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Our aim is to calculate some graphs associated with two of the larger sporadic
simple groups, F'io4 and the Baby Monster.

Firstly we calculate the point line collinearity graph for a maximal 2-local geom-
etry of Figy. If ' is such a geometry, then the point line collinearity graph G will be
the graph whose vertices are the points in I', with any two vertices joined by an edge
if and only if they are incident with a common line. We found that the graph has
diameter 5 and we give its collapsed adjacency matrix.

We also calculate part of the commuting involution graph, C, for the class 2C of
the Baby Monster, whose vertex set is the conjugacy class 2C, with any two elements
joined by an edge if and only if they commute. We have managed to place all vertices
inside C whose product with a fixed vertex ¢t does not have 2 power order, with all
evidence pointing towards C having diameter 3.
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Chapter 1

Introduction

The classification of finite simple groups was finally completed in 2004, after more
than one hundred years of work, involving hundreds of mathematicians and spanning

many tens of thousands of journal pages.

Theorem 1.0.1 (The Classification of Finite Simple Groups). Let G be a finite

simple group. Then G belongs to one of the following families of groups:

1. Cyclic groups of prime order.
2. Alternating groups of degree at least 5.
3. Simple groups of Lie type, including
e The classical groups of Lie type, PSL, PSp, PSU and O.
o The exceptional and twisted groups of Lie type, including the Tits group.

4. The 26 sporadic simple groups.

Even though these finite simple groups have been classified, still a lot is not known
about them, especially the larger sporadic simple groups.

Finding new ways to study these large sporadic groups, for example the Monster
and Baby Monster simple groups, is of upmost importance, as simply studying these
groups alone is not feasible. For example Linton et al constructed computationally

the Monster group, over GF'(2) [36], and although generators are available the group

9



CHAPTER 1. INTRODUCTION 10

is too large to completely load on a computer, and Wilson [42] constructed computa-
tionally the Baby Monster over GF'(2), and although it is possible to load the entire
group, carrying out anything other than very simple elementary calculations inside
it is asking for trouble.

Therefore, studying structures which these groups act on, especially when they
involve involutions, which play a very important role in the structure of a simple
group, could give us a practical route into studying these massive objects.

This thesis compromises of two main projects, both computational in nature,
regarding graph structures associated to Fis4 and the Baby Monster, the second and
third largest of the sporadic simple groups.

The second chapter is devoted to work carried out by myself in collaboration with
my supervisor Prof. Peter Rowley. It is concerned with calculating the point-line
collinearity graph for the maximal 2-local geometry for Fischer’s largest sporadic
simple group, Fisy. The geometry was first introduced by Ronan and Smith [24]
in 1980, and calculating the structure of this graph has been an open problem ever
since. The work is very computational in nature and although the graph is defined
in the language of incidence geometry, we quickly reduced the problem to simple
combinatorics to make the computations possible. As this graph is huge, a full
description is not given, as this would be impossible, however we do give a 120 by
120 matrix detailing the collapsed adjacency graph. The (4, 7)th entry of this matrix
gives the number of points in the jth orbit of G connected to a single point in the ith
orbit, as the stabilizer of a point in I" acts on G.

Chapter three is concerned with the commuting involution graph for the class
2C in the Baby Monster group, the second largest of the sporadic simple groups.
Classes 2A and 2B were completed by Bates, Bundy, Rowley and Perkins [12], and
2C is one of the two remaining cases for calculating commuting involution graphs
for all the sporadic simple groups - the cases not covered in [12] other than the two
remaining Baby Monster cases have been completed by Rowley and P. Taylor [39].
It is the overall aim to compute these commuting involution graphs for all the finite

simple groups, a large chunk of which have already been completed. Again this work
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is rather computational in nature, however due to the restrictions in working inside
the 4370 dimensional linear representation (over GF'(2)) of the Baby Monster, we
often had to drop down to more manageable representations for some of the maximal
subgroups.

Both chapters are devoted to graph structures associated with finite groups and
so have a few shared definitions. In both cases our graph is regular, that is each note
x has the same number of edges connected to it. So let G be a regular graph with
vertex set X. Firstly, for z,y € X, we define a distance function on G, d(z,y), in
the obvious way. That is d(z,y) is the length of the shortest path connecting x and
y. It is clear that if we assume our graph is connected, this distance function follows
all the rules expected from a metric. Now for a fixed vertex t € X we can define the

discs of G as

Ai(t) = {x € X | d(t,z) = i}

for an integer 7. In both chapters the structure of these discs will be independent
on the choice of t. Finally we define the diameter of G to be the maximum distance
between any two vertices of G.

All the calculations detailed in this thesis were carried out using MAGMA v2.15,
apart from a few which were carried out in GAP v4.4.10. In all cases we used several
3.2GHz machines, each with between 8 and 16GB of RAM, located in the School of
Mathematics at The University of Manchester.

One final remark, during this thesis we make great use of the Atlas of Finite
Groups [18] and the World Wide Web Atlas of Group Representations [22]. As we
refer to these almost every other sentence, we will simply refer to them as the ATLAS

and The Online Atlas respectively and reference them here.



Chapter 2

The Point-Line Collinearity graph
for the Maximal Local 2-Geometry

of F'io4

2.1 Introduction and Basic Definitions

Definition 2.1.1. An Incidence Geometry is a 4-tuple (I', %, A, d) where I' is a set,
whose elements are called varieties (that is points, lines, planes, hyper-planes, etc),
d is a map from I' to the finite set A which gives the type of each element in T,
that is whether the variety is a point, line, plane, etc, and * is a binary symmetric
and reflexive relation on I" called the incidence relation, where the above is subject to
axioms 1 and 2 given below. For i € A we denote d~*(¢) by I';, and call its elements i-
varieties, or simply just points, lines, planes etc. A flag F' is a set of pairwise incident
varieties. The type of F'is the set d(F) C A and the rank of F' is the size of d(F').
The residue R(F') of a flag F' is the ordered 4-tuple (IV,+’, d’, A") where I" is the set
of all varieties of I' of type i € A\ d(F) which are incident to all elements of F', «’

and d’ are the restrictions of * and d to IV and A" = d(I").

Axiom 1 Every maximal flag contains one and only one variety of type i for every i € A

and every non-maximal flag is contained in at least two maximal flags.
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CHAPTER 2. THE POINT-LINE COLLINEARITY GRAPH FOR Fiy, 13

Aziom 2 For any distinct 7,5 € A, I'; UT'; is connected under *, that is for any two
z,y € I'; UT'; there exists a chain of elements z, € I'; UT'; where 0 < o < n
such that z,xz,41 and g = x, z,, = y, and this property holds in every residue

R(F) for a flag F.

Definition 2.1.2. Let I' be an incidence geometry, then the Point-Line Collinearity
Graph, G, for I is a graph where the vertices are the points of I', with any two vertices
joined by an edge if and only if they are incident with a common line.

Now let GG be a finite group; we can create an incidence geometry from G by
letting F = {G;} be a family of subgroups of GG, and letting the objects of type i be
the cosets of G; in G, with two cosets G, yG; incident if and only if 2G; NyG; # 0.
Furthermore, if G has even order, we can let F be the collection of maximal 2-local
subgroups of G; then the geometry I' created from F is the maximal 2-local geometry
for G. These geometries have been extensively studied in the case of groups of Lie
type by Tits [41] and Buekenhout [8] and for the sporadic groups by Ronan and Smith
[24]. This Chapter will be devoted to studying the point line collinearity graph for

the maximal 2-local geometry for Fischer’s larger sporadic group Fligy.

2.2 Literature Review

The maximal 2-local geometry for Flioy was first described by Ronan and Smith in
[24]. In this paper they gave the diagram geometries for many of the sporadic simple
groups, in which the stabilizer of a vertex is a maximal 2-constrained 2-local subgroup.
The combinatorial structure of these geometries have been studied by many authors,
for example P. Rowley, L. Walker [31],[32],[33], J. Maginnis and S. Onofrei [21], Y.
Segev [37] and A. Ivanov [17]. Central to this structure is the point-line colinearity
graph G.

The structure of G for many of these geometries has been calculated and we will
outline these results here.

In [28], [29] and [30], Rowley and Walker calculated the point line collinearity

graph G for the maximal 2-local geometry I" for Janko’s largest sporadic simple group
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Jy. Throughout the paper they didn’t assume that the group G in question was in
fact J,, they only assumed the following geometric data.

Let I' be a residually connected string geometry, with type set {0, 1,2} and sup-
pose forx € I, ', = {y € I' | zxy}. Now let G be a subgroup of Autl’ which satisfies

the following properties:

1. Fora € Ty, I, is the rank 2 geometry of trios and sextets (defined on the Steiner
system S(5,8,24)), G,/Q(a) = Myy and Q(a) is the 11-dimensional Mys Todd

module.

2. For X € I'y, 'y is the rank 2 geometry of duads and hexads (defined on the
Steiner system S(3,6,22)), Gx/Q(X) = My : 2 and Q(X) = 21123 with
02(Gx) = 02(Q(X)) the extraspecial group of order 2!3.

We note that the maximal 2-local geometry for .J4 possesses both of these properties.
Now suppose G is the point line collinearity graph for such a geometry, and hence G
is the point line collinearity graph for the maximal 2-local geometry for J,; we have

the following theorem.

Theorem 2.2.1 (P. Rowley and L. Walker). Let G be the point line collinearity graph

for the geometry I defined above and suppose a € I'y. Then
1. |I'| = 173,067, 379.
2. G has diameter 3.

3. G consists of seven orbits as G, acts on Ty, labeled a, Ai(a), Al(a), A3(a),
A3(a), A(a) and A3(a).

4. |Ar(a)| = 22.3.5.11.23, |A%(a)| = 21.7.11.23, |A2(a)| = 27.3.5.7.11.23, |A3(a)| =
211.32.7.11.23, |AL(a)] = 211.3.5.7.11.23 and |A%(a)| = 2'8.32.5.7.

In [26] and [27], Rowley and Walker calculated the point line collinearity graph
for the maximal 2-local geometry for the Baby Monster BM. As in the J; case, they
didn’t assume the group G was BM, and only assumed that I" was a rank 4 geometry,

with G a subgroup of Aut(I") with the following properties:
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1. I' is a string geometry.
2. For [ € T'y, |Ty(I)| = 3 and two collinear points in I' determine a unique line.

3. Fora € T'yand X € I's, I', is isomorphic to the C'o,-minimal parabolic geometry

and I'y is isomorphic to a projective 3-space geometry (over GF(2)).
4. G acts flag transitively on I'.

5. For a € Ty, G, = 272200y, Q(a) = 21722 = 0y(G,) and Zi(a) = Z(G,) =
Z(Q(a)) = Zy. Moreover Q(a)/Z(Q(a)) is isomorphic to the irreducible 22-
dimensional GF'(2) C'o, module which occurs as a composition factor in the

Leech lattice reduced mod 2.

6. Let [ € 'y and X € '3, then G; = 22719+20(G3 x My,.2) has a unique minimal

normal subgroup of order 22 and G x = 29T16+6+4 [ (2) with Q(X) = Oy(Gx) =

99-+16+6+4
Note that all the properties above hold for G = BM and I'" the maximal 2-local
geometry for G. They proved the following theorem:

Theorem 2.2.2 (P. Rowley and L. Walker). Let G be the point line collinearity graph

for the geometry I' described above and let a € G. Then
1. G has diameter 4.
2. Aq(a) consists of a single G, orbit, as G, acts on the vertices of G.
3. Ag(a) consists of three G, orbits.
4. As(a) consists of four G, orbits.
5. Ay(a) consists of a single G, orbit.

In [40], Rowley and Taylor studied the point line collinearity graphs for the min-
imal parabolic geometries for the sporadic simple groups HN and Th, geometries
closely related to the maximal 2-local geometries. These graphs are of interest be-

cause they appear in full as subgraphs of the point line collinearity graph for the
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maximal 2-local geometry of the Monster sporadic simple group. They proved the

following two theorems:

Theorem 2.2.3 (P. Rowley and P. Taylor). Let G be the point line collinearity graph
for the minimal parabolic geometry I" for the Thompson sporadic simple group Th.
Then G has diameter 5 and for a fized vertex a, the discs of G break up into the

following orbits, as G, acts on the vertices of G.

1. |Ay(a)| = 270 and consists of a single G, orbit.

2. |Ag(a)| = 64,800 and consists of two G, orbits.

3. |As(a)| = 15,060,480 and consists of siz G, orbits.

4. |A4(a)| = 858,497,006 and consists of twenty G, orbits.

5. |As(a)| = 103,219,200 and consists of two G, orbits.

Theorem 2.2.4 (P. Rowley and P. Taylor). Let G be the point line collinearity graph
for the minimal parabolic geometry I' for the Harada-Norton sporadic simple group
HN. Then G has diameter 5 and for a fized vertex a, the discs of G break up into

the following orbits, as G, acts on the vertices of G.

1. |Ai(a)| = 150 and consists of a single G, orbit.

2. |Ag(a)| = 17,760 and consists of three G, orbits.

3. |Agz(a)| = 1,638,400 and consists of eight G, orbits.
4. |Ay(a)| = 68,721,664 and consists of fifty G, orbits.

5. |As(a)| = 3,686,400 and consists of three G, orbits.

For both of these graphs they translated the geometric definition of G into a group
theoretic definition, then used MAGMA to calculate the graphs. This translation
worked in the following way. If x is a point in either of the geometries in question,

then it is true that G, = Cg(i,) where i, is an involution in G and Z(G,) = (i,).
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Therefore we may identify I'g with the conjugacy class X = i¢. Under this translation
two points =,y € X are joined by an edge if and only if y € Oy(Cg(x)), and thus this
graph is closely related to the commuting involution graph. After this translation
calculation of the structure of G for both the groups Th and HN using MAGMA was
relatively simple as the size of both of the groups in question is relatively small.
Rowley and Walker calculated the point line collinearity graph for the maximal
2-local geometry for Fliss; this was a substantial amount of work and is spread over
three papers [31], [32] and [33]. They proved that the graph G has diameter 4, with

the following orbit decomposition with respect to a fixed vertex t.

