). TEM has a limited field of view, and can only image small sample areas; because of this it tends to be combined with SEM for shale imaging (Chalmers et al. 2012; Bernard et al. 2013a).

X-ray radiography

X-ray radiography uses radiation energy to penetrate solid objects in order to assess variations in compositions; it produces 2D attenuation projections (Bouma 1978). It is used in the geosciences to image fossils and lithotype layers (Sopp 1900; Bottone 1906). In sedimentology, X-ray radiography can be used to image fabrics in shales and other sedimentary rocks at the core scale (Nuhfer et al. 1979; Algeo et al. 1994). X-ray radiography is a rapid 2D characterization tool and can provide information on the distribution of laminations, fractures and minerals, with increasingly extended application in 3D X-ray computed tomography (more details in section ‘3D X-ray computed tomography’ (Algeo et al. 1994; O’Brien 1996; Cavé et al. 2009).

3D imaging techniques

3D X-ray computed tomography (XCT)

XCT is a widely used and versatile tool that can be applied to solve many problems of image based characterization in shales. It is particularly important in the study of shale as they are highly anisotropic and therefore any 2D image will not capture the full complexity of the rocks microstructure. This technique was first developed as a diagnostic medical technique by Godfrey Hounsfield (Hounsfield 1973) and Allan Cormack (Cormack 1980). The application of XCT to geoscience has been recognised since the 1980s (Wellington and Vinegar 1987), and is now widely used. For example in microstructure imaging, it can be used to quantify abundances of pores, minerals, and organic matter; XCT can also quantify the spatial connectivity and distribution of geological components (Sakellariou et al. 2003; Long et al. 2009; Curtis et al. 2012).

X-ray tomography images are generated based on the principle that X-ray intensity is linearly attenuated when passing through different materials (Hsieh 2009). Decrease in X-ray intensity is a function of X-ray energy, path length, and material linear attenuation coefficient (Wellington and Vinegar 1987; Dyson 1990). The sample rotates (typically 180°/360°) around a specific axis, and the detector measures the degree of attenuation creating 2D radiographs (projections) in grey-scale (Figure 3). Individual 2D radiograph images are reconstructed to produce a 3D volume (Wellington and Vinegar 1987; Ketcham and Carlson 2001; Hsieh 2009; Long et al. 2009).
Figure 3 Schematic illustration of X-ray computed tomographical images acquisition and reconstruction, modified after (Landis and Keane 2010).

The spatial resolution for cone beam systems normally used in laboratory XCT is determined by the focal spot size of the X-ray source. The geometric enlargement in X-ray microtomography (Micro-CT) depends on the distances between source, sample and detector (Stock 1999). While in parallel beam systems (used in synchrotron XCT) the maximum achievable spatial resolution is usually limited by detector pixel size (Cloetens et al. 1999). The type and thickness of the scintillator screen, the size of the source and mechanical stability of the instrument can also influence geometric enlargement in both cone and parallel beam systems (Maire and Withers 2014). Use of synchrotron X-ray sources significantly reduces acquisition times and improves spatial and contrast resolutions. The speed and improvement in resolutions enables the visualization of rapid chemical or physical reactions in shales (see section on ‘4D synchrotron XCT’).

X-ray generators and detectors in XCT and micro-CT generally have relatively small spot diameters (0.5 – 10 µm) (Stock 1999), enabling textures and large minerals (normally > 2 µm) to be imaged at mesoscale and microscale in 3D. Nanoscale features such as matrix microstructures, nano-pores and some clay minerals cannot be resolved at these scales. X-ray nanotomography (Nano-CT) uses lens-based systems (either Fresnel zone plates or glass capillary condensers) enabling higher spatial resolutions (Withers 2007), and it can attain 50 nm spatial resolution (Withers 2007; Landis and Keane 2010).

The main challenge of image analysis is to identify different phases which includes mineral grains, organic matter particles and pores. For XCT, the phase difference in grey scale is based on different mineral attenuations, which can be calculated from Beer’s law (Wellington and Vinegar 1987). The
energy used depends on the mineralogical composition and its thickness, and this should be decided prior to image acquisition. Laboratory sourced X-ray energy used in shale studies ranges from 20-85 keV, which results in a wide spectrum of X-ray attenuation values for different mineral phases (Keller et al. 2011; Kanitpanyacharoen et al. 2012; Robinet et al. 2012).

