Binding CO2 by a Cr8 metallacrown

DOI:
10.1002/anie.201701726

Document Version
Accepted author manuscript

Link to publication record in Manchester Research Explorer

Citation for published version (APA):

Published in:
Angewandte Chemie - International Edition

Citing this paper
Please note that where the full-text provided on Manchester Research Explorer is the Author Accepted Manuscript or Proof version this may differ from the final Published version. If citing, it is advised that you check and use the publisher's definitive version.

General rights
Copyright and moral rights for the publications made accessible in the Research Explorer are retained by the authors and/or other copyright owners and it is a condition of accessing publications that users recognise and abide by the legal requirements associated with these rights.

Takedown policy
If you believe that this document breaches copyright please refer to the University of Manchester’s Takedown Procedures [http://man.ac.uk/04Y6Bo] or contact uml.scholarlycommunications@manchester.ac.uk providing relevant details, so we can investigate your claim.

Download date: 17. Jul. 2024
Binding CO₂ by a Cr₈ metallacrown

Abstract:

The {Cr₈} metallacrown [CrF(O₂C₅H₁₁)₃]₂⁻, containing a F-lined internal cavity shows high selectivity for CO₂ over N₂. DFT calculations and absorption studies support the multiple binding of F-groups to the C-centre of CO₂ [C•••F = 3.190(9) to 3.389(9) Å], as confirmed by single crystal X-ray diffraction.

The design of materials that bind and separate specific gases is a major activity at present. Much of this work has involved metal-organic framework (MOF) materials,[1-6] but there is also significant work involving reaction with organic molecules to produce carbamates reversibly.[7] We were particularly intrigued by a report from Zawarotko and co-workers in which SiF₆²⁻ anions were used as pillar ligands within SIFSIX-3-Zn, and the terminal fluorides, which project into the pores, were shown to bind CO₂.[8] This led us to examine the possible binding of CO₂ to the well-known metallacrown [CrF(O₂C₅H₁₁)₃]₁ which contains a F-lined inner cavity. The octametallic metallacrown, [CrF(O₂C₅H₁₁)₃]₁, first reported by Gerbeleu et al,[9] has been shown to bind to small organic molecules by Larsen and co-workers,[10] and has also been extensively studied as a prototypical antiferromagnetically coupled ring.[11]

Compound 1 can be prepared in very high yield from the reaction of hydrated CrF₃ with pivalic acid. 1 normally crystallises with solvent molecules bound near the central cavity, but recrystallisation from 1-bromodecane for produces a desolvated version that is ideal for the studies we wished to pursue. The structure of 1 contains an octagon of Cr⁸ sites with each Cr•••Cr edge bridged by a F and two pivalate ligands. The F⁻ ligands are alternately slightly above and below the plane formed by the eight Cr³⁺ centres.

Crystals of 1 were exposed to an atmosphere of CO₂ at 290 K for 2 h to form the complex 1·0.79CO₂, as established by single crystal X-ray diffraction which shows (Figure 1) the binding of a CO₂ within the cavity of the (Cr₈) metallacrown. The carbon atom of the CO₂ molecule is 1.31 Å above the mean plane of the eight {Cr₈} ions, with nearest contacts to five F⁻ ligands (F₂, F₄, F₅, F₆ and F₈) which lie on the same side of the ring. These five C•••F contacts vary from 3.190(9) to 3.389(9) Å. The CO₂ molecule is linear, with the <O=C=O = 178.9(11)°. Refinement of the site occupancy shows a total of 0.787(7) molecules of CO₂ adsorbed per metallacrown, and this occupancy is in excellent agreement with the values for the CO₂ absorption capacity (see below). The presence of CO₂ in the structure is also shown by an FT-IR spectroscopy with bands observed at 2339 (asymmetric stretch) and 660 cm⁻¹ (bending mode) (Figure S1).

In a separate experiment, a single crystal of 1 was exposed to 1 bar of CO₂ gas at 195 K in a gas cell and this resulted in the formation of 1·1.3CO₂. The crystal structure was determined by in situ diffraction and differs in two ways from that in the previous ex situ study of 1·0.79CO₂: the internal cavity is now fully occupied by a CO₂ molecule and a second molecule of CO₂ is found between the [Cr₈] rings with a partial occupancy of 30(5)%.

Thermogravimetric analysis (TGA) of freshly prepared samples of 1·0.79CO₂ shows gradual mass losses of 1.96% in the temperature range of 52-200 °C, consistent with the loss of one molecule of CO₂ per metallacrown. There is a further large mass

Figure 1. View of single crystal X-ray structure of 1·0.79CO₂. C•••F contacts shown as dashed lines: C1•••F2 3.37(1), C1•••F4 3.190(9), C1•••F5 3.29(1), C1•••F6 3.35(1), C1•••F8 3.391 Å. Methyl groups of pivalates omitted for clarity. Cr, green; F, yellow; O, red; C, grey.