1. A4(t) has size 506 and consists of a single G; orbit.
2. Ay(t) has size 141,680 and consists of two G; orbits.
3. As(t) has size 29,233,920 and consists of six G; orbits.

4. A4(t) has size 166,371,328 and consists of six G; orbits.

These calculations were obtained purely by hand, and no machine calculations were
used. They quickly proved that the number of points incident with a fixed line was
3, and any two of these 3 points uniquely determine the line. They studied the
graph in a similar way that we will study the F'ioy graph, by letting Gy, act on the
set of lines incident with a vertex z, and taking representatives from each of these
line orbits. They then calculated the two other points incident with these line orbit
representatives, to get a full list of representatives. As there was only a small number
of GGy orbits, this was possible to do by hand.

In [35], Rowley and Walker calculated the first three discs of the point line
collinearity graph for the maximal 2-local geometry for F'igy. This was relatively
straight forward, as the Fio3 graph embeds itself into the F'ioy graph, with only two
new (G, orbits found in the F'ip4 case. These calculations were carried out entirely by

hand.
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2.3 Fiy

Let G be Fischer’s largest sporadic group F'iss. We first note that Fligy is itself not
simple, however its derived group F'iy, is, with F'igy its automorphism group. We will
let F' denote the derived group F'i),, and thus F' is simple. The group G contains
four classes of involutions, in ATLAS notation denoted 2A, 2B 2C' and 2D. The class
2C' generate G, and are the so called 3-transpositions, that is the product of any two
involutions in 2C' either is 1 if they are the same, an involution if they commute, or
an element of order 3. We will call a maximal set of mutually commuting involutions
from 2A a base. It is a fact that for a base B, |B| = 24, with any two bases B; and
B, conjugate in G (see the ATLAS for these details).

As defined in section 2.1, we can define the maximal 2-local geometry for G, which

we will call I'. The diagram for this geometry is given in Figure 2.1.

Figure 2.1: The maximal 2-local geometry for Fi),

0 1 2 3

® & ® — 0 — ]

Moy S3 x L4(2) Spa(2) x L3(2) U4(3) -2
211 28+6 23+12 21+123

In Figure 2.1, the number given above each vertex is its type, that is point, line,
plane, hyper plane, etc and the groups given below are the stabilizers of such a point,
line, plane, etc in F'i},. Note that because this diagram gives the stabilizers inside of
Fil,, the stabilizer of a point in G has shape 2'2.My,.

Now the stabilizer in G of a base B is isomorphic to 2'2.Ms,, and since G only
contains one conjugacy class of groups of this shape we may identity points of I' with
bases of G. Since G acting by conjugation on 2C has permutation degree 306,936
when studying G we may work inside Sym(306936) to make calculations possible. In
preparation for this task we prepare a representation for G inside Sym/(306936) using
the following code

F<a,bl,cl,dl,el,f1,b2,c2,d2,e2,b3,c3> := FreeGroup(12);



CHAPTER 2. THE POINT-LINE COLLINEARITY GRAPH FOR Fiy, 19

Rels:={a"2=Id(F),b1"2=Id(F),c1°2=Id(F),d1"2=Id(F),e1"2=Id(F),
£1°2=Id(F) ,b2°2=Id (F),c2"2=Id(F) ,d2"2=Id (F) ,e2"2=Id(F),
b3°2=I1d(F),c3"2=Id(F),

(axb1)"3=Id(F), (a*c1) "2=Id(F), (axd1) "2=Id(F), (axel) "2=Id(F),
(axb2) "3=Id(F), (a*c2) "2=Id(F), (a*d2) "2=Id(F), (axe2) "2=Id(F),
(a*b3) "3=Id(F), (a*c3) "2=Id(F), (bl*cl) "3=Id(F), (blxd1) "2=Id(F),
(bixel1) "2=Id(F), (b1*b2) "2=Id(F), (b1*c2) "2=Id(F), (b1*d2) "2=Id(F),
(b1xe2) ~2=Id(F), (b1*b3) "2=Id(F), (b1*c3) 2=Id(F), (c1*d1) "3=Id(F),
(ci*el1) "2=Id(F), (c1%b2) "2=Id(F), (c1*c2) "2=Id(F), (c1*d2) "2=Id(F),
(c1*e2)"2=Id(F), (c1%b3) "2=Id(F), (c1%c3) ~"2=Id(F), (d1*e1) "3=Id(F),
(d1*b2) "2=Id(F), (d1*c2) "2=Id(F), (d1*d2) "2=Id(F), (d1*e2) "2=Id(F),
(d1%b3) "2=Id(F), (d1*c3) "2=Id(F), (e1xb2) "2=Id(F), (el*c2) "2=Id(F),
(e1*d2) ~2=Id(F), (el*e2) "2=Id(F), (e1#b3) "2=Id(F), (el*c3) "2=Id(F),
(b2%c2) “3=Id(F) , (b2*d2) "2=Id(F), (b2%*e2) "2=Id(F) , (b2*b3) "2=Id(F),
(b2%c3) "2=Id(F) , (c2*d2) "3=Id(F), (c2*e2) "2=Id(F), (c2*b3) "2=Id(F),
(c2%c3) "2=1d(F), (d2*e2) "3=Id(F), (d2%b3) "2=Id(F) , (d2*c3) "2=1d(F),
(e2%b3) ~2=1d(F), (e2*c3) "2=Id(F), (b3*c3) ~3=Id(F),
(axbl*cl*axb2*c2¥a*b3*c3) ~10=I1d(F),

(f1%e1) "3=Id(F), (f1xd1) "2=Id(F), (f1*c1)"2=Id(F), (f1*b1) "2=Id(F),
(f1*a) “2=Id(F), (f1%b2) "2=Id(F), (f1*c2) "2=Id (F) , (f1*d2) "2=Id(F),
(f1%e2) ~2=Id(F), (f1¥b3) "2=Id(F), (f1*c3) ~2=Id(F),

fi=(a*bl*cl*d1*b2*c2*b3) ~9,f1=(a*bl*xcl*d1*xb2xb3*c3) "9};

Y442 := quo<Fr|Rels>;

S:={a,bl,cl,dl,el,f1,b2,c2,d2,b3,c3,

(axbl*clxdlxelxflxa*xb2xc2*xd2*xe2*xa*xb3*c3) " 17};

H:=sub<Y442|S>;

m, G := CosetAction(Y442,H);
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gl := m(f1);

g2 := m((f1*d1)"el);
g3 := m((dl*bl)"cl);
g4 = m((b1*b2)"a);
gh := m((b2%d2)"c2);
g6 := m((d2%£2)"e2);
g7 = m((b1*b3)"a);
g8 := m((b2%b3)"a);

g9 := m((bl¥a*xb2%b3xc3)"4);

This presentation is based on a Y-type diagram given in the ATLAS, we recall
that Y5 = Yo = 3 Fligy. We note that G = Fliy, is generated by 12 permutations,
which we will call al,...al2. For ease of use later on we will save these permutations
in a file Fi24perms.m and let G be the subgroup of Sym(306936) generated by them.
The elements g1, ..., g9 generate a subgroup of shape 2'2Ms,4 which will play the part
of GG, in our calculations.

Now let z € 'y, that is x is a point of I', then by our previous observation, we
may identify = with a base of GG, which we will denote €2,. So in particular |Q,| = 24
and G, the stabilizer of €, in G has shape 2'2.M,,. More importantly G, acts on
Q,, with the induced action being the standard action of My4 on a 24 point set.
Therefore when studying [' we may use the powerful machinery of Curtis’s Miracle
Octad Generator (the MOG) [14]. From this point of view the lines of I' incident with
x can be identified with the octads of €2,. If we consult the ATLAS, we see that the
octads of , are precisely the subsets of €2, of size 8 which product to 1 in G (recall
that all involutions in €, commute). As we are considering the standard action of
Moy on a 24 point set, there are 759 such octads for each base x. Therefore we can

now describe G in a more accessible way. Indeed, the vertices of G are the bases of
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G, with two vertices (2, and (2, joined by an edge if and only if Q, N2, is an octad
of either €2, or €2,. We now note that G acts transitively on the set of bases of G,
therefore if 2, N €2, is an octad of €2, then it is also an octad of €, and vice versa.

We will now introduce an important tool when studying this graph, that of the
transposition profile. For a € T'y, we can let G, act on the set of 3-transpositions for
G. In our setup this corresponds to letting G, act on the set 2 = {1...306936} with
the standard permutation action. Then €2 splits into 3 orbits of sizes 24, 24,288 and
282,624 (see the ATLAS for these details). The first orbit corresponds to the base
., the second we will call the cctadic transpositions and denote O,, and third the
duadic transpositions, denoted D,. So for a base €2, of G, we assign {1 = |2, N Q,],
ly =19Q,NO,| and I3 = |2, ND,|. Then l;]i2|l; will be referred to as the transposition
profile for €2, (with respect to €,). Clearly if two bases €, and €, are in the same
G, orbit then they will have the same transposition profile. Therefore this gives us
a useful and easily calculated G, orbit invariant. However the opposite is far from
true, for example the orbits AJ(a) and Al(a) both have transposition profile 1]1[22
with respect to €2,.

The main results from this investigation are given in the following two theorems.
We first remark that as GG acts on the set of bases of GG, G induces graph automor-
phisms on G. As this action is transative the disc structure of G will not depend on
the original choice of €2,. We also note that GG, acts on the vertices of G and for any
two vertices x and y in the same G, orbit, d(a,z) = d(a,y). Therefore, for a G, orbit
X, if z € X belongs to A;(a) then X C A;(a). Thus we will break down the discs of
G into their constituent G, orbits. Details of these orbits are given in Theorem 2.3.2.
By using GAP and the class structure constants for G, S. Linton [20] calculated the
permutation rank, that is the number of orbits as G, acts on the vertices of G to be

120.

Theorem 2.3.1 (P. Rowley and B. Wright). Let G be the point line collinearity graph

for the mazimal 2-local geometry for Figy. Then

(i) The diameter of G is 5.
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(i1) |Ai(a)| = 1518 and Ay (a) is a G, orbit.
(7i) |Aq(a)| = 1,560,504 and Ay(a) consists of three G, orbits.
(iv) |As(a)| = 1,400,874,432 and As(a) consists of ten G, orbits.
(v) |Ay(a)| = 656,569,113,600 and Ay(a) consists of 46 G, orbits.
(vi) |As(a)| = 1,845,442,396, 160 and As(a) consists of 59 G, orbits.

Note that the number of orbits in each disc add up to 119 which with the vertex a
stabilized by G,, make up the 120 orbits calculated by S. Linton. The next theorem
gives more details about each GG, orbit. For a representative x of each GG, orbit, we
present the structure of G,,, that is the stabilizer of x in GG,. For these groups we
mostly use notation from the ATLAS, apart from using Sym(n), Alt(n) and Dih(n)
for the symmetric, alternating and dihedral groups. For a vertex x of G, recall that
G, has shape 2'2.M,,, and F, has shape 2''.M,,. We use @, to denote the largest
normal 2-group of F,, so @, is elementary abelian of order 2!!. The final column of
the table below lists the sizes of the sets F,, N Q.. Finally all transposition profiles

given in the table below are with respect to a.

Theorem 2.3.2 (P. Rowley and B. Wright). Fori=1,...,5, A;(a) is the union of
the F,-orbits AJ(a) as detailed in the table below.

Table 2.1: The Orbits of G

Af(a) |Ag(a)| Transposition Profile | Structure of Fy, | Foo N Qzl
Ab(a) | 1 24/0]0 211 Moy 2048
Al(a) | 1518 8]16]0 21024 Alt(8) 1024
Al(a) | 30360 0[24/0 29.26.(L3(2) x 3) 512
A2(a) | 170016 41200 27.26.3.5ym(5) 128
A3(a) | 1560128 2/6/16 25.24.Sym(6) 32