Some shale constituents cannot be identified in XCT data, making mineral identification and quantification difficult. For example, calcite and quartz have very similar X-ray attenuation values, but pyrite and carbon (in organic matter) have distinct attenuation values enabling identification (Figure 4). Where issues of similar X-ray attenuation arise, phase contrast XCT can be applied in both Micro-CT and Nano-CT. Phase contrast XCT converts phase variations in X-rays emerging from the imaged object into intensity variations at the X-ray detector to produce a difference in refractive index (Cloetens et al. 1996; Cloetens et al. 1999; Burvall et al. 2011). An example from the Haynesville Shale of the same area imaged by absorption and phase contrast (both Nano-CT) is shown in Figure 5. In absorption scans organic matter is clearly visible (Figure 5 a-b), while in phase contrast clay minerals are resolved (Figure 5 c-d). When phase-contrast is used details smaller than the pixel size of the detector can be detected (Cloetens et al. 1996).

![Figure 4](http://www.ctlab.geo.utexas.edu/software/mucalctool/)

Figure 4 Varying mineral and element attenuation with increasing source energy, produced by MuCalcTool (http://www.ctlab.geo.utexas.edu/software/mucalctool/).
3D electron microscopy (3D-EM)

High-magnification 3D-EM can be used to image and characterise nanoscale features in shales including pores, fine-grained minerals and organic matter (Keller et al. 2013b; Hemes et al. 2015). Unlike XCT, 3D-EM is a destructive technique which can be described as continuous EM imaging during the systematic milling of thin layers of the sample surface (DeHoff 1983; Alkemper and Voorhees 2001). The sample layers can be removed either through physical slicing by an ultramicrotome as used in serial block face-scanning electron microscopy (SBF-SEM) or through ion milling systems such as focused ion beam scanning electron microscopy (FIB-SEM) (Figure 6).

Ultramicrotome serial block-face scanning electron microscopy (SBF-SEM):

SBF-SEM allows high-resolution imaging and highly-efficient image reconstructions (DeHoff 1983; Alkemper and Voorhees 2001). The system typically comprises an ultramicrotome coupled with a SEM detector (Rouquette et al. 2009) (Figure 6). The earliest generation of these systems produced...
stereological image datasets through manual serial block-face methods, while later developments in automatic slicing and enhanced efficiency in image acquisition resulted in a reduced data collection time from weeks to hours (Alkemper and Voorhees 2001). The growth in computer based 3D image analysis has also enabled the combination of series of 2D slices in to 3D volumes (DeHoff 1983). The SBF-SEM technique produces high-resolution three dimensional images of shale microstructure, all be it in relatively small volumes (tens of microns) (Alkemper and Voorhees 2001; Ma 2016).

Focused Ion Beam Scanning Electron Microscopy (FIB-SEM):

The significance of the FIB-SEM techniques applied to shale samples has been noticed by many scholars, and has become one of the main techniques in nano-scale characterisation of pores (Sok et al. 2010; Curtis et al. 2012; Bernard et al. 2013b; Keller et al. 2013b). Recent studies using these techniques have characterised the type, size, geometric and topologic parameters of both pores and organic matter (Bernard et al. 2013b; Chen et al. 2013). Further studies have explored the relationship between pores, organic matter and minerals (Milliken et al. 2013; Ma et al. 2015).

The FIB milling technique uses a Ga⁺ ion beam to produce an extremely flat surface (less than 20nm side damage); prior to this, Pt was deposited on the surface to protect the sample from curtaining (Curtis et al. 2010). Normal experimental setup involves the collection of hundreds of high-magnification SEM images (pixel size ~5 nm) collected at 5-20 nm intervals (Figure 6). It is a destructive technique. This allows fine-scale pores (<10 nm) to be observed and quantified (Curtis et al. 2010; Zhang et al. 2012; Keller et al. 2013b; Gaboreau et al. 2016). Due to the high magnification of images, there are severe limitations in sample size leading to issues around how representative datasets are. Therefore this technique should always be combined with larger scale techniques such as XCT or 2D SEM to confirm that the data collected is representative of heterogeneous shales (Houben et al. 2014; Hemes et al. 2015).7

![Figure 6 Schematic diagram of SBF-SEM and FIB-SEM, modified after (Arkill et al. 2014).](image)
Complementary techniques in shale characterisation

Minerals

Shale mineral characterization can be undertaken using X-ray powder diffraction (XRD), electron backscatter diffraction (EBSD) and energy dispersive X-ray (EDX) techniques (Figure 1). Quantitative XRD is primarily used for phase identification of crystalline minerals in shale studies using powders (Mandile and Hutton 1995). EBSD can be used to identify minerals through the characterisation of crystal structure (Prior et al. 1999; Parsons et al. 2015). EDX analysis can also be used to provide elemental identification and quantitative compositional information alongside SEM imaging. Elemental mapping provides the 2D distribution of elements from which the mineral distribution can be derived (Ohkouchi et al. 2003; Curtis et al. 2010).