[a] Dr. I. J. Vítorica-Yrezábal, D. F. Sava, Dr. G. A. Timco, Dr. M. S. Brown, M. Savage, H. G. W. Godfrey, Dr. F. Moreau, Prof. M. Schröder, Dr. S. Yang, Dr. M. P. Attfield and Prof. R.E.P. Winpenny
School of Chemistry, The University of Manchester, Oxford Road, Manchester M13 9PL, United Kingdom
E-mail: Richard.Winpenny@manchester.ac.uk
[b] Dr. F. Siperstein
School of Chemical Engineering and Analytical Sciences, The University of Manchester, Oxford Road, Manchester M13 9PL, United Kingdom
[c] Prof. L. Brammer
Dept. of Chemistry, The University of Sheffield, Brook Hill, Sheffield S3 7HF, United Kingdom
Supporting information for this article is given via a link at the end of the document.
loss between 255-386 °C (Figure S2), which is also found for 1, consistent with sample decomposition. An isothermal (45°C) TGA was also performed on 1-0.79CO₂ over a period of 4 h showing a gradual mass loss of 1.30%, consistent with the loss of 0.65 molecules of CO₂.

The porosity of compound 1 was investigated by running a N₂ adsorption isotherm at 77 K, which indicates that this material is essentially non-porous, with a saturation capacity of around 17 cm³/g at a partial pressure (P/P₀) of 0.9, presumably due to the activation diffusion of N₂ molecules at 77 K (Figure S5).

Adsorption isotherms for N₂ and CO₂ in 1 collected at ambient temperatures (288 K) to a pressure of 5 bar both display typical type-I behavior. The adsorption of N₂ over this pressure range is very low, reaching 0.027 mmol g⁻¹ at 1 bar, rising gradually to 0.076 mmol g⁻¹ at 5 bar (Figure 2). The adsorption profile of CO₂ is markedly different to that of N₂, with a very sharp adsorption profile, reaching 0.33 mmol g⁻¹ at 1 bar, and increasing gradually to 0.41 mmol g⁻¹ at 5 bar and 288 K. CO₂ adsorption in this material at 1 bar is 12 times higher than the adsorption of N₂ under the same conditions, and is in excellent agreement with the value obtained for the structure of 1-0.79CO₂ (0.36 mmol g⁻¹, 290 K, 1 bar). Negligible CO₂ uptake is seen before 0.04 bar pressure, as the material is non-porous and hence this pressure is needed to provide enough energy to allow diffusion of CO₂ into the material.

The binding energy of CO₂ in the metallacrown can be estimated from the simultaneous thermal analysis by thermogravimetry and differential scanning calorimetry (Figure S8). A sample of 1 was activated at 150 °C then cooled to 25 °C under a flow of CO₂ and the heat flow was measured directly. A spike in the heat flow upon guest adsorption represents a heat of adsorption in the region of 45(1) kJ mol⁻¹. This value is similar to the heat of adsorption reported using variable temperature CO₂ isotherms for SIFSIX-3-Zn (45 kJ mol⁻¹) in which CO₂ molecules interact with terminal fluorides of SIF₆³⁻ groups.[6]

These results suggest a strong interaction of CO₂ with the central adsorption site of the metallacrown in comparison to N₂, which indicates that 1 might be able to selectively separate CO₂ from N₂. The CO₂/N₂ selectivity of this material was calculated by comparison of the single gas isotherms to be 12 and 5 at 1 and 5 bar, respectively. Henry’s Law selectivity calculations reveal a selectivity factor of ca 37 (Figure S7). The selectivity of this material was further investigated by breakthrough experiments, where 50:50 and 75:25 mixtures of N₂/CO₂ were flowed over a packed bed of 1 at 298 K, and the outflow measured by mass spectrometry. The column of 1 was found to have a significantly different retention time for these two gases, with pure N₂ eluting from the column at dimensionless times (τ) of 39 and 67 for 50:50 and 75:25 mixtures, respectively, (Figure 2) before CO₂ breaks through.

To understand the binding of CO₂ to 1 we performed calculations using density functional theory (DFT) including an empirical dispersion term (BP86[[11,12],D3BJ[[13,14],Def2-SVP[15]]]. The calculations assumed unit occupancy of CO₂ in the central cavity of the metallacrown, i.e. 1-1CO₂. The electronic structure of the Cr₈ wheel presents significant challenges as it incorporates eight open-shell Cr⁺⁺ ions. At the DFT level it is necessary to use a spin-unrestricted approach leading to a highly broken symmetry solution. The obvious choice of spin-pairing corresponds to an alternating set of spin up (mₐ = +3/2) and spin down (mₐ = −3/2) Cr⁺⁺ ions to give an S = 0 ground state, but combinatorially there are 70 possible choices of spin pairing that can yield an overall S = 0. To treat all structures using a consistent computational model, full geometry optimizations of the complex (1-1CO₂), the wheel (1) and CO₂ were carried out (for details see SI). C–F distances in the optimized structure ranged from 3.224 – 3.352 Å, in good agreement with that obtained by single crystal X-ray crystal diffraction (Figure 1, Table 1).