Al(a) | 282624 2|0[22 2. May.2 2

A3(a) | 566720 0[24[0 27.26.3.32.4 128
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Ad(a) | 1036288 3|121/0 22.L3(4).Sym(3) 4
Al(a) | 11658240 2[14/8 24,23 (L3(2) x 2) 16
Ad(a) | 21762048 2|16|6 2.24.Sym(6) 2
AS(a) | 40803840 0/8/16 23.22.24 Sym(4) 8
Al(a) | 40803840 0/8/16 24.22.23 Sym(4) 16
AS(a) | 108810240 1|7/16 22.22.22.3. Sym(4) 4
Ad(a) | 522289152 11122 24 Alt(5) 1
Ai%(a) | 652861440 0[2]22 2.2.23.Sym(4) 2
Al(a) | 11658240 0[16[8 24.24.15(2) 16
A%(a) | 11658240 0[16[8 24.24.15(2) 16
Al(a) | 24870912 1/15/8 Alt(8) 1
Al(a) | 65286144 0]0[24 2.26 Alt(5) 2
Al(a) | 93265920 0[2]22 2.24.L3(2) 2
AS(a) | 93265920 0[2]22 2.24.L3(2) 2
Al(a) | 198967296 11122 Alt(7) 1
Af(a) | 217620480 0/8]16 26.(Sym(3) x Sym(3)) 1
Af(a) | 217620480 0/8]16 26.(Sym(3) x Sym(3)) 1
All(a) | 217620480 0/8/16 22.24.(Sym(3) x Sym(3)) | 4
All(a) | 217620480 0/8]16 22.24 (Sym(3) x Sym(3)) | 4
Al2(a) | 244823040 0/8/16 23.22.23 23 8
AlB3(a) | 826430720 0/0]24 224243 2
Alt(a) | 652861440 0[10[14 2.22.2% Sym(3) 2
AP (a) | 652861440 0[10[14 2.22.2% Sym(3) 2
AlS(a) | 746127360 1|9[14 2.L3(2).2 2
Al"(a) | 759693312 1)11]12 Lo(11) 1
AlB(a) | 870481920 1/3/20 26.32 1
AP (a) | 1305722880 | 0|6/18 2.2°.Sym(3 2
AR (a) | 1305722880 | 0|6|18 2.2°.Sym(3) 2
A (a) | 1392771072 | 1|5|18 (3 x Alt(5)).2 1
A% (a) | 2611445760 | 0]4]20 22.23.Sym(3) 1
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A2(a) | 2611445760 | 04|20 25.Sym(3) 1
A%%(a) | 2611445760 | 0]4|20 2.24.Sym(3) 2
A% (a) | 3917168640 | 0]0]24 22.25 1
A%(a) | 3917168640 | 0]6/18 2.23.23 2
A"(a) | 5222891520 | 0]2|22 2.23.Sym(3) 1
AB(a) | 5222891520 | 0|618 24.Sym(3) 1
AP (a) | 5222891520 | 0|618 24.Sym(3) 1
AR (a) | 5222891520 | 0|618 2.23.Sym(3) 2
A (a) | 5222891520 | 0|6|18 2.23.Sym(3) 2
A% (a) | 6963855360 | 0]0|24 22.(3 x 3).2 1
AP (a) | 6963855360 | 0]0]24 22.(3 x 3).2 1
A3 (a) | 10445783040 | 0|2|22 23.Sym(3) 1
AP (a) | 10445783040 | 0|2|22 23.Sym(3) 1
A3(a) | 10445783040 | 0|2|22 23.Sym(3) 1
A (a) | 10445783040 | 0|2|22 23.Sym(3) 1
A3(a) | 15668674560 | 0]2]22 23.22 1
A (a) | 15668674560 | 0]2]22 23.22 1
Al%(a) | 41783132160 | 0]2|22 Dih(12) 1
Afl(a) | 50139758592 | 0[1|23 Dih(10) 1
A (a) | 50139758592 | 0[1|23 Dih(10) 1
AP (a) | 62674698240 | 0|2|22 23 1
Al (a) | 62674698240 | 0|2|22 23 1
A (a) | 125349396480 | 0[1|23 22 1
AfS(a) | 125349396480 | 0[1|23 22 1
Al(a) | 24870912 0/168 Alt(8) 1
Ai(a) | 24870912 0/168 Alt(8) 1
Ad(a) | 232128512 0618 3.Sym(6) 1
Al(a) | 232128512 0618 3.Sym(6) 1
A2(a) | 870481920 0420 24.(Sym(3) x Sym(3)) 1
Ab(a) | 870481920 01420 24.(Sym(3) x Sym(3)) 1
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Al(a) | 2611445760 | 0]4|20 2°.Sym(3) 1
AS(a) | 2611445760 | 0]4|20 2°.Sym(3) 1
A2(a) | 2611445760 | 0]4|20 2°.Sym(3) 1
Al%(a) | 2611445760 | 0]4]20 25.Sym(3) 1
Atl(a) | 2984509440 | 0]2]22 L3(2) 1
Al2(a) | 2984509440 | 0]2]22 L3(2) 1
Al3(a) | 8481927680 | 0]2]22 22.(Sym(3) x Sym(3)) 1
Alt(a) | 8481927680 | 0]2|22 22.(Sym(3) x Sym(3)) 1
Al (a) | 8917168640 | 0]0]24 22,25 1
AS(a) | 4642570240 | 0[3[21 347222 1
AL(a) | 4642570240 | 0321 347222 1
ALB(a) | 4642570240 | 0]9]15 347222 1
AP (a) | 4642570240 | 0]9]15 347222 1
AP (a) | 7958691840 | 03|21 3.7.3 1
A#(a) | 8356626432 | 0|6|18 Alt(5) 1
AP (a) | 8356626432 | 0|6|18 Alt(5) 1
AB(a) | 10445783040 | 0|6|18 23.Sym(3) 1
A (a) | 10445783040 | 0|6|18 23.Sym(3) 1
AP (a) | 10445783040 | 0|2|22 23.Sym(3) 1
A(a) | 10445783040 | 0|2|22 23.Sym(3) 1
A¥(a) | 13927710720 | 0]4|20 Sym(3) x Sym(3) 1
AB(a) | 13927710720 | 0]4|20 Sym(3) x Sym(3) 1
AP (a) | 13927710720 | 0|7|17 Sym(3) x Sym(3) 1
A (a) | 15668674560 | 0]4|20 21+4 1
A3l(a) | 15668674560 | 0]2]22 23,22 1
A3%(a) | 15668674560 | 0]2]22 23,22 1
AB(a) | 20891566080 | 02|22 Sym.(4) 1
A (a) | 20891566080 | 02|22 Sym,(4) 1
AP (a) | 25069879296 | 0|0|24 Dih(20) 1
A3%(a) | 41783132160 | 0]0|24 Dih(12) 1
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A3"(a) | 41783132160 | 0]3]21 Dih(12) 1
A38(a) | 41783132160 | 0]3]21 Dih(12) 1
A3(a) | 41785132160 | 0]3]21 Dih(12) 1
A30(a) | 41783132160 | 0]3]21 Dih(12) 1
Al(a) | 41785132160 | 0]3]21 Dih(12) 1
A% (a) | 41783132160 | 0]3]21 Dih(12) 1
AB(a) | 41783132160 | 0[1]23 Dih(12) 1
A (a) | 41783132160 | 0[1]23 Dih(12) 1
AP (a) | 41783132160 | 0[1]23 Dih(12) 1
A3%(a) | 41783132160 | 0[1]23 Dih(12) 1
A (a) | 50139758592 | 0[1|23 Dih(10) 1
AfB(a) | 62674698240 | 0]0|24 2 x 4 1
AP (a) | 62674698240 | 0]4|20 2 x4 1
AX(a) | 62674698240 | 0]4|20 2 x4 1
A3l(a) | 62674698240 | 0]2]22 2 x4 1
A32(a) | 62674698240 | 0]2]22 2 x4 1
A33(a) | 62674698240 | 0]2]22 2 x4 1
A3 (a) | 62674698240 | 0]2]22 2 x4 1
AP (a) | 83566264320 | 0[0|24 6 1
A(a) | 83566264320 | 0[1|23 Sym(3) 1
AY(a) | 83566264320 | 0[1|23 Sym(3) 1
A (a) | 125349396480 | 0|3|21 22 1
AP (a) | 250698792960 | 0[1|23 2 1

The final result of this chapter is the collapsed adjacency matrix for G. This is a
120 by 120 matrix with entries a;; detailing the number of elements in the jth orbit
which are connected to a single fixed element in the ¢th orbit. Since this is a rather
unwieldy beast it has been demoted to the end of the chapter, however a more usable

electronic version will also be included.
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2.4 Calculating the Discs

During these calculations we will work inside the 306,936 degree permutation repre-
sentation of G, as G acts on its 3-transpositions. Obviously the set Q = {1...306936}
represents the actual transpositions with the bases of G being certain subsets of (2
of size 24. We firstly run the following code to get our hands on a copy of 2'2. M,

inside GG, which we will call G,.

Ga := sub<Glgl,g2,g3,g4,85,26,87,88,89>;

a := Orbit(Ga,1);

b :

a~G.10;

As G only has one conjugacy class of subgroups of the shape 2'2.M,,, the group
G, must be the stabilizer of some base in G. By asking MAGMA for the orbits as G,
acts on €2 we can recover the base €2, which we will assume to be the centre of our
graph, that is the point from which each disc of G will be measured, as well as O,
and D,, the octadic and duadic transpositions.

Within our representation we have an element called aig, the 10th generator of
Fliyy, which takes the base €2, to {2, where a and b are adjacent in G. Now for any
vertex x of G and octad X of €2, there are two vertices y; and y, such that the bases
,, and Q,, intersect {2, in X. In fact the octad X corresponds to a line [ in I', with
the three points z, v, y2 incident with [, with two of z, v,y determining [ uniquely.
With this in mind, let a,b,b’ be the three points incident with the line determined
by a and b. Let O = Q, N Qy(= Q. N Qy = QN Q) and [ be the corresponding line

in I' then
twiddle := gl~(g2xg3*gd*gh) ;

is an element of G which interchanges b and b' and stabilizes a. The following code

also defines a subgroup of shape 212.2%. Ait(8)

Gal := sub<Flgl,g2,g3,g4,6,87,28,29,81°g5,g27gb,g3"g5,g7 g5,
g1~ (g2*gh) ,g1”~ (g2*g3*gh) ,g1~ (g3*g5) ,g1" (g4,gb) ,g1~ (g2*gl*gh) ,

gl~ (g2+g3*gd*gb) ,gl1~ (g3*gd*gh)>;
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This subgroup, named G, is the stabilizer of both the base 2, and the octad O.
We have also created an array Tran which contains a transversal for G,; in G, of size
759. At this point we remark on the way that we store elements of G. As we wish
to store quite a few elements of GG, we thought it best not to store them as actual
permutations as this would require a lot of memory. So instead we store an element x
of G as an array [g;,, ... ¢;,| representing a word for x in the generators g; ... gy. We
have created functions called MultiplyRandomWord and RandomWord used to create
and convert these arrays and the use of these functions will be explained in Section
2.5. Using the array T'ran and our original octad O, we can now create all the octads
of €, which we will call Octadsa, as well as the first disc of G, Aj(a). Indeed, all

the octads of the base €1, are given by

Octadsa = {O" | t = Tran[i],1 < i < 759}.

For the octad O' where t = Tran[i|, we will refer to i as the octad number for O'.

We also have

As(a) = {QF | h="Tranfi],1 <i< 759} U Q4N ) — Tranfi], 1 < i < 759}

{Qla10*h) | b = Tran[i],1 < i < 759} U {Qlaoxtwiddiexh) | j — Tran[i], 1 < i < 759}.

Now as (G acting on the vertices of G acts as a graph automorphism, G must be a reg-
ular graph. The calculation above shows that the valency of G is 1518, a remarkably
low number, which makes these calculations possible. Another useful observation is
that we may swing around Octadsa and Aq(a) to get the octads and neighbours for
any other vertex x. Indeed if (29 = Q, for some g € G, then if we call the octads of

x, octadsx we have

Octadsz = Octadsa? and

Ai(z) = Aq(a)’.



CHAPTER 2. THE POINT-LINE COLLINEARITY GRAPH FOR Fiy, 29

As we create new (G, orbits we wish to store a representative 2,, so instead of
storing the base €2, we felt it was more useful to store a group element g which takes
us from our fixed base €2, to 2,. As commented on before, instead of actually storing
the element g, as we have 120 of these to store, we will instead store a word in the
generators of G for g. From work done by hand in [35], we know that A;(a) consists
of a single G, orbit, thus we will store the word [a10], the group element which takes
us from €, to €2.

In [35], the authors fully determined the first three discs of G by hand, so we will
proceed as follows to calculate the second and third discs. From [35] we know that
Ag(a) consists of three G, orbits and Ag(a) consists of ten G, orbits. Now A;(b) as
calculated before, gives all 1518 neighbours of the vertex b. In [35] the transposition
profiles for representatives in the three orbits of Ay(a) were calculated and known to
be different from a and b, hence we can easily pluck out representatives for the three
orbits of Ay(a), using the transposition profile as an orbit invariant. We then repeat
this procedure on each of these representatives from Ajs(a) and pluck out the ten
representatives for Ag(a). However in this case we have a small problem, as two of
the orbits in Az(a) have the same transposition profile (both A§(a) and Af(a) have
the profile 0|8/16), and A2(a) shares its transposition profile with an orbit from the
second disc. The latter is easily solved as we can tell if a point is in Ag(a) by checking
if it is a neighbor of A;(a), and since A;(a) is small this is computationally easy. To
differentiate between the two orbits in Ag(a) with profile 0|8]16, we use the fact that
for z; € AS(a) and z, € Al(a) there exists an x3 € A;(a) such that |Q,, NQ,,| =2
and [€2,, N€,,| = 4. We should also now note that there is some discrepancy between
the orbits named here and those in [34] and [35]. It was decided from an early stage
that the orbits of G should be named in order of stabilizer (in G,) size, starting with
the smallest from each disc. This is untrue in [34] and [35], and hence the orbits
are labeled slightly differently. To compensate for this we have included a listing in
Appendix 6 on how to map orbits of G in this thesis to orbits in [34] and [35].

Moving out from Ag(a) to As(a) we use the combinatorial data from [34] in the

following way. For a representative €2, from one of the ten G, orbits in Ag(a), we let
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(o, the stabilizer of x in GG, act on Octadsx, the octads of the base €2,. If we take

an octad orbit representative X, then there exists two vertices y and vy’ such that
Q2,NQ,=0n0,=Q,NQ, =X

Now suppose that g is the group element that takes us from our fixed vertex a to x
and suppose the octad number for X is ¢, that is X is the sth member of the array

Octadsa?. Then

Q, = Q@09 apq

Q/ - Q(alo*twiddle*h*g)
y a

where h = Tranli], the element of the array Tran corresponding to the octad number
i. Now as we run through all G, orbit representatives x for Agz(a) and all G,
orbit representatives as (G, acts on the octads of €, we will pick up a G, orbit
representative for all the orbits of G which are distance 1 away from some point in
As(a). As expected some of these points will be in either As(a) or Ag(a). From
[35], we know that up to a few easy exceptions that have already been dealt with,
the transposition profiles in the first three discs of As(a) are unique, hence these
extra representatives in Aq(a) U Ag(a) can be quickly crossed off our list. Out of
the remaining representatives, it is highly possible that many of these are in the
same G, orbit. To deal with this, we first use the transposition profiles as an initial
sieve, grouping the remaining representatives into sets with the same transposition
profile, then using the MAGMA command IsConjugate inside these subsets to settle
matters. As the size of GG, is computationally fairly small, we find that IsConjugate
takes around 7 seconds on a 3.2GHz machine with 8GB of memory. By removing
duplicates in this way we are able to give a full list of the G, orbit representatives
for A4(a), we found there were 46 of them.