Organic matter

Aside from the volume and size of organic matter particles acquired through imaging methods, other organic matter properties such as organic matter concentration, chemical composition and thermal maturity are required to fully understand the roles of organic matter in shales. Commonly techniques include pyrolysis to obtain total organic carbon (TOC), EDX, pyrolysis–gas chromatography–mass spectrometry (GC/MS), Fourier transform infrared spectroscopy (FTIR) and fluorescence microscopy to obtain the chemical composition of shale components, and vitrinite reflectance (R_o) measurements to define maturity level (Figure 1).

TOC values are acquired after rock acidification and organic matter combustion (Byers et al. 1978), and this can be recalculated to a volume percentage allowing verification with organic matter volumes calculated from image quantification (Ma et al. 2016). Single spot EDX analysis of thin sections or stub mounted samples can provide confirmation of carbon present in organic matter particles EDX maps can also be used to map the distribution of organic matter in 2D and this works particularly well with SE- and BSE-SEM modes (Sondergeld et al. 2010a). Thermal measurements including R_o and T_max provide information on kerogen maturity to understand oil and gas generation and preservation processes (Bernard and Horsfield 2014; Romero-Sarmiento et al. 2014).

Pores

Combined with imaging methods, several other techniques can be utilised to measure both porosity and the size distribution of pores in shales. These include fluid penetration methods such as mercury intrusion porosimetry (MIP) (Klaver et al. 2012), helium pycnometry (Chalmers et al. 2012), physical adsorption methods utilising nitrogen and carbon dioxide (Clarkson et al. 2013), and small-angle scattering (SAS) techniques such as small angle X-ray scattering (SAXS) and small angle neutrons scattering (SANS) (Radlinski et al. 2004; Clarkson et al. 2013) (Figure 1).
Among fluid penetration and physical adsorption methods, MIP used in shale studies is limited because pore sizes below 3.5 nm cannot be measured, and these are often assumed to contribute a significant proportion of the total pores (Heath et al. 2011a; Kuila and Prasad 2013). Nitrogen adsorption has recently been widely used for pore size distribution measurements in shales as it can quantify fine pores in the 1.7 – 300 nm range, this is thought to encompass the majority of pores in shales (Kuila et al. 2012; Clarkson et al. 2013; Tian et al. 2013). SAS techniques allow a wide range of pore sizes to be measured from approximately 1-20,000 nm diameter by probing fluctuations in electronic density in SAXS or nuclear scattering cross section in SANS (Radlinski et al. 2004).

Among these measurements, helium porosimetry, MIP and gas adsorption can only give the volume of connected pores. Helium porosimetry measures the largest range of pores, from nanoscale to microscale. Scattering methods can provide sizes of open and close pores but only with information on the sample surface. Imaging methods can measure both the volume and surface area of open and closed pores but they should normally be combined with complimentary techniques due to the low area/volume that imaging typically measures (Figure 1).

Application of multi-scale and multi-modal imaging of shale microstructure

Shale microstructure

Bedding/laminae

OM, X-ray radiography and XCT can provide information on macro- to meso-scale bedding/lamination in both 2D and 3D. With this information, an understanding of depositional processes, sequence stratigraphy and the properties controlling reservoir efficacy is possible.

Fabric in shales can be observed under OM (Loucks and Ruppel 2007). Laminations are dark and light coloured. The light laminations consist primarily of siliceous/carbonate minerals while the dark laminations consist of a greater proportion of clay minerals and heavy minerals (Figure 7 a). In the Tournemire Shale (France), clay mineral-rich lamination (illite, interstratified illite/smectite, chlorite, biotite) and non-clay grains laminations (carbonate, quartz, pyrite) in carbonate alternate (Charpentier et al. 2001).

Core-scale XCT imaging of the Sunbury Shale (US) (Figure 7 b) shows dark laminae containing more organic matter than the light laminae. Other features such as fractures and sulphide modules can also be observed (Algeo et al. 1994).
XCT can be used to spatially visualize laminations over a similar range to x-ray radiography (Coshell et al. 1994; Josh et al. 2012). 3D volume renderings show that laminations occur sub-parallel to the axis of the sample. Image slices perpendicular to bedding shows clear dark silty laminations and light pyrite (Josh et al. 2012) (Figure 7 c-d).
Fractures can be imaged using OM/SEM (Gale et al. 2014; Gasparrini et al. 2014) and XCT in 2D and 3D respectively (Kobchenko et al. 2011; Vega et al. 2014; Carey et al. 2015) (Figure 8 a-b). SEM (Chalmers et al. 2012; Wu and Aguilera 2012; Vega et al. 2014) and 3D-EM (Torsaeter et al. 2012; Chen et al. 2015) are commonly used for micro-scale imaging of fractures. Where fractures are cement-filled, combining optical microscopy with SEM imaging can provide mineralogical and microstructure information.