Table 1. Comparison of measured and DFT parameters

<table>
<thead>
<tr>
<th>Parameter</th>
<th>Measured</th>
<th>DFT*</th>
</tr>
</thead>
<tbody>
<tr>
<td>CO₂ uptake at 290 K</td>
<td>0.79⁰</td>
<td>n/a</td>
</tr>
<tr>
<td>CO₂ uptake under CO₂ at 190 K</td>
<td>1.30⁰</td>
<td>n/a</td>
</tr>
<tr>
<td>Binding energy /kJ mol⁻¹</td>
<td>45(1)⁰</td>
<td>56.2</td>
</tr>
<tr>
<td>C–…F distances / Å</td>
<td>3.19 to 3.39⁰</td>
<td>3.22 to 3.35</td>
</tr>
<tr>
<td>O–C–O angle /°</td>
<td>178.9(11)⁰</td>
<td>179.8</td>
</tr>
</tbody>
</table>

a. Calculated for a structure with one CO₂ per metallacrown
b. From X-ray single crystal diffraction
c. From combined TGA/DSC measurements

A value of 179.8° was obtained for <O=C=O compared with 178.9(11)° in the crystal structure. The main difference in the...
structures is that the CO$_2$ molecule is more symmetrically distributed within the wheel in the calculated structure, with the C centre of CO$_2$ sitting only 0.189 Å above the centroid of the eight Cr$^{3+}$ ions. Including counterpoise corrections we obtain a binding energy between 1 and CO$_2$ of 56.2 kJ mol$^{-1}$ in reasonable agreement with the binding energy measured by DSC. Edge-on views of metallacrown show the calculated electrostatic potential (ESP) in 1-1CO$_2$ and 1 (Figure 3). Atomic partial charges were obtained through natural population analysis (NPA).\(^{[16]}\) The F atoms of the wheel are found to carry partial negative/neutral/positive values, the range is +0.0 to +0.54 for the Cr atoms. The CO$_2$ unit carries charges of +1.01 on C and −0.50/−0.51 on the two O atoms; these partial charges are almost identical to those found in the optimized isolated CO$_2$ (C +0.98, O −0.49).

The distribution of the ESP of the CO$_2$ unit in the cavity of the wheel clearly shows the potential for strong electrostatic interactions, in keeping with our interpretation of this non-covalently bound complex. Therefore, the origin of the interaction between the CO$_2$ guest molecule and the [Cr$_8$] metallacrown is due to the electrostatic attraction between the partial negative charge of the F$^-$ centres and the partial positive charge of the C centre of the CO$_2$ molecule, as concluded by Nugent et al.\(^{[8]}\) Compound 1 is therefore the first metalloccrown to bond CO$_2$. The closest example is a 16-MC-4 compound reported by Gätlens et al, which reacts with CO$_2$ to produce a bound bicarbonate.\(^{[17]}\) Compound 1 shows a breakthrough selectivity for a 50:50 CO$_2$/N$_2$ mixture of 6.2 similar to many MOFs.\(^{[18-19]}\) For example, a perfluorinated triazine-based framework takes around 10 minutes for CO$_2$ to pass through a packed bed sample when an N$_2$:CO$_2$ (90:10) mixture is added.\(^{[20]}\) In the future we will explore this binding to see whether 1 can bind other small molecules, or whether related heterometallic rings also bind small molecules, and perhaps be used to activate them.

Experimental Section

See the Supporting Information for full details of synthesis, measurements and theoretical modelling.

Acknowledgements

We acknowledge financial support from the EPSRC (grant references EP/L018470/1 and EP/I011870) and for funding an X-ray diffractometer (EP/K039547/1). MS thanks the ERC (to AdG 226593) for support. MSB would like to acknowledge the BP International Centre for Advanced Materials for funding. We thank Dr Mark Warren at beamline 119 (Diamond Light Source) for the help provided in the in situ uptake of CO$_2$. We thank Martin Jennings for the help provided in the elemental analysis and TGA measurements.

Keywords: Metallacrown • Single-crystal X-ray diffraction • Nonporous • gas adsorption

References

Entry for the Table of Contents (Please choose one layout)

Layout 1:

COMMUNICATION

Green metallocrown for green applications: A Cr₃ ring is shown to bind CO₂ strongly and selectively through C•••F interactions.

Author(s), Corresponding Author(s)

Page No. – Page No.

Title