We would quickly like to remark on how we gained the representatives X for

the octad orbits, as G, acts on the octads of a base .. In [34], the authors give
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combinatorial data in the form of the MOG for a representative of each of the octad
orbits for a representative x from the G, orbits in the first discs of G. We converted
this data in these tables into their corresponding octad numbers by first fixing an
octad of x, usually the first one, then running through all the possible octads for
x, asking which intersected our fixed octad in a particular number of points, this
information being given in the MOG tables. As the size of G, is also reasonably
small, using the Stablizer command in MAGMA is possible, so we could also use
the stabilizer size for a possible octad orbit representative to distinguish between
particular octad orbits. We will now give the octad numbers for each octad orbit
for each representative x for G, orbits in the first three discs. At this point we
would like to stress that the names given here are those quoted in [34], and not the

names in this thesis. To convert between the two you can use the table in Appendix 6.

Ai(a), L = Stabg{A,} where

Ay = {6032, 6158, 6734, 22973, 22075, 22977, 38858, 83012}

L - Orbit | Size | Octad Number || L - Orbit | Size | Octad Number

Qg 1 1 (0%)] 448 62
% 30 | 248 0y 280 | 2

Al(a), L = Stabg{A,} where

Ay is the partition given by

{{540, 573,583, 586,590, 1177,1192, 1200},

{306821, 306823, 306922, 306923, 306925, 306927, 306935, 306936 },
{2,43,183, 792,948,970, 1080, 17319} }
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L - Orbit | Size | Octad Number || L - Orbit | Size | Octad Number
Qg2 3 1 (Xg92 672 100
g2 4 2

A3(a), L = Stabg{A,} where

Ay ={22973,22977,38858,83012}, and A, is the sextet given by

{{4,20, 77,349}, {6393, 21350, 49646, 61991},

{2951, 3008, 3320, 12882}, {948,970, 1080, 17319},

{17400, 21982, 22598, 62004 }, {22973, 22977, 38858, 83012} }

L - Orbit | Size | Octad Number || L - Orbit | Size | Octad Number
Qg 42 5 1 Qg 94 240 | 3

Qg2 10 | 101 (g s 120 | 344

Q315 320 | 59 Q3,315 64 |5

A3(a), L = Stabg{A,} where

Ay ={2,43,948,16365, 17319, 22977,29733,83012} and

Ay = {22977,83012}

L - Orbit | Size | Octad Number || L - Orbit | Size | Octad Number
082 1 1 a1 192 | 62

Qg0 16 | 111 Q0 60 | 55

0y 60 |2 Q20 240 | 176

oy 160 | 6 o0 30 | 248

Al(a), L = Stabg{A,} where

32
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Ay = {22977,83012}.

L - Orbit | Size | Octad Number || L - Orbit | Size | Octad Number
Qo 77 5 o 330 | 55
a 352 | 6

A2(a), L = Stabg{A1, Ay, A3} where

A is the sextet whose tetrads are {540, 573, 583,590}, {300337, 301248, 301594, 305089},
(300364, 300688, 301606, 305099}, {948, 970, 1080, 17319}, {1749, 1850, 1883, 1896},
{2951, 3008, 3320, 12882}.

Ay = {540, 573,583,590, 300337, 300364, 300688, 301248, 301594, 301606, 305089, 305099}
A3 = {948,970, 1080, 1749, 1850, 1883, 1896, 2951, 3008, 3320, 12882, 17319}

L - Orbit | Size | Octad Number || L - Orbit | Size | Octad Number
042 8 0 3 751 (24 9 6 72 3
044270’8 3 1 042474,4 216 100
Qg2 4.4 9 723 (315 5.3 192 114
024 6 2 72 214 (31535 192 )
A3(a), L = Stabg{A,} where
Ay = {22973,22977,83012}.
L - Orbit | Size | Octad Number || L - Orbit | Size | Octad Number
(6% 21 1 (0%} 360 6
Qo 168 | 3 Qp 210 | 101
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Ai(a), L = Stabg{Ay, Ay} where

Ay = {37797,38920, 60738, 61698, 62101, 62131, 62135, 62140}
Ay = {22977,83012}

L - Orbit | Size | Octad Number || L - Orbit | Size | Octad Number
Qg0 1 759 a9 56 | 8

a0 7 1 i 112 | 146

0,0 7126 o) 112 | 744

0y 14 136 Qo 168 | 49

Qp,1 16 3 Qg1 224 | 5

all) 42 | 745

A3(a), L = Stabg{A,} where

Ay = {479,1125, 1151, 2252, 1151, 2252, 6955, 16379, 22977, 83012} and
Ay = {22977,83012}

L - Orbit | Size | Octad Number || L - Orbit | Size | Octad Number
(s 2 1|1 a1 192 | 62

Qg9 16 | 100 Q0 60 | 13

Qg2 60 |2 a0 240 | 87

Q1 160 | 3 Q0 30 | 248

AS(a), L = Stabg{A1, Ay, A3} where

A1 = {4,349,970, 3320, 12882, 17319, 49646, 61991}

Ay = {11170, 12411, 12416, 12422, 20545, 20551, 20560, 22613}
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A3 is the partition of Ay given by {4,349}, {970, 17319}, {3320, 12882},

{49646, 61991}

L - Orbit | Size | Octad Number || L - Orbit | Size | Octad Number
Qg g 24 1 1 Qv 0,22 12 400
(0.5.01 1|59 Qs 32 | 44
Q0,0 1 635 Q2212 192 | 2
ofhg |12 | 730 2.2 32 | 261
oy |16 | 504 (242 32 | 510
Qg1 16 | 24 (12 192 | 408
Q014 16 | 56 Q9.4 14 192 | 406
Q492 12 | 113

Al(a), L = Stabg{A1, Ay, A3} where

Ay = {43,948,17319, 29733}

Ay = {158373,169472}

Ay = {182449, 194482}
L - Orbit | Size | Octad Number || L - Orbit | Size | Octad Number
Q1,10 128 | 653 Q30,1 32 |5
Q1,01 128 | 657 Q429 1 136
119 32 | 649 Q40,0 4 662
191 32 | 292 o 6 | 101
220 24 | 77 o 24 | 607
2,02 24 | 14 Q02,2 4|1
211 9% |24 Q02,0 16 | 519
002,0,0 96 3 00,0,2 16 511
31,0 32 |10 Qo1 64 | 386
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AS(a), L = Stabg{A1, Az, A3} where

Ay = {4,970, 1080, 12882, 17319, 21350, 22598, 83012}
A, = {970, 1080, 17319, 83012}

A3 = {83012}
L - Orbit | Size | Octad Number || L - Orbit | Size | Octad Number
s 1|1 Qi 72 |2
ald 6 | 248 2.0.0 96 | 491
alo 24 | 504 1.0 192 | 195
s 14 |15 .20 48 | 226
Q411 16 |21 Q40,0 4 102
221 48 | 213 Q1 48 |10
31 48 17 Q20 72 6
Q211 64 | 150 Q430 16 | 65

Ag(&), L= Stab(;{Al, Az, Ag} where

Ay = {445,452, 1059, 1125, 16105, 17319, 28307, 83012}
Ay = {17319}
As = {83012}
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L - Orbit | Size | Octad Number || L - Orbit | Size | Octad Number
g1 1|1 alo, 40 |23

o 10 |617 R 60 |2

211 16 | 111 Q100 60 |55

) 20 | 248 210 96 | 100

il 40 |11 50,1 96 | 300

ol 40 |81 2,00 240 | 176

ald, 40 |13

Al(a), L = Stabg{A, Ay, A3, Ay} where

Ay = {2,445, 452,948, 1059, 1151, 16105, 16379}

A, = {30887, 34121, 52240, 57768, 102195, 142053, 273221, 297652}
A3 = {34642, 51319, 56950, 79889, 102237, 142051, 302809, 302904}
Ay = {2,948}
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L - Orbit | Size | Octad Number || L - Orbit | Size | Octad Number
08,0,0,2 1 1 0V4,4,0,0 6 105
apseo |1 | 741 asos0 |6 |81
aooso |1 | 594 Guzso |48 |11
allo |12 | 368 anoso |8 | 116
afli |16 | 248 sz |8 | 188
Guap2 |6 |94 anoa1 |96 |62
trose |6 |23 as421 | 96 | 108
Quzso |48 |3 atl,o |24 |235
Qa0 |16 |18 aYlao |96 | 100
asoar |16 |38 .o |24 | 253
afs,, |96 |2 af)o |96 | 150
044(5%,2,1 32 |5
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Moving out from Ay(a) to As(a) is far more complicated problem. We now have

many more (G, orbits to deal with, and for each representative x from the GG, orbits

in A4(a) we have many more G, octad orbits, as G, acts on the octads of 2,. Thus

working out the octad orbit representatives by hand, as was done for the first three

discs, would be impractical. Therefore we use the following routine in MAGMA to

calculate all the octad numbers for 3 a representative of Al(a), as Gay acts on the

octads of €2,.

1. For a representative y € A)(a) calculate O, the octads of €.

2. Choose an octad O € Oy, note its octad number and calculate H = Stabg,, (O).

3. Calculate T', a transversal for H in Stab,,, then {O" | t € T'} will be an octad

orbit as G,y acts on O,.

4. Let O, = O, \ {O" | t € T} and go back to 2, until O, = (.

This will give us a full list of all the octad numbers for a representative from each

of the octad orbits for each representative y of the 46 G, orbits in Ay(a). Repeating
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the process as before we then calculate

Q, = Qlmoh9) and

O = Q(alo*twiddle*h*g)
y a

where h = Tran[i] corresponding to the octad number ¢ in question and A is the group
element that takes us from a to our representative y in Ay(a). As before we now
need to cross off anything in the third and fourth discs, again using the transposition
profiles as an initial sieve, which will settle matters for elements in Az(a), and then
using IsConjuagte to finish things off. After carrying this out, we will have a list
of vertices which are in As(a) and include a representative for each of the G, orbits.
However as in the Ay(a) case we will have many repetitions which need to be dealt
with. Repeating the process as before, we can deal with these repetitions by using
transposition profiles and IsConjuagte. We would like to point out that this took a
considerable amount of time, in the region of a week on a 3.2GHz machine running
MacMA V2.11-15. Luckily we found there were 59 G, orbits in As(a), giving us a
total number of GG, orbits found as 120, the number calculated by S. Linton, proving
G has diameter 5.

At this point we created a Magma command WhereAmI, which takes as input any
base €2, of G and outputs which orbit of G the base €2, belongs to. This function
works in the obvious way, firstly calculating the transposition profile for €2,, and then
using the IsConjugate command on all the orbit representative of G with the same
profile as €2, to determine exactly which orbit €2, belongs to.

We can now calculate all the neighbor data for our graph G. That is, we can
compute an array named Neighbour Data, whose entries are themselves 1518 element
arrays. Now say we calculate all 1518 neighbours for the ith orbit representative of
G (where we order all 120 orbits of G first by which disc they are in, and then by
stabilizer size), and suppose the jth neighbour was in orbit A (a), then the entry
Neighbour Datali][j] = [m,n]|. This array was calculated as expected, by running

through all GG, orbit representatives x, calculating all 1518 neighbours of z and then



CHAPTER 2. THE POINT-LINE COLLINEARITY GRAPH FOR Fiy, 40

using WhereAmI on each of them. As expected this was a considerable amount of
work, in fact it took in excess of 28 days, running on 10 different machines (each a
3.2GHz machine running MAGMA V2.11-15 with 8GB of memory), giving us a total
computational time of 280 days. At this point I would like to apologize to anybody
who was trying to run calculations in the Mathematics Department of Manchester
University over christmas 2008.

From this neighbour data, working out the collapsed adjacency matrix is very
easy, we just needed to run through each of the 120 (G, orbit representatives and
count up the number of neighbours from each G, orbit. As all the hard work is
already done this takes a matter of seconds. We give the full collapsed adjacency

matrix in Section 2.6.

2.5 The Computer Files

In this section we will give descriptions for all the files associated with the investiga-

tion of G. These files will be included both online at

www.maths.manchester.ac.uk/ bwright/Fi24.zip

and on CD. We first remark that the easiest way to load all the relevant files is to

call the file Fi24load.m in MAGMA.

Fi24perms.m

In this file we have included the following:
e Generators ay, ..., aj of Figy stored as permutations in Sym(306936).
e Commands to define G = Fliyy and F = F'ily,.

e Generators g1, . . ., go, again stored as permutations in Sym(306936) which gen-
erate G,, a subgroup of shape 2'2.M,,. This is the stabilizer of some base €2,

of G, which corresponds to our fixed vertex a of G.
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e The base (2, calculated as the smallest of the orbits as G, actson {1, ..., 306936}
and stored as the set a, as well as O,, the octadic transpositions for a, stored

as OctTran, and the base €, stored as b, a neighbour of a.

e Words in the generators gy, ..., g9 which generate G, a subgroup of shape
212,24 Alt(8) which is the stabilizer in G, of a line [, corresponding to the octad

O of a, which is the intersection of a and b.

e An array named Neighboursa giving all 1518 neighbours of our fixed vertex a
in G. For a base €2,, such that 2, = Q¢ for some g € G, then the neighbours of

x in G are given by Neighboursa“g.

e A word in the generators of GG for the element twiddle. This is the element
which takes us from x; to x9, where a,x; and x5 are the three points incident

with the line [ corresponding to the octad O = €2, N €.

reps_for_all_discs.m

e Contains words in the generators for GG for group elements which take us from
a to each of the 120 (G, orbits contained in the five discs of G. These words
are stored as arrays named DisciOrbitj corresponding to a representative in
Ag (a). Use the function MultiplyRandomWord to convert this array into a

usable group element.

e Contains arrays named Disci, containing the words for all representatives in

Ai(a).

e Contains the array Orbits, containing all representatives.