Some scholars (Vega et al. 2014; Ma 2016) have demonstrated the connectivities and heterogeneity of fractures and their distribution with minerals by using XCT (Figure 8 c). Recently, XCT is used for fracture characterisation because the sample can be imaged internally and also because image processing techniques enables the quantification and spatial distribution of shale components. Fractures (Figure 8 d) can also be imaged at the mesoscale (Kobchenko et al. 2011) and micro-scale (Barnette Shale; Vega et al. 2014).

Figure 8. Fracture images from SEM and XCT techniques. (a) optical microscopy image (XPL) of calcite-filled fracture in shales in Lublin basin, Poland; (b) SEM image of calcite-filled fracture in shales in Lublin basin, Poland; (C): laboratory XCT image of calcite filled fractures (yellow) and open fractures (blue); (d) synchrotron sourced XCT image of meso-scale fractures in Green River Shale after heating (Kobchenko et al. 2011).
Minerals and organic matter vary from meso- to nano-scale in size, and they can be imaged using a range of techniques including OM, SEM, TEM, XCT and 3D-EM. Using OM and SEM (Krinsley et al. 1983; Prior et al. 1999) petrologic characteristics of mineral components can be described. From these descriptions, interpretations about the deposition environment and diagenetic development of the shale can be made (Kim et al. 1998; Milliken et al. 2012; Taylor and Macquaker 2014). Organic matter particles can also be observed using OM and SEM, especially in organic-rich samples (Figure 9 a) (Milner et al. 2010b; Curtis et al. 2011a). Nanoscale features such as the texture of clay minerals can be imaged using TEM in shale samples (Figure 9 b) (Largeau et al. 1990; Bernard et al. 2012).

Using X-ray microtomography and nanotomography (Kanitpanyacharoen et al. 2012; Zhang et al. 2012; Vega et al. 2014), silt-size minerals and silt-size organic matter can be imaged in 3D. Three phases including pyrites, minerals, and micropores (and fractures and kerogen) in Posidonia Shale (Figure 9 c) were quantified using x-ray microtomography (Kanitpanyacharoen et al. 2012). Minerals, matrix and organic matter were selected for pore model in a Devonian shale sample using X-ray nanotomography (Zhang et al. 2012).

Some shale components cannot be clearly imaged using XCT because they are smaller than the spatial resolution of the technique or lower than the contrast resolution; this is a particular problem when more than one small component is mixed. For example, clay minerals and granular minerals mixed in one phase and kerogen and pores mixed in another phase (Figure 9 d) in Barnett Shale (Vega et al. 2014). 3D-EM would be required to image these regions (Curtis et al. 2010; Zhang et al. 2012; Ma et al. 2016). Clay minerals, organic matter and pores can be identified and segmented in 3D using SBF-SEM (Figure 9 e-f) (Ma et al. 2016). The geometry, orientation, thickness and connectivity of isolated shale components can then be quantified. FIB-SEM is also commonly used in shale studies. For example, a Barnett Shale study (Curtis et al. 2010) has reported that the inorganic matrix contains dispersed kerogen, within which variable numbers of pores were observed (Figure 9 g-h).
Figure 9 Mineral and organic matter imaged using 2D and 3D techniques. (a) BSE image of mineral grains and kerogen in the Hayneville Shale (Milner et al. 2010a); (b) TEM image of organic matter, clay
minerals and quartz in a Haynesville shale sample; (c) synchrotron sourced X-ray microtomography image of pyrite in Posidonia Shale (Kanitpanyacharoen et al. 2012); (d) laboratory sourced X-ray nanotomography image of minerals and organic matter in the Barnett Shale (blue- pyrite, red –calcite cements, green- celestite, yellow and light blue –organic matter) (Vega et al. 2014); (e-f) SBF-SEM images of organic matter (green- connected organic matter, blue- isolated organic matter) and clay minerals (pink) in the Bowland Shale (Ma et al. 2016); (g-h) FIB-SEM images of organic matter (yellow) and pyrite (blue), modified after Curtis (et al., 2012)

527

Pores

528 SEM and TEM can provide 2D images for pore type identification (Figure 10 a-c), while 3D XCT and 3D-EM can provide spatial information. An example of the imaging of three pore types is in the Bowland Shale (Figure 10 d-f), in this study the morphological features of pores were quantified and contrasted in 3D (Ma et al. 2016).