MultiplyRandomWord.m

Contains the function MultiplyRandomWord used to convert a word in the generators

of GG into a usable permutation. To use type

MultiplyRandomWord(~z,Disc40rbit23,G)
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to convert, for example, the representative of A23(a) into a usable group element,

stored in MAGMA as the element z.

Tran.m

Contains an array named Tran, which contains a transversal for G, in G, stored as
words in the generators for G. Use the function MultiplyRandomWord to convert these
into usable group elements. We remark that since we wanted these elements stored
as words instead of actual permutations we couldn’t simply use the Transversal
command in MAGMA. This saved a considerable amount of memory - instead of
needing 1.5GB to store the transversal, we only need 70KB. Storing the transversal
in this way also guaranteed that we got the same coset representative every time,
making our results reproducible. This transversal was produced using the following

procedure.

1. Recall that a base €1, of GG is a certain 24 element subset of €2, where 2 =
{1...306936}. Therefore we calculate the action of each of the generators g; of
G, on €,. These permutations (in Sym(24)) g; will generate a subgroup G, of

Sym(24) isomorphic to Moy.

2. We now take the image of the generators for G, under this mapping, to get

elements in G, which generate a subgroup G; isomorphic to 24, Alt(8).

3. By generating random words in G, in the generators g;, we can produce a

representative for each of the 759 cosets of Gy in G,.

4. Finally we convert these words in the generators g; to exactly the same words
in the generators g; (by simply removing the bar) to get a transversal for Gy

in GG, as required.

Note that this procedure would have been impossible if we had stayed within the
group G, in the Sym(306936) setting, as generating enough random elements to

produce representatives for each of the 759 cosets would have taken too long.
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TransProfile.m

Contains a function Transprofile(x), which gives the transposition profile for the
base €2,. Note that we have not stored the duadic transpositions for a, however the

transposition profile for x can be calculated as l1|l2](24 — I3 — I3) where I; = Q, N Q,

and I, = Q, NO,.

Octadsa.m

Gives all 759 octads for the base (,, stored in the array Octadsa. To calculate the

octads for the base 2, such that Q, = QF for g € G, calculate Octadsa“g.

IsDistance3.m

Contains a function IsDistance3(g), which quickly determines whether the base
(2, = Q9 is contained within the first three discs of G, and if so which orbit it is in.
It will output an array [i, j] corresponding to the orbit A(a), and will output [0, 0]
if 2, is not contained in the first three discs. This function is much faster than the
WhereAmI command below, as it utilizes the fact that transposition profiles in the

first three discs are (mostly) unique.

WhereAmlI.m

Contains a function WhereAmI(g), that determines which orbit of G the base 2, = Q¢

belongs to. Outputs an ordered pair [i, j] corresponding to the orbit AZ(a).

Collapsed AdjacencyMatrix.m

e Contains the collapsed adjacency matrix for G, stored as an array (of arrays)
called CollapsedAdjacencyMatrix. To calculate the number of points in the

gth orbit connected to a single point in the ith orbit type

CollapsedAdjacencyMatrix[i] [j]
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e Contains two functions NumberToName and NameToNumber. The first converts an
orbit number into its name (given as an array [i, j] corresponding to A?(a) and
the other converts a orbit name to its number. Thus to calculate the number

of elements in A(a) connected to a single point in Af’(a) type

CollapsedAdjacencyMatrix [NameToNumber ( [4,40])] [NameToNumber ([5,30])]

and you should get 18.

NeighbourData.m

Contains an array NeighbourData which gives information on the 1518 neighbours for
each of the 120 G, orbit representatives for G. For the kth orbit (use NameToNumber
to determine what £ is for a particular orbit), NeighbourData[k] is an array of length
1518 listing the location of each neighbour, as an ordered pair [, j] corresponding to

the orbit A/(a).

Qa.m

Gives generators as words in the generators of GG, for @),, the elementary abelian

subgroup of G, of order 2'2.

2.6 The Collapsed Adjacency Matrix for ¢

In this section we will give the collapsed adjacency matrix for G. As this matrix is
rather large it is spread over a multiple number of pages, therefore to make it more
usable we have included a map at the start to make finding a particular entry of
interest easier. We have of course omitted any page completely filled with zeros,
and this is indicated on the map. The entry, say d in the row indexed by Af and
column indexed by A” gives the number of points in the orbit A” (a) connected to
a single point in Af(a). For example the top row of our matrix tells us that the

1518 neighbours of the single point a in A}(a) are in Aj(a) as expected and looking
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elsewhere in the matrix we can see that a vertex in A3%(a) is connected to 36 vertices

in A%(a).
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A AT AT AT AT A ATE  ATT  ATE T ATO A0 AT
AbtJo o o o o o0 O 0O O 0O 0 O
Al |0 0 0 0 0 0 0 0 0 0 0 0
Al 10 0 0 0 0 0 0 0 0 0 0 0
A3 |0 0 0 0 0 0 0 0 0 0 0 0
A3 |0 0 0 0 0 0 0 0 0 0 0 0
Al 10 0 0 0 0 0 0 0 0 0 0 0
A% 384 384 432 0 0 0 0 0 0 0 0 0
A3 |0 0 0 0 0 0 720 0 0 0 0 0
A3 |0 0 84 0 0 0 448 0 224 0 0 0
A3 |0 0 0 0 30 30 0 384 0 60 60 320
AS |0 0 48 0 0 0 0 0 0 32 32 0
AL |64 64 108 24 16 16 0 0 0 0 0 0
A§ |16 16 0 0 0 0 240 0 112 0 0 64
A |0 0 0 0 0 0 60 16 140 O 0 136
Al 10 0 12 0 1 1 0 0 0 6 6 0
Al |0 0 42 0 336 0 0 0 0 0 112 0
A2 |0 0 42 0 0 336 0 0 0 12 0 0
A3 |0 0 0 0 0 0 0 336 70 0 0 0
A} |0 0 0 15 0 0 0 0 0 0 0 0
A} |0 0 0 0 14 0 0 0 0 14 42 0
AY o 0 0 0 0 14 0 0 0 42 14 0
Al |0 0 0 0 0 0 0 42 140 0 0 140
A |0 0 0 0 0 72 0 0 0 24 0 0
A} |0 0 0 0 72 0 0 0 0 0 24 0
AP 113 8 0 0 24 0 0 0 0 72 0 0
Al |8 13 0 0 0 240 0 0 0 72 0
A2 10 0 27 16 16 16 0 0 0 80 80 0
AP0 0 12 12 0 0 0 0 0 0 0 0
A8 0 6 0 14 27 8 0 0 12 0 0
AP 10 8 6 0 27 14 8 0 0 0 12 0
Ao 0 0 0 7 7 43 168 42 7 7 168
AT |0 0 0 0 0 0 165 132 55 0 0 110
A0 0 0 0 0 0 36 48 95 0 0 192
AP 112 0 5 0 6 0 4 0 0 2520 O
A2 10 12 15 0 0 6 4 0 0 20 25 0
At O 0 0 0 0 0 90 60 120 0 0 155
A% |0 0 0 0 0 0 0 0 0 0 0 0
AP 10 0 0 0 0 0 0 0 0 12 12 0
A0 0 0 0 0 0 0 0 0 6 16 0
AP |1 1 1 4 0 0 0 0 0 4 4 0
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CHAPTER 2. THE POINT-LINE COLLINEARITY GRAPH FOR Fiy,
AFTTAT AT AT AT AP AT AT AR ABTAH AB
A 10 0 0 0 4 4 0 0 0 6 16 0
AT |0 0 0 0 0 0 9% 0 0 0 0 144
A% 10 24 0 12 0 54 48 0 0 48 24 48
AP 124 0 12 0 54 0 48 0 0 24 48 24
AP 112 12 0 12 6 6 24 48 0 12 60 O
At 12 12 120 6 6 240 48 60 12 48
Af2 10 0 0 0 0 0 0 0 72 45 0 108
AP0 0 0 0 0 0 0 72 0 0 45 72
A |3 26 0 24 0 30 0 48 0 6 2 24
AP |26 3 240 30 0 0 0 48 72 6 72
A 10 24 24 3 0 240 7224 24 108 0
AT 124 0 3 24 24 0 0 24 72 108 24 156
A0 20 0 16 3 20 16 48 16 16 76 48
AP 120 0 16 0 20 3 16 16 48 76 16 96
A 10 0 0 0 6 6 5 48 48 33 33 42
A 110 0 15 5 5 5 40 26 26 40 40 125
A 10 10 5 15 5 15 40 26 26 40 40 105
AP 1 12 4 18 4 19 22 32 32 57 40 170
AP 1121 18 4 19 4 22 32 32 40 57 56
AP |2 6 0 13 6 12 14 50 42 35 28 83
AS |6 2 13 0 12 6 14 42 50 28 35 91
Al 1o 0 0 0 0 0 0 0 0 0 0 0
A2 |0 0 0 0 0 0 0 0 0 0 0 0
A3 |0 45 0 90 0 0 0 0 216 0 0 0
A} |45 0 90 0 0 0 0 216 0 0 0 0
A3 |0 48 0 7236 144 0 0 0 0 0 0
AS |48 0 72 0 144 36 0 0 0 0 0 0
AT 148 24 24 0 36 0 32 0 0 24 0 96
A |24 48 0 240 36 32 0 0 0 240
A2 |0 16 8 0 84 0 96 0 0 0 0 48
A0 116 0 0 80 0 84 96 0 0 0 0 0
Aftl42 35 7 21 0 0 0 84 84 0 84 0
Al2 135 42 21 7 0 0 0 84 8 8 0 126
AP 13 0 0 90 0 72 84 72 0 36 36 0
Al o 3 90 0 72 0 84 0 7236 36 108
Al 116 16 32 32 28 28 0 64 64 64 64 96
AlS o 27 0 0 0 27 18 0 0 27 81 54
AlTl2r 0 0 0 271 0 18 0 0 8 27 54
Al 10 0 0 9 0 27 0 0 0 27 27 0
Ato 0o 9 0 21 0 0 0 0 27 27 27
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CHAPTER 2. THE POINT-LINE COLLINEARITY GRAPH FOR Fiy,
AZETAD AT AT AT AT AT AT AT AR AN AP
NG 6 16 32 32 128 0 24 24 0 0 O
A8 8 8 0O 0O 0 O 3 3 16 16 0
A% 10 0 0 0 0 0 6 6 0 0 48 0
AP 72 0 0 0 0 0 6 0 6 48 0 0
A3 10 0 0 0 240 6 6 6 24 16 0
AT 160 0 0 240 0 6 6 6 16 24 0
Af2 10 9 18 0 0 0 0 0 45 0 0 36
AP0 18 9 0 0 0 0 45 0 0 0 36
AP0 33 0 12 24 4 36 30 12 2 28 12
AP |27 0 33 24 12 4 36 12 30 28 2 12
A3 | 2 26 0 12 3 12 0 6 24 2 30 0
AfT 10 0 26 36 12 12 0 24 6 30 2 0
A |4 40 24 0 0 8 4 20 2 0 32 0
AP 10 24 40 0 0 8 4 2 20 32 0 0
A0 | 2 5 15 13 13 26 18 0 0 18 18 12
A |5 0 5 20 5 5 5 20 20 10 5 26
A 10 5 0 5 20 5 5 20 20 5 10 26
AP |4 11 0 14 12 10 8 19 20 4 12 16
AP 117 0 1 12 14 10 8 20 19 12 4 16
AP |2 13 8 8 0 4 9 11 5 8 12 18
A 14 8 3 0 8 4 9 5 1 12 8 18
Atto o o o o o0 0 0 O 0 0 O
A2 |0 0 0 0 0 0 0 0 0 0 0 0
A3 1225 0 0 180 0 0 0 20 0 0 0 0
Ao 0 0 0 180 0 0 0 270 0 0 0
AZl0 O O O 32 0 0 0 0 0 144 0
Ao o 0 32 0 0 0 0 0 144 0 0
Ao o o0 32 0 0 O 0 36 0 0 0
A8 124 0o 0O O 32 0 0 3 0 0 0 0
A2 lo96 0 0 0 0 0 2 36 0 0 0 0
Ao 0o 0o 0 0 0 12 0 3 0 0 0
Al 114 0 0 28 0 0 0 0 0 14 42 0
Al2y7 0 0 0 28 0 0 0 0 42 14 0
AP 10 3 0 8 240 0 0 0 0 780
AMtl42 0 3 24 8 0 0 0 0 0 0
Ao 0o 0 0 0 0 6 20 20 0 0 64
Al® 10 27 0 3 27 0 0 27 27 0 27 0
AlTlo 0 21 27 3 0 0 27 27 21 0 0
Ao 27 9 12 54 138 27 0 27 0 0 0
A9 181 9 27 54 12 138 27 27 0 0 0 0
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CHAPTER 2. THE POINT-LINE COLLINEARITY GRAPH FOR Fiy,
AFTTATTTAB AT A AT AR AR AR AT AR AT
NG 0 0 0 0 32 32 32 32 32 32 64
AT 10 24 24 72 72 0 0 0 0 48 48 48
A% 10 48 40 0 104 72 24 0 24 0 8 0
AP 10 40 48 104 0 24 72 24 0 8 0 0
A3 10 48 96 24 48 72 56 24 0 0 0 0
AP0 96 48 48 24 56 712 0 24 0 0 0
A2 172 0 0 36 0 30 36 36 18 54 78 36
AP 172 0 0 0 36 36 30 18 36 78 54 36
A 136 0 8 0 48 24 8 0 28 36 24 T2
AP |36 8 0 48 0 8 24 28 0 24 36 72
A 124 0 48 0 36 28 24 0 36 24 36 48
AfT 124 48 0 36 0 24 28 36 0 36 24 48
AP® 116 8 48 16 32 24 16 24 56 40 40 32
AP 116 48 8 32 16 16 24 56 24 40 40 32
A 112 12 12 15 15 15 15 31 31 42 42 42
AY 130 40 15 25 10 15 20 15 15 20 30 66
A 130 15 40 10 25 20 15 15 15 30 20 66
AP 124 20 18 10 50 36 20 26 18 26 24 28
A l24 18 20 50 10 20 36 18 26 24 26 28
AP 128 15 17 12 36 16 12 31 29 45 36 28
A 128 17 15 36 12 12 16 29 31 36 45 28
Al 1o 0 0 0 0 0 0 0 0 0 0 0
A2 |0 0 0 0 0 0 0 0 0 0 0 0
A3 |0 0 0 0 0 0 0 0 0 0 0 0
A?fo0 0o o0 O O O O O O 0 0 O
A3 |0 0 48 0 144 48 48 0 96 0 9 0
AS o 48 0 144 0 48 48 96 0 9% 0 0
Al 196 128 0 0 0 128 96 0 32 0 32 0
A8 196 0 128 0 0 96 128 32 0 32 0 0
A |0 48 0 208 48 0 0 0 32 0 9% 0
Al 10 0 48 48 208 O 0 32 0 9% 0 0
Al 1o 28 42 0 0 0 28 0 112 0 0 0
A2 1o 42 28 0 0 28 0 112 0 0 0 0
AP 10 0 36 0 2 0 12 0 48 0 0 72
Al o 36 0 72 0 12 0 48 0 0 0 72
Al 1o 0 0 0 0 32 32 64 64 0 0 0
Al 154 0 63 0 36 27 27 271 63 0 45 0
AlTl54 63 0 36 0 27 27 63 27 45 0 0
AR 10 0 54 45 54 45 0 0 0 27 0 0
APlo 54 0 54 45 0 45 0 0 0 27 0
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CHAPTER 2. THE POINT-LINE COLLINEARITY GRAPH FOR Fiy,

A A A AT A2 A A AP AN AT AR AP
NG 6 16 9 96 32 32 0 0 0 256 64
AT 10 48 48 12 12 72 72 0 32 32 0 240
A% 10 96 120 60 0 72 0 0 0 0 48 96
AP 10 120 96 0 60 0 72 0 0 0 48 96
A3 124 168 60 0 12 12 12 0 48 0 24 96
At 124 60 168 12 0 12 12 0 0 48 24 96
A2 136 9 0 36 54 45 0 144 0 72 36 216
AP 136 0 9 54 36 0 45 144 720 36 216
AP 136 24 24 24 24 96 60 48 96 24 T2 72
AP |36 24 24 24 24 60 96 48 24 96 T2 72
A 124 24 0 4290 24 0 48 56 0 84 96
AT 124 0 2490 42 0 24 48 0 56 84 96
A® 120 24 8 48 104 72 20 32 32 0 72 112
AP 120 8 24 104 48 20 72 32 O 32 72 112
A 112 21 21 66 66 51 51 72 42 42 168 126
AfY 155 20 40 30 10 15 40 50 65 60 50 160
AP?|55 40 20 10 30 40 15 50 60 65 50 160
AP 132 35 36 44 20 72 32 48 76 44 76 124
AP 132 36 35 20 44 32 72 48 44 76 76 124
AP |34 26 17 47 40 51 33 68 76 50 71 164
A6 134 17 26 40 47 33 51 68 50 76 71 164
Al 1o 0 0 0 0 0 0 0 0 0 0 0
A2 |0 0 0 0 0 0 0 0 0 0 0 0
A3 |0 0 270 0 0 0 0 0 0 0 0 0
A |0 270 0 0 0 0 0 0 0 0 0 0
A3 |0 0 0 0 72 144 0 0 0 0 0 0
AS o 0 0 7 0 0 14 0 0 0 0 O
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AP lo 54 135 27 54 27 0O O O O 162 0
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AFTTAT AT AT AT AP AT AT AR ABTAH AB
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Alo 00 v o o0 0 6 6 3 15 30
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Chapter 3

A Commuting Involution Graph

for the Baby Monster

3.1 Literature Review

Suppose G is a finite group and X is a subset of G. Then the commuting graph on X,
denoted C(G, X), is a graph whose vertex set is X, with any two points connected by
an edge if and only if they commute. If the set X is a conjugacy class of involutions
then we call the graph C(G, X) the commuting involution graph for G with respect
to X. These graphs have been studied by many different authors and a brief history

will be outlined here.

3.1.1 The Work of Brauer and Fowler

In Brauer and Fowler’s famous 1955 paper On Groups of Even Order, [5], the case was
studied where GG was a group of even order and X the set of non identity elements.
One result states that if G has more than one conjugacy class of involutions then the
distance between any two involutions is at most 3. The proof is included here as it

is elementary, fairly short and elegant.

Lemma 3.1.1 (R. Brauer and K. Fowler). Let G be a finite Group of even order
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with more than one class of involutions. If x and y are two non-conjugate involutions

then there exists an involution w which commutes with both x and vy.

Proof. Consider the subgroup D = (z,y) of G. It is a well known fact that D is a
dihedral group of order 2m where m is the order of xy. Furthermore if m is even
then (zy)Z is an involution contained in the centre of D and in particular commutes
with both = and y. Therefore if we can prove that the order of xy is even then we
are done.

So suppose that m is odd. Then if S; and Sy are Sylow 2-subgroups of D con-
taining = and y respectively, then |S;| = |S3| = 2. However by Sylow’s Theorems, S;
is conjugate to So implying that x is conjugate to y, a contradiction. Hence m must

be even and we are done. O]

Theorem 3.1.2 (R. Brauer and K. Fowler). If a group G of even order contains
more than one class of involutions then for any two involutions x,y € G, we have

d(xz,y) < 3.

Proof. If x and y are not conjugate in GG, then by Lemma 3.1.1, d(z,y) < 2. Thus
suppose that z,y are contained in the same involution conjugacy class C'. Now let
z be an involution not in C'. Then again by Lemma 3.1.1, there exists an involution
w € G such that w commutes with both y and z. First suppose that w ¢ C, then by
Lemma 3.1.1, d(z,w) < 2 and since w commutes with y, d(z,y) < 3. So assume that
w € C, then there exists a ¢ € G such that x = w?. Then as w commutes with z,
r = w? commutes with z9. However as z ¢ C' we have 29 ¢ C, and thus by Lemma

3.1.1, d(29,y) < 2. Hence d(z,y) < 3 as required. ]
This result also gives us two easy corollaries.

Corollary 3.1.3 (R. Brauer and K. Fowler). If G has even order and contains more
than one class of involutions then any two elements g, and go such that |Cg(g1)| and

|Cc(g2)| are even have distance at most 5.
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Proof. Since Cg(g1) and Cg(g2) have even order they both contain involutions
and xo. Thus by Theorem 3.1.2, d(z1,25) < 3, and we have d(g;,z1) = 1 and

d(g2,x2) = 1, hence our result follows. O
A similar argument gives us the second corollary

Corollary 3.1.4 (R. Brauer and K. Fowler). Let G be a group of even order which
contains a real element g such that Cg(h) has odd order for every non-identity h in

Cec(g). Then G contains involutions which have distance greater than 2.

3.1.2 The Work of Fischer

Commuting graphs came up in Fischer’s work on 3-transposition groups. A group G
is said to be a 3-transposition group if it is generated by a set D of involutions of G
such that D is a union of conjugacy classes of G and for all a,b € D, the product
ab has order 1, 2 or 3. A good example of a 3-transposition group is the symmetric
group S, where the set D is the conjugacy class of transpositions.

The study of the commuting graph C(G, D) where D is a conjugacy class of 3-
transpositions in part led to the proof of Fischer’'s Theorem, a classification of all
almost simple 3-transposition groups and led to the discovery of three new sporadic

simple groups.

Theorem 3.1.5 (Fischer’s Theorem, B. Fischer). Let D be a conjugacy class of 3-
transpostions of the finite group G. Assume the centre of G is trivial and the derived

subgroup of G is simple. Then one of the following holds:

1. G2 S, and D is the set of transpositions of GG.
2. G = Sp,(2) and D is the set of transvections of G.
3. G=U,(2) and D is the set of transvections of G.

4. G=0O(2) and D is the set of transvections of G.
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5. G = POM™(3) is the subgroup of an n-dimensional projective orthogonal group
over the field of order 3 generated by a conjugacy class D of reflections.

6. G is one of the three Fischer sporadic groups F'iss, Fiog or Fioy, where D is a

uniquely determined class of involutions.

A proof of this theorem is given in [3].

3.1.3 The Work of Segev
In 2001, Segev published the following result in [38].

Theorem 3.1.6 (Y. Segev). Let G be a minimal non-soluble group, that is G is
not soluble but every proper quotient of G is soluble, and suppose X consists of all
non-identity elements of G. Then the commuting graph for G with vertex set X has

diameter at least 3.

This theorem was part of the solution of the Finite Soluble Quotients Conjecture,
that is that finite quotients of the multiplicative group of finite dimensional division
algebras are soluble. In an early paper by Rapinchuk and Segev [23], they proved the

following result

Theorem 3.1.7 (Non-Existence Theorem at Diameter > 4, Y. Segev). Let G be a
class of finite groups. Then a member G € G is called minimal if no proper quotient

of G belongs to G. If we assume that
1. The members of G are non-soluble.
2. If G € G and N <G with G/N soluble, then N € G.
3. If G€G and N <G is a soluble normal subgroup of G then G/N € G.
4. The commuting graph of minimal members of G has diameter > 4.

Then no member of G is a quotient of the multiplicative group of a finite-dimensional

division algebra.
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Now if we could replace the bound in condition 4 above with > 3, and if we
take G to be the class of non-soluble finite groups then the Finite Soluble Quotients
Conjecture will follow by using Theorem 3.1.6.

Important in the proof of Theorem 3.1.6 is the following idea. Let

Co(L) = {(a,0) € L x L | Caury(@) N Caurry (b) = 1}

where L is a finite group. Now Awut(L) acts naturally on Cy(L) in the following way

(a,b) — (a%, %)

for a € Aut(L). Consider the following property:

Aut(L) has at least 5 orbits on Co(L).

Now suppose that G is a finite group, K # 1 is a normal subgroup of G and

L < K is a subgroup such that

K=19x L% x...x L%

for g; € G. We assume that G acts transitively on

X ={L" L%, ... L")}

by conjugation and suppose ¥ < Syn(n) is the permutation group induced from this
action. We assume ¥ is soluble and that C(K) = 1. Now it is true that G having
the structure as above, with L being non-abelian simple, is the same as saying that G
is minimal non-soluble. Now if we assume further that L has the property mentioned

above then we have the following lemma

Lemma 3.1.8 (Y. Segev). If G is as above, then the commuting graph for G on the
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set of all non-identity elements, has diameter at least 3.

Then using this lemma with the observation above we come to the proof of The-
orem 3.1.6. It must be noted that the proof of Lemma 3.1.8 relies on the following
theorem, originally proved in [15], which uses the Classification of Finite Simple

Groups in its proof.

Theorem 3.1.9 (G. Malle, J. Saxl and T. Weigel). Every Finite simple group except

Us(3) can be generated by two elements, one strongly real and the other an involution.

The proof of the Finite Soluble Quotients Conjecture was completed by A. Rap-

inchuk, G. Seitz and Y. Segev in [2].

3.1.4 The Work of Bundy, Bates, Rowley and Perkins

Peter Rowley has been the driving force behind the recent surge of results concerning
commuting involution graphs, where the set X is a conjugacy class of involutions of
a group G. It is the overall aim to calculate these graphs, to some extent, for all the
involution conjugacy classes for all the finite simple groups and their automorphism
groups as well as a few other interesting examples. Over the last 10 years Rowley
and three of his former PhD students, D. Bundy, C. Bates and S. Perkins (now S.
Hart) have written four papers [9],[11],[12] and [10] on the subject which cover many
of the simple groups, as well as the finite Coxeter groups. More recently A. Everett
and P. Taylor, two more of Rowley’s students, have completed work on some of the

remaining cases.

Commuting Involution Graphs for Symmetric Groups

In [10], Bundy, Bates, Rowley and Perkins carried out an extensive amount of work
on the commuting involution graphs for G = §,,, see [10].
Now let G be the symmetric group on n objects, and let X be a conjugacy class

of involutions. A typical element of X will be the product of disjoint transpositions,
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hence we may assume that any element of X has cycle type 1"2™ for a fixed m. Two

results were proved,

Theorem 3.1.10 (Bundy, Bates, Rowley and Perkins). For G = S, C(G,X) is

disconnected if and only if n =2m+1 orn =4 and m = 1.

Theorem 3.1.11 (Bundy, Bates, Rowley and Perkins). If we suppose that C(G, X)

1s connected then one of the following holds:
1. The diameter of C(G, X) is at most 3.
2. 2m+ 2 =n € {6,8,10} and the diameter of C(G, X) is at most 4.

Important in the proofs of these two theorems is the idea of an z-graph. We now
pick a fixed a € X and without loss of generality suppose a = (1,2)(3,4)...(2m —
1,2m), so in particular @ has cycle type 1"=2™2™  We now let G act on Q = {1...n}

in the usual manner and let
V={{1,2},{3,4}...{2m — 1,2m}, {2m + 1},{2m + 2}, .. . {n}}

so V is the set of orbits as a acts on 2. Now for x € X we will define a graph, denoted
G., whose vertex set is V with vy, v, € V connected by an edge if and only if there
exist a € v; and 3 € vy with «a # ( such that = interchanges a and 3. Furthermore
the vertices corresponding to the 2-cycles of a will be coloured black, and the points
fixed by a coloured white. The z-graph gives us valuable information on C(G, X).

The following lemma gives a good example.