532 In gas shale systems worldwide (Curtis et al. 2010; Milliken et al. 2013; Sondergeld et al. 2013), organic matter pores which occur inside or around organic matter particles range in size from macropores to nanopores, and often have ellipsoidal or spherical shapes (Milliken et al. 2013). Inter-mineral pores occur between mineral grains, crystals and clay mineral platelets.(Loucks et al. 2012; Jiao et al. 2014). Some inter-mineral mesopores can only be observed using TEM (Bernard et al. 2013a), particularly where pores occur between clay platelets (Schieber 2010) (Figure 9 b). Intra-mineral pores are commonly found within pyrite frambooids, or within fossil bodies (Loucks et al. 2012; Klaver et al. 2015).

540 Based on 2D and 3D images, further studies of pores can be perfomed. Some studies in several shale plays have reported a relationship between increasing thermal maturity and organic matter porosity generation (Curtis et al. 2011a; Sondergeld et al. 2013; Curtis et al. 2014). Data from 3D-EM imaging can also be used to build pore network models from which gas storage and transport studies can be developed (Keller et al. 2011; Dewers et al. 2012; Peng et al. 2015). Ambrose et al. (2010) used imaging datasets to build kerogen and pore networks from which gas-in-place volumes were calculated. Quantification of the 3D geometry and topology of pore pathways can be built on basis of segmented pore, and gas transport could be analysed from the development of pore network models (Keller et al. 2011; Zou et al. 2015)(Figure 10 g-h)
Figure 10 2D and 3D pore images and reconstructed pore networks. (a) SEM image of macropores and mesopores associated with organic matter, green- pores inside organic matter, purple- pores at the interface of organic matter and minerals (b) SEM image of pores between clay mineral grains; (c) SEM image of mesopores inside minerals; (d-f) SBF-SEM images of Bowland Shale pore types, (d) organic matter-associated pores, (e) interparticle pores, and (f) intraparticle pores (Ma et al. 2016); (g) Nano-CT and FIB-SEM images of pores and other structure in shales, blue- rock matrix, yellow- high-density mineral, red- pores; (h) pore network extracted from (g) (Zou et al. 2015).

Image quantification

Quantitative microstructural characterization

Prior to the separation of minerals and other phases in shale image datasets, a series of image processing steps are required. The processes outlined below are based on grey-scale images acquired by XCT images and 2D/3D EM images. In XCT datasets, following the collection of a series of 2D images by the X-ray detector, the 2D images must be ‘reconstructed’ to produce a 3D data volume.
The reconstruction processes typically use the common centre of rotation of all the 2D images and a computer algorithm to combine all the 2D images into a 3D volume (Mersereau and Oppenheim 1974; Dudgeon and Mersereau 1984). Similarly in 3D EM datasets there are often slight misalignments between each slice, and the 2D image stack must be aligned to build a 3D volume. Filtering of the 3D volumes in both XCT and EM is also required. Filtering reduces noise in the dataset and can make different phases or the interface between phases more visible. There are many different filtering algorithms (Nagao and Matsuyama 1979; Yoo 2004; Russ 2011). Median filter, non-local means filter and edge-preserving smoothing filter are three common filters used for shale images (Kanitpanyacharoen et al. 2013; Ma et al. 2016). Segmentation is the process that separates the 3D image into discrete components. Segmentation is typically done on the basis of the grey scale values for individual pixels (Yoo 2004; Russ 2011). On the basis of its grey scale value each pixel in the 3D volume is plotted on a histogram. A particular phase is segmented based on a range grey scale values within the histogram. The value range is based on the shape, size, distribution and relative grey scale values of particular volumes within the 3D data (Yoo 2004; Korfiatis et al. 2007; Stauber and Müller 2008; Landis and Keane 2010; Russ 2011). 2D image processing incorporates filtering and segmentation.

Once a 2D image dataset has been segmented the characteristics of the shale components can be quantified. Attributes of individual and groups of components including size, area, elongation index, orientation, convexity, circularity (Robinet et al., 2012; Fauchille et al., 2014, Klaver et al., 2015) can be measured, calculated and mapped. For 3D datasets, more quantitative spatial and inter-relational information can be collected. The full 3D morphology of individual shale components can be measured, and further calculations based on these measurements can be made (equivalent diameter, volume, surface area, geometry, orientation etc.). The advantage with 3D datasets over 2D datasets in shales is that the connectivity and distribution of networks of shale components can be quantified (Pierret et al. 2002; Loucks et al. 2009; Ross and Bustin 2009; Russ 2011; Keller et al. 2013a; Ma 2016).