Lemma 3.1.12 (Bundy, Bates, Rowley and Perkins). Let x € X. Then x € Ay(a)U

{a} if and only if each connected component of G, is one of the following:
(D) ]
L NOSONON =

The structure of the xz-graph also gives us the sizes of each GG, orbit, and two
involutions z,y € X are in the same G, orbit if and only if their corresponding x-

graphs are isomorphic. These two facts alone give us a wealth of knowledge about



CHAPTER 3. A COMMUTING INVOLUTION GRAPH FOR BM 83

C(G,X). This essentially means that all information about C(G, X) can be worked
out via these x-graphs and as they are purely combinatorial in nature, and fairly easy

to deal with, this simplifies the problem greatly.

Commuting Involution Graphs in Coxeter Groups

In [9], Bates, Bundy, Perkins and Rowley studied the commuting involution graphs
for the finite irreducible Coxeter groups. We recall there are three infinite families of
finite Coxeter groups, that is A,,, the symmetric group on n + 1 points, B,, and D,,
as well as the 7 exceptional finite coxeter groups Eg, Fr, Fg, Fy, Hs, Hy and I,,.

We recall that we can think of B, as the group of signed permutations on n
objects. That is, we define the sign change to be the element which sends i to —i
and fixes all other j. Then take this element and combine it with S, to get B,,. More
precisely we write a permutation in S, (including 1-cycles) and add a plus or minus

sign above each ¢. For example if
+ - =+
w = (1a 2)(374) € B4

then w(l) =2, w(2) = —1, w(3) = —4 and w(4) = 3. The Coxeter Group D, is the
subgroup of index 2 in B,, consisting of all elements which involve an even number of
sign changes. Now if we express an element w as a product of disjoint cycles, then we
say a cycle (i1,...14,) is positive if it contains an even number of negative signs, and
negative if it contains an odd number. We can now define an obvious extension of
cycle type in the symmetric group, the signed cycle type, that is the usual cycle type,
but with a + or — sign above each cycle, where we again include cycles of length
1. As expected, it is true that elements in B,, are conjugate if and only if they have
the same signed cycle type, and conjugacy classes in D,, are parameterized by signed
cycle type, with one class for each cycle type except in the cases where the signed
cycle type contains only even length positive cycles, in which there are two. In [9]

the authors proved two main theorems, which we are now in a position to state.
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Theorem 3.1.13 (Bundy, Bates, Rowley and Perkins). Suppose that G = B,, or D,

and let

+ + + - - + - -
a=(1,2)...2m—=1,2m)(2m+1)...2m + k1)2m + Kk, + 1) ... (2m + ky + ko).

Let X = a% and k = max{ky, ko}. Then we have the following:

(i) If m =0 then C(G, X) is the complete graph.

(i) If k =0, then the diameter of C(G, X) is at most 2.

(i5i) If k=1 and m > 0 then C(G, X) is disconnected.

() If k> 2 and n > 5 then the diameter of C(G, X) is at most 4.

(v) If n=>5,m=1 and k = 2 then the diameter of C(G,X) is 5.
(vi) If n =5, m =1 and k = 3 then the diameter of C(G,X) is 2.
(vii) If n =4, m =1 and k = 2 then C(G, X) is disconnected.

For the exceptional Coxeter groups we have the following result

Theorem 3.1.14 (Bundy, Bates, Rowley and Perkins). Suppose that G is an excep-

tional finite Coxeter group, X a conjugacy class of G and a € X.

(i) If G = I, then C(G, X) is either disconnected or consists of a single verte.
(i1) If G = Eg then the diameter of C(G, X) is at most 5.

(ii) If G = E; or Eg then the diameter of C(G, X) is at most 4.

() If G = Fy and | X| > 1 then either C(G, X) is disconnected or has diameter 2.

(v) If G = Hy or Hy and |X| > 1 either C(G, X) is disconnected or has diameter
2.
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Note that the commuting involution graph for the family A, has already been
calculated in [10] as A, = Sym(n + 1).

Theorem 3.1.14 is proved by using MAGMA and calculating the commuting invo-
lution graph directly. As these groups are relatively small this problem is computa-
tionally fairly easy, and just consists of some easy number crunching. For Theorem
3.1.13 as they had a more concrete understanding of the elements of B,, and D,,, the
commuting involution graphs can be constructed without use of a machine. As in
[10], central to the calculation is the idea of an z-graph. Indeed, for z € X we define
a graph G, as follows. Without loss of generality we fix a € X,

a=(1,2)...2m—1,2m)2m +1)...(n)
and define
V={{12}....,{2m —1,2m},{2m+ 1} ... {n}}.

Then G, has vertex set V, with vy, v, € V connected by an edge if and only if there
exists a a € vy and § € vy with o # 3 such that x interchanges +« and +4. Within
G, we will colour the vertices corresponding to the 2 cycles black and the others
white.

As in [10], information on these z-graphs can be pulled across to C(G, X ), however
whereas in the case of the symmetric groups two elements z,y € X are in the same
G, orbit if and only if G, and G, are isomorphic, for Coxeter groups this in general

is not true, however these graphs are still a great deal of use.

Commuting Involution Graphs in Special Linear Groups

In [11], the authors Bates, Bundy, Perkins and Rowley gave bounds on the commuting
involution graph for special linear groups over fields of characteristic 2, and gave the
exact disc sizes for 2 and 3 dimensional special linear groups over any finite field.

They proved the following theorems.
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Theorem 3.1.15 (Bundy, Bates, Rowley and Perkins). Suppose G = Ls(q), the 2

dimensional projective special linear group over the field of q elements, then

(i) If q is even then C(G, X) consists of ¢+ 1 cliques of size ¢ — 1, that is C(G, X)

consists of ¢+ 1 copies of the complete graph on q — 1 vertices.

(i) If ¢ = 3 mod 4 with ¢ > 3 then C(G, X) is connected with diameter 3. Fur-

thermore

[A(B)] = (¢+1)/2
[Aa(B)] = (g+1)(g—3)/4

[As(t)] = (¢+1)(¢—3)/4

(i1i) If ¢ =1 mod 4 with ¢ > 13 then C(G, X) is connected with diameter 3. Fur-

thermore

A = (¢+1)/2
[A:(t)] = (¢+1)(g—5)/4

[As(t)] = (¢+1)(g+7)/4

Note that this theorem misses out the cases where ¢ = 3,5,9 and 13. However in
three of the cases we have a isomorphism into the class of alternating groups, which
have already been studied, that is Lo(3) = Alt(4),L2(9) = Alt(6) and Lo(5) = Alt(5),
and hence these graphs are given in [10]. Finally the graph for Ls(13) is calculated
separately. We remark that the graphs for Ls(9) and Ly(13) are both connected and
have diameter 4 and that the graph for L,(3) is in fact the complete graph on 3

vertices.

Theorem 3.1.16 (Bundy, Bates, Rowley and Perkins). Suppose that G = SLs3(q).

Then C(G, X) is connected and has diameter 3. Furthermore we have
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(i) If q is even then

IA()] = 2¢°—q—2
1As(8)] = 2¢%(qg—1)

As(t)] = ¢*(g—1)

(i) If q is odd then

|AL(t)] = qlg+1)
1As(t)] = (=D +1)
As(t)] = (¢+1)(qg—1)

We also have that the commuting involution graphs for Ls(q) and SLs(q) are isomor-

phic.

Theorem 3.1.17 (Bundy, Bates, Rowley and Perkins). Let K be a possibly infi-
nite field of characteristic 2 and suppose that G = SL,(K). Also suppose that V
is the natural KG-module associated to G, and set k = dimg[V,t], where [V,t] =

(' +v|veV). Then
(i) if n > 4k then the diameter of C(G, X) is 2;
(ii) if 3k < n < 4k then the diameter of C(G, X) is at most 3;

(#1) if 2k < n < 3k or k is even such that n = 2k, then the diameter of C(G, X) is

at most 5;
() if n = 2k where k is odd then the diameter of C(G, X) is at most 6.
Central to the proof of Theorem 3.1.17, is the following lemma
Lemma 3.1.18 (Bundy, Bates, Rowley and Perkins). Suppose z,y € X then

(i) [V,z] < Cy(x)
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Now if [z,y] = 1 then d(z,y) = 1 and so we can prove the following corollary
Corollary 3.1.19. Let z,y € X with x # y. If Cy(x) = Cy(y) then d(z,y) = 1.

By using this corollary we can determine which vertices should be joined by an
edge by studying their fixed spaces. This converts our problem to simply studying

linear algebra.

Commuting Involution Graphs for Sporadic Groups

In [12], Bundy, Bates, Rowley and Perkins studied commuting involution graphs for
the 26 sporadic simple groups and their automorphism groups. All cases were covered
in this paper apart from J; with the class 2B, F'i},, with the classes 2B and 2D, the
Baby Monster, BM, with the classes 2C and 2D and the Monster M with the class
2B. The J4 and F'ii, cases have recently been calculated by Rowley and P. Taylor
and will be published in the near future.

The idea of the calculations was to pick a fixed vertex ¢ and split the involution
class X into smaller chunks, that is into the sets X¢ = {z € X |tz € C} where C' is
any conjugacy class of the group G in question. They then determined which disc of
C(G, X) each X¢ belonged to. In all cases they found that the diameter of C(G, X)
was at most 4, only being 4 in a limited number of cases.

For many of the sporadic simple groups, the commuting involution graph for
the class 2A was calculated as part of the primary investigation into the group.
For example in Fisy the commuting involution graph for the class 2A, the class of
3-transpositions which generate the group, was calculated during Fischer’s investi-
gation into 3-transposition groups. Similarly for the class 24 of the Baby Monster,
similar graphs were studied by Fischer and by Ivanov and data from these commuting
involution graphs can easily be extracted from these papers.

For the other cases a mixture of brain and machine was used. For the smaller

sporadic groups they used the following computational method, using the smallest
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degree non-trivial faithful permutation representation given in the online ATLAS.
e Calculate C' = Cg(t) and S € Syly(C).

e Compute T" = S N X. This can be done easily by using the dimension of
the fixspace as a conjugacy class invariant, that is the subspace of the natural

G-module which is fixed by an element of the conjugacy class.

e Calculate Ay (t), the first disc of C(G, X), which is the union of the conjugacy
classes of C'in T'\{t}. Let R; be a full set of representatives for these conjugacy

classes.

For ¢ > 2 carry out the following steps
e Compute representatives R; of the C(t) orbits of A,(t). This is done as follows

1. For each r € R;_; find g € G such that r = 9.
2. Calculate Ay(r) as Ay (t)9.
3. Run through A;(r) and discard element in orbits that have already been

found.

C
e Calculate |Ay(t)] = 37, cp, \c‘afé%\'

e Stop when . |A;(t)] = |X]|.

This method works well in MAGMA for the smaller sporadic groups, however fails
in larger ones as we often have to store many elements in a large matrix representation,
and we run out of memory. For the larger sporadic groups they changed tactics by
instead of considering the element ¢ and varying the product z = tx, they fixed an
element z € (, for a conjugacy class (', and considered all the possible elements
t which could arise. Using this method we can now consider the maximal p-local
subgroup M which contains z. In most cases a smaller permutation representation
for M is given in the online ATLAS, which makes calculations possible. In this paper,

the authors also extensively used Bray’s algorithm [6], a very efficient method for
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calculating the centralizer of an involution. As this algorithm is fairly restrictive, as
it is only applicable to involutions, the authors used a slight modification, given in
[4], that can be applied to real elements, that is elements which are conjugate to their

inverse.

3.2 Basic Definitions and Results

From now on we will assume that X is a conjugacy class of involutions and C(G, X)
is the commuting involution graph of G with respect to X.

Now the following simple lemma shows that our graph is invariant under action

by G.
Lemma 3.2.1. The map ¢, : X — X given by %7 = 29 is a graph automorphism.

Proof. Clearly ¢, is a bijection as X is a conjugacy class, therefore we just need to
show ¢, is compatable with the graph structure of C, that is x and y are joined by
an edge if and only if 2¥¢ and y¥9 are joined by an edge. So suppose that xy = yx

then

aPoy? = g lwgglyg
= g 'zyg
= g 'yxg

= g 'ygg 'zyg
— y@g Z#Pg
Clearly the opposite direction is also true, and hence ¢, is a graph automorphism. [

Hence the distance between any two vertices x and y is the same as the distance

between x9 and y? for any g € G. Therefore the sizes and structures of the discs A;(t)
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are independent on our choice of t. We will frequently make use of this by choosing
a particular ¢ which makes our life as easy as possible.
We have the following elementary result, proved in [12], which will be a very

powerful tool in the study of these graphs.

Lemma 3.2.2 (Bundy, Bates, Rowley and Perkins). Let © € X and let z = tx.

Suppose z has order m, then the following are true.
(i) x € Ay(t) if and only if m = 2.
(ii) If m is even, greater or equal to 4 and z™? € X, then x € Ny(t).

(iii) If Coy(x) N X =0 then d(t,x) > 3. In particular if Coy(z)(x) has odd order,
then d(t,x) > 3.

(iv) Suppose m is odd and assume that there doesn’t exist any elements g € G of

order 2m such that g*> = z and g™ € X. Then d(t,x) > 3.

Proof. We follow the proof given in [12]. We first note that z being an involution is
equivalent to x and ¢t commuting (as ¢t and x are involutions). Hence m = 2 if and
only if z € Ay(t). Part (ii) follows from the properties of dihedral groups. Indeed
firstly note that ¢ and x generate a dihedral group of order 2m and as m is even,
2% ¢ Z((t,x)). Hence z™? commutes with both ¢ and z, and thus d(t,z) < 2. On
the other hand, as m > 2, d(t,x) > 2. Thus d(t,z) = 2 as required.

Now note that Cg(t) N Ca(x) N X = Cey)(x) N X which we will assume to be
empty. Therefore there are no elements in X which commute with both ¢t and x and
thus d(¢, ) > 3. So in particular if Cc,(.)(x) has odd order, then it cannot contain
any involutions and thus its intersection with X must be empty. Hence (iii) follows.