2D and 3D time-sequence images acquired with either EM or XCT can be quantitatively compared through optical imaging techniques such as Digital Image Correlation (DIC) or Digital Volume Correlation (DVC), respectively (Bay et al., 1999; Wang et al., 2013-2014; Figueroa Pilz et al.). DIC and DVC enable the quantification of displacements, strains and crack apertures at the surface and within samples (Allais, 1994; Bay et al., 1999; Bornert et al., 2010; Mostafavi et al., 2015; Valle et al., 2015). The application in shales (Desrues and Viggiani, 2004, Lenoir et al., 2007; Hedan et al., 2012-2014, Fauchille et al., 2016) includes the thermo, hydraulic or mechanical behaviour (e.g. strains, crack location, crack generation, crack apertures, kerogen transformation, gas adsorption and flow).
Representative analysis

In multi-scale studies of shales, how features of interest are identified and quantified is important. Of particular importance is the prediction and modelling of petrophysical properties including permeability, diffusion, deformation and electrical conductivity (Mishra and Akbar 2011; Yoon and Dewers 2013; Saraji and Piri 2015). The acquisition of representative data in very heterogeneous materials is a fundamental problem in shale characterisation. Knowing how representative a sample volume is in highly heterogeneous rocks is key to ensuring that data can be properly and accurately applied. Representative elementary area (REA) or representative elementary volume (REV) calculations (Mishra and Akbar 2011) are one way to do this. These calculations are commonly defined as: the minimum area or volume of the image set that is large enough to capture a representative amount of the heterogeneity (Bear and Braester 1972; Gitman et al. 2007). REV is normally calculated for one specific parameter in accurate conditions (e.g. scale, error criteria and method) and could be different for another parameter on the same volume observed.

Different approaches exist to calculate REV of multi-scale imaging in natural materials. One method that has been applied to shales is the ‘counting box method’ (Houben et al. 2014; Fauchille 2015; Ma et al. 2016). Within the entire measured volume, sub-volumes are incrementally increased from the centre or at stochastic points chosen at random. Within each sub-volume, the volume fraction (or another chosen parameter) of a specific phase is measured and then plotted with the side length of each volume. The REV is determined as the minimum volume with an accepted oscillation with a maximum relative error of 10% in comparison with the whole volume (Gitman et al. 2007; Al-Raoush and Papadopoulos 2010). It is worth noting that the REV of some particular parameters such as particle size distribution, coordination number or physical parameters might not be the same with the volume percentages of particles (Al-Raoush and Papadopoulos 2010).

In some sandstone and carbonate reservoirs, REV can be 5–20 times the median particle size (Vik et al. 2013). In shale samples, REVs side for porosity can range from 5-10 µm with image resolutions 10-80 nm (Yoon and Dewers 2013; Ma et al. 2016) to 25 µm with image resolutions ~100 nm (Gelb et al. 2011). REV for intra-organic pores have been reported as less than 1 µm (Chen et al. 2013). REA side for organic matter and minerals in Posidonia Shale is calculated to be approximately 140 µm for. Other methods quantifying the fluctuations of a specific parameter are also used in shale, for example, homogeneization areas based on Hifler theory of percolation (Keller et al. 2013b; Cosenza et al. 2015b).
Challenges and Future Perspectives

Advanced imaging techniques

4D Synchrotron XCT

In the last decade, synchrotron based time-resolved XCT (4D) has become a standard tool in many engineering fields for the analysis of in situ deformation of materials (Cai et al., 2014; Karagadde et al., 2015; Mostafavi et al., 2015). The application of synchrotron 4D XCT to the study of shale is in its early stages, but it can be used for very rapid imaging and qualitative study of thermal maturation (Kobchenko et al. 2011) and natural or induced fracture development.

Pore and fluid generation in kerogen has been observed with increasing temperature, enabling models of kerogen maturity (Kobchenko et al. 2011) and primary hydrocarbon migration (Panahi et al. 2014) to be built. During thermal maturation experiments (Kobchenko et al. 2011; Tiwari et al. 2013), temperature effects on shale were detected from 300-500°C, and strain localization was visible after X-ray image registration.

The application of time-resolved image modelling has the potential to unravel complex morphological interaction between the microstructure of shale and the anisotropic mechanical responses during mechanical loading (Cai et al. 2016).

Neutron imaging

Neutron imaging is also a powerful, non-destructive method enabling the internal structure of a material to be quantified (Perfect et al. 2014). However, one of the fundamental differences between neutron imaging and X-ray imaging is the feasibility of obtaining images from different materials. Using neutron imaging, it is normally easier to image light elements (with low atomic number) than X-ray techniques, including (amongst many others) carbon, water, and hydrogen. In addition, the neutrons can also penetrate the high spectra of elements with higher atomic numbers that for example include lead and titanium (IAEA 2008). In the context of shales, porosity is measured using neutron emission tools from either chemical or electronic sources (De Beer et al. 2004; Perfect et al. 2014) that interact with the molecules of the rocks and fluid during the wellbore completion.

Upscaling

Representative results at larger scales

Ultra-high resolution techniques and tools (Gelb et al. 2011) can improve the microstructure characterisation of shales; however, as resolution increases the field of view generally decreases. When planning shale imaging a balance should be made between the number of features of interest, the image resolution and the size of the area or volume of the image (which indirectly defines the scale of analysis). This ensures that a significant REV value for the dataset will be calculated.
Gigapixel SEM image mosaics are increasingly used in shales (Klaver et al. 2012; Robinet et al. 2012; Fauchille 2015) and heterogeneous materials (Prêt et al. 2010b; Vergès and Morales 2014). The acquisition of gigapixel images allows high resolution 2D areas at the micrometre to millimetre scale to be imaged and enables a multi-scale approach on the same sample. This can reduce erroneous data interpretation on small areas. SEM imaging at different scales is also possible through defocusing the electron beam at various resolutions. Pore structure can also be characterized by TEM image mosaics; however, sample sizes for TEM imaging are very limited, in contrast to centimetre-sized samples for SEM. XCT and 3D-EM image volume mosaics can also be employed, but this is challenging in XCT because of large image overlaps (around 50%) in cylinder-shaped scans and long acquisition times especially in strongly heterogeneous shales.

Upscaling to log- or basin-scale

The aim of upscaling data to log- or basin-scale is to understand and model the petrophysical properties at various scales. It can enable accurate in-place resources to be calculated and calculate potential produced volumes in shale reservoirs. Ideally, microstructure image analysis should be performed on samples from different depths in the basin and for different shale facies, so variability microstructure and petrophysical properties can be quantified. There is potential for upscaled, high resolution microstructure and petrophysical properties from different depths and facies to be directly linked to well log or seismic data sets for accurate reservoir prediction (Ma 2016).

Image based modelling

Flow simulation

Due to the low permeability of shale (<10^{-18} m^2), understanding oil and gas fluid flow remains a challenge, and this requires long-term petrophysical measurements to quantify shale response over long periods (Mckernan et al. 2014). To describe the behaviour of shale in a more efficient way, image modelling techniques have been proposed.

Studies of flow simulation using data from 2D and 3D imaging techniques (Peng et al. 2015; Archilha et al. 2016), is still limited because of issues with image resolution and representative scales. For example, pores below 10nm that are normally unresolvable using the XCT or SEM imaging, can be measured by other techniques such as nitrogen adsorption and SANS and incorporated into multi-scale 3D models (Tariq et al. 2011; Ma et al. 2016). These very small pores (nm scale) may form a locally connected flow path for gas molecules (Javadpour et al. 2007). Nanometre scale pores can be built into whole pore models when combined with larger pores (>10nm) in imaging data.

Fracture simulation

Unlocking natural gas and oil trapped in shale formations is an increasingly important challenge in the oil and gas industry. Hydraulic fracturing combined with horizontal drilling facilitates the extraction
of oil and gas (Arthur et al. 2008; Rahm 2011). Image based modelling could be a powerful tool in the simulation of mechanical behaviour during hydraulic fracturing in shale. As discussed in 2.2, information from imaging datasets on microstructure, mineralogical composition, component morphology, porosity, and permeability may be important in understanding how shales respond mechanically during fracturing. The challenge is to model and predict fracture development in shales based on multi-scale image datasets. From models, accurate description and quantification of the mechanical response of shales during loading conditions should be possible. This work will have applications in petroleum, civil, mining and nuclear operations.

Acknowledgements

The authors would like to acknowledge the support of the Manchester X-ray Imaging Facility (MXIF), the Electron Microscopy Centre at the University of Manchester, the Diamond Manchester Collaboration, and the Research Complex at Harwell. Aspects of the work presented here have been partly supported by funds from EPSRC (EP/I02249X/1), NERC (NE/M007286/1), the Chinese Scholarship Council, Chevron, BG Group and Schlumberger; all of which is gratefully acknowledged.

References

Ma, L. 2016. Multi-scale 3D imaging of the microstructure in organic-rich shales. PhD, University of Manchester.

Milliken, K.L. & Day-Stirrat, R.J. 2013. Cementation in mudrocks: brief review with examples from cratonic basin mudrocks.

1245 Vassoyevich, N., Korchagina, Y.I., Lopatin, N. & Chernyshev, V. 1970. Principal phase of oil
1247 Vega, B., Ross, C.M. & Kovscek, A.R. 2014. Imaging-Based Characterization of Calcite-Filled
1249 Society of Petroleum Engineers.
1252 Vik, B., Bastesen, E. & Skauge, A. 2013. Evaluation of representative elementary volume for a vuggy
1253 carbonate rock—Part: Porosity, permeability, and dispersivity. Journal of Petroleum Science and
1256 Technology, 39, 885-898.
1258 Withers, P.J. 2007. X-ray nanotomography. Materials Today, 10, 26-34, doi:
1259 http://dx.doi.org/10.1016/S1369-7021(07)70305-X.
1261 Microscopy, Transmission Electron Microscopy and Atomic Force Microscopy. SPE Annual
1262 Technical Conference and Exhibition. Society of Petroleum Engineers, San Antonio, Texas, USA.
1265 Yoon, H. & Dewers, T.A. 2013. Nanopore structures, statistically representative elementary volumes,
1267 Yven, B., Sammartino, S., Géraud, Y., Homand, F. & Villiéras, F. 2007. Mineralogy, texture and
1268 porosity of Callovo-Oxfordian argillites of the Meuse/Haute-Marne region (eastern Paris Basin).
1269 Mémoires de la Société géologique de France, 178, 73-90.
1270 Zhang, S., Klimentidis, R.E. & Barthelemy, P. 2012. Micron to millimeter upscaling of shale rock
1271 properties Based on 3D imaging and modeling. ExxonMobil Upstream Research Co., Houston, Tx, USA.
1272 VSG-Visualisation Sciences Group, Burlinton, MA, USA.
1274 Shale Pore Throats Have a Threshold Diameter for Oil Storage? Scientific reports, 5.
1275
1276
1277 Abbreviations

1278 2D = Two-dimensional
1279 3D = Three-dimensional
1280 EM = Electron Microscopy
1281 SEM = Scanning Electron Microscopy
<table>
<thead>
<tr>
<th></th>
<th>Acronym</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>1282</td>
<td>BSE</td>
<td>Back-Scatter Electron</td>
</tr>
<tr>
<td>1283</td>
<td>SE</td>
<td>Secondary Electron</td>
</tr>
<tr>
<td>1284</td>
<td>ESEM</td>
<td>Environmental SEM</td>
</tr>
<tr>
<td>1285</td>
<td>EDX</td>
<td>Energy Dispersive X-ray spectroscopy</td>
</tr>
<tr>
<td>1286</td>
<td>TEM</td>
<td>Transmission Electron Microscopy</td>
</tr>
<tr>
<td>1287</td>
<td>3D-EM</td>
<td>Three-Dimensional Electron Microscopy</td>
</tr>
<tr>
<td>1288</td>
<td>FIB</td>
<td>Focused Ion Beam</td>
</tr>
<tr>
<td>1289</td>
<td>BIB</td>
<td>Broad Ion Beam</td>
</tr>
<tr>
<td>1290</td>
<td>SBF-SEM</td>
<td>Serial Block-Face Scanning Electron Microscopy</td>
</tr>
<tr>
<td>1291</td>
<td>XCT</td>
<td>X-ray Computed Tomography</td>
</tr>
<tr>
<td>1292</td>
<td>TOC</td>
<td>Total Organic Carbon</td>
</tr>
<tr>
<td>1293</td>
<td>XRD</td>
<td>X-Ray Diffraction</td>
</tr>
<tr>
<td>1294</td>
<td>EBSD</td>
<td>Electron Back-Scatter Diffraction</td>
</tr>
<tr>
<td>1295</td>
<td>REV</td>
<td>Representative Elementary Volume</td>
</tr>
<tr>
<td>1296</td>
<td>VOI</td>
<td>Volume of interest</td>
</tr>
<tr>
<td>1297</td>
<td>PPL</td>
<td>Plain Polarized Light</td>
</tr>
<tr>
<td>1298</td>
<td>XPL</td>
<td>Cross Polarised Light</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>