Finally for (iv) note that if m is odd then d(¢,z) > 2 by (i). Now suppose that

d(t,z) = 2, then there exists y € Cg(t) N Ce(z) N X. Now z has odd order, so there
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exists an integer 7 such that (2*)? = 2. Let w = yz*, then

w? = y'yz
= 9%(2")? as y commutes with both ¢ and z

= Z.

We also have

= gy as y is an involution, and z as order m.

However by hypothesis G has no such element, and hence d(t, x) > 3 as required. [
The following elementary Lemma about centralizers of involutions will be useful.

Lemma 3.2.3. Let t and x be involutions in G and suppose z = tx. Then

Co(t)NCq(x) = CCG(t) (x) = CCG(z) (t).

Proof. 1t is clear that Cg(t) N Cg(x) = Coyw(x). Now suppose that g € Ce,(2)(1),
then g commutes with both z and t. Now x = tz and hence gr = gtz = tzg = xg
and hence g commutes with both ¢ and z, so Ce(.)(t) € Cq(t) N Ce(z). The other

inclusion is similar. [
Crucial to the study of C(G, X) is the following idea.

Definition 3.2.4. For two conjugacy classes X and C' of G, with ¢ a fixed element
of X we define

Xe={zxe X |teeC}.

We first note that as both X and C are conjugacy classes, the sets X will be

independent on the choice of t. Indeed we have the following easy lemma.
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Lemma 3.2.5. Fort a fized involution in X, C' a conjugacy class of G and g € G

we have

{reX|teeC}={xeX|t/zeC}

Proof. The condition that t%z € C' is equivalent to tz9 ' € C as C is a conjugacy

class. Hence

{reX|tlreCt = {zeX|ta? €C}

= {re X |tr e C} as X is a conjugacy class.

]

The following lemma is an important observation about X, and will play an
important role when we study commuting involution graphs, especially in the case of

sporadic simple groups.

Lemma 3.2.6. For C' a conjugacy class of G, the set X¢ is a union of Cg(t) orbits,

as Cg(t) acts on X¢ by conjugation.
Proof. We must show that for g € Cg(t) and z € X¢, 29 € X¢, then our result will

follow. That is, we must show that tx9 € C'.

te?d = tg lag
= g 'twg as g commutes with ¢

= ¢ lcg where ce C

Hence tx9 is an element of C' as required. ]
Lemma 3.2.7. For x € X and g € C(t), we have d(t,x) = d(t, 7).

Proof. Suppose d(t,z) = n, then there exists a chain of elements

t = x9,x1,29,...,x, =z such that x; € X and x;x;,1 = x;112;, and no shorter chain
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exists. If we conjugate each element of the chain by g, then each pair of adjacent
elements still commute, so we get the following chain,

— 49 — 9 9 9 ]
t=1t" =y, x]{,T5,...,0), =X

In this case, no shorter chain can exist between ¢t and 29, as if there were, we could
conjugate back to t and x, producing a shorter chain between them. Hence d(t, x) =

n = d(t,z9) as required. O

Now Lemma 3.2.7 shows us that the discs of C(G, X) consist of unions of Cg(t)
orbits of X. Therefore our general tactic will be to pick a particular x € X, calculate
which disc it belongs to and then note that the entire orbit z¢¢® belongs to this disc.
Now from Lemma 3.2.6, we see that the sets X¢ are also unions of Cg(t) orbits, for
C' a conjugacy class of GG. So we will break down the sets X into their constituent
orbits and determine in which disc each orbit belongs to. It is usually the case that
every orbit contained in a particular X will belong to the same disc of C(G, X).

For example for the sporadic simple group J; and the conjugacy class of involutions
X = 2A the set X such that C' = 2A make up the first disc, the set X such that
C' = 4A makes up the second disc, the set X such that C' = 3B makes up the third
disc and finally the sets X such that C' = 5A, 5B% make up the fourth disc. All the
other sets X are empty.

If we have a set X¢ splitting between two discs we will simply write the size of
the intersection of X and that disc in brackets after the ATLAS name for C. For
example in the sporadic simple group McL, with the class X = 2B the set X4 splits
between the second and third discs, so we will write 44(1980) in the second disc, and
4A(990) in the third.

Now due to some ingenious character theory by Burnside we can easily calculate

the sizes of the sets X from the character table of G.

Definition 3.2.8. Let G be a finite group and Cj;, C; and Cj be three conjugacy

classes of G. Let a;j; be the number of pairs (a,b) with a € C; and b € C}, such that
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ab = g where g is a fixed element in C}. Then the integers a;;; for all possible ¢, j

and k are called the class structure constants for G.

Using some character theory we can easily calculate the values of the class struc-

ture constants.

Lemma 3.2.9. Let C4,...C,, denote the conjugacy classes of G, and suppose that
g; € C;. Then for all 1,7 and k

Q5 =

|G| x(9:)x(95)x(9gx)
|Ca(9:)l1Calg;) x(1)

where the sum is over all irreducible characters of G.
Proof. See [16], page 128, Lemma 2.12. O

Lemma 3.2.10.

IGI x(g
X _
Xel = 1EatoNCe® |Z

again where the sum is over all ireducible characters of G, and g is a representative

of C.

Proof. We must first show that
[Xel = {(g,h) € O x X | gh=t}|
and then using Lemma 3.2.9 our result will follow. Indeed,

{(g,h) € Cx X [gh=1t}] = [{(g,h) € Cx X |g=th}|
= {heX|theC}

= |X¢l.
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Another concept that will be important to us will be the extended centralizer of

an element ¢ in G. The extended centralizer, Cf.(g) for g € G is defined as follows

Calg)={zeG|g"=gorg"=g'}.

Note that C%(g) = Ng({g,97'}), so in particular C,(g) is a subgroup of G. The size
of the extended centralizer of an element with respect to the size of the centralizer is

closely related to that element being real or not.

Definition 3.2.11. An element g € G is said to be real (in G) if there exists an
xr € G such that ¢ = ¢g~!. Furthermore, g is said to be strongly real if there is a

conjugating element which is an involution.

Lemma 3.2.12. Let g € G, then

(1) If g is an involution then C%(g) = Ca(g).
(i1) If g is not real then C&(g) = Ca(g).

(i) if g is real and not an involution, then |CE(g)| = 2|Ca(9)|

Proof. Parts (i) and (ii) follow easily from the definition. For part (iii), let C~! =
{zr € G| g¢g° =g '} Clearly Cf(g) is the disjoint union of Cg(g) and C~! as any
element which centralizes g cannot invert it. Therefore if we show there exists a
bijection between Cg(g) and C~! then we are done. Indeed, consider the following

map

¢ :Cg(x) + C~ ' such that

for a fixed h € C~!. Firstly, this map is well defined. Indeed, consider a g € Cg(x),

then 2" = (271)9 = 27!, hence g¥ = hg € C~1. Clearly ¢ is injective, therefore we
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just need to show it is surjective. So take z € C~! and let y = h™'z, then clearly

y¥ = z, thus we need to show is that y € Cg(x). Indeed,

ry = zh 'z

Hence y € Cg(z)and our map is indeed a bijection. Therefore our lemma holds.

]

Lemma 3.2.13. Let t, x be non-commuting involutions from a finite group G and let

z =tx. Then
(i) z is strongly real in G
(i) |C&(2)| = 2|Ca(2)]
(iii) C&(2) = (Cal2),1)

Proof. The element z is clearly strongly real as 2! = (tz)! = 2t = 27'. Part (ii)
of the lemma follows straight from Lemma 3.2.12. For part (iii), it is clear that
(Ca(2),t) € CL(z) as both Cg(z) and ¢ are contained in Cf(z). Now suppose that
w € Cf(z) and thus either z¥ = z or z¥ = 27!, Now if 2% = 2 then w € Cg(z) and

we are done, so suppose that 2% = z=1. Then
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Zwt _ (Z—1>t

Hence wt € Cg(t) and therefore as w = wtt, we have w € (Cg(t),t) implying that

C&(z) C (Cq(t),t), and we are done. O

We will finally give two more useful tools, both of which we will use extensively

when studying C(G, X).

3.2.1 The Fix Space

Let p : G — GL,(F) be a representation of a finite group G, where F is some
field of positive characteristic. Let V' be the associated G-module, a copy of the
n-dimensional vector space over F with the obvious action. For an element g € G,

we define the fixspace of g as follows

Fizg={veV |v =v}.

Note that Fiz, is the eigenspace of the matrix p(g) corresponding to the eigenvalue
1, where 1 is to the multiplicative identity in F. Clearly, if 1 is not an eigenvalue of

p(g), then Fiz, is trivial.
Lemma 3.2.14. For g € G, Fiz, is a subspace of V.
Proof. Let v,w € Fix, and let A\, Ay € F. Consider the following

()\11) + /\gw)g = )\ﬂ)g + /\ng

= )\11) + /\2w
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Hence \v + Aw € Fiz,, and our lemma follows. O
The following Lemma will give us an important tool when studying C(G, X).

Lemma 3.2.15. Let g, h be two conjugate elements in G. Then
Fixy = Fixy,.

In particular the dimensions of the two fix spaces are equal.

Proof. As g and h are conjugate in G, there exists an a € G such that ¢g* = h.

Consider the following map,

Firstly suppose v € Flizg, then

Hence 0(v) € Fixy, and this map is well defined. Now by its definition, # is clearly
linear, so all there is left to prove is that it is a bijection. Now 6 is obviously injective,
so suppose w € Fizy,, and consider w® . Hence (w“71)9 = w9 = qhaT = o,
and thus w® € Fiz,. Clearly as f(w® ') = w, our lemma easily follows.

]

Lemma 3.2.15 shows that the dimension of the fix space is a conjugacy class

invariant and gives us an easy way to see if two elements are in different conjugacy
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classes. Assuming you are working inside a linear representation, the fixspace can
be easily computed in MAGMA as the eigenspace of 1. When we are dealing with
groups with very large dimension linear representations we can more often than not
tell exactly which conjugacy class an element is in by simply using the dimension of
the fixspace. For the Baby Monster, Rob Wilson [43] gave the dimension of the fixed
space for representatives for all conjugacy classes of elements of even order in the 4370
dimensional representation over the field of 2 elements. During our investigation into

the commuting involution graph for BM we will make extensive use of this.

3.2.2 Bray’s Algorithm and Generalizations

In this section we will give details of an algorithm which computes elements which

commute with a given involution. We follow the details which are given in [6].

The following elementary observation is the main justification for the algorithm.

Lemma 3.2.16 (J. Bray). For g,h € G with g an involution we have

glg,h]™" = [g,h]"g

for alln € N.

Proof. Consider the following,

glg.h]™™ = g(h~'ghg)...(h " ghg)

Vv
n times

= (gh7'gh)...(gh7'gh)g

-
n times

= [g9,h]"g.

]

Therefore if [g, h] has even order, say 2m, then g[g, h|™ = g[g, h|™™ = [g, h|™g and

hence [g, h]™ commutes with g. On the other hand, if [g, h] has odd order, say 2m + 1
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then ghlg, h|™ = hglg, h]™"* = hglg, h]™™ = h[g, h|™g, and thus h[g, h]™ commutes
with g . Therefore in both cases we have produced an element which commutes with
g. We also note that [g,h™'] = ([g,h]" )~! and thus [¢g,h~!] has the same order
as [g, h] and therefore in the even case the [g, h] above can be replaced by [g, h™!]
producing two elements instead of one (in the odd case these two elements are equal).
So we propose the following algorithm to produce a set S of elements which commute

with g,
1. Initialise S to be {g}.
2. Choose a random element h, which isn’t an involution.
3. If [g, h] has even order, 2m, then add [g, h]™ and [g,h'|™ to S.
4. If [g, h] has odd order, 2m + 1 then add h[g, h]™ to S.
5. Make another random element h.
6. Go to Step 3 unless you have enough elements.

Obviously if we have enough elements then Cg(g) = (S5), however in the case of
large groups in which calculating [(S)| is difficult we may not know when to stop.
However in our case we often do not require all of Cg(t), just part of it, so this
algorithm will be sufficient. We will refer to this algorithm as Bray’s Algorithm.

At this point we make an important remark on how we make random elements .
We obviously want our results to be reproducible and therefore any random elements
created will need to be stored. Say our group has a large degree matrix representation
in which we work, for example in the Baby Monster. Then we will not want to store
these elements as matrices, as this will take up far too much memory. Instead, suppose
that our group G is generated by a number (normally two) of known elements, say
x and y. Then to produce a random element we produce a random string of xs and
ys and store this in an array, which will hopefully only take a few bytes of memory.

Then to produce the element we just write a procedure that goes through the array
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multiplying the required elements together - this is the approach we will usually take.
A full code listing for producing random elements and the algorithms given in this
section can be found in Appendix 4.

In [4], Rowley and Bates made the following improvement to Bray’s Algorithm so
that it will work on strongly real elements. The following elementary facts underpin

the method,

Lemma 3.2.17 (C. Bates and P. Rowley). Suppose that we have t € G, z a real

elements of G which is inverted by t, and let h € Cg(t). Then for any i € N,

z[z,h] ™" = ([z, h]") 2.

1

Proof. Since z' = 27!, we have

z[z,h] ™t = zh 7 e he = zh 2 b,

Now since h € Cg(t) and 2t~ = ¢71271 we have

zh2thy = zh Yt lzthe
= 2t 'hlzhtz
= t Y27 ikt

= [z,h]'z

and thus, z[z, h]™! = [z, h]*z. To complete the proof of the lemma, a simple induction

argument suffices. [

Lemma 3.2.18 (C. Bates and P. Rowley). Suppose that t € G, z is a real element
of G inverted by t, and let h € Cg(t). If we let R(t) denote the set of real elements
of G inverted by t, then

([z,h]) "R(t) € Ca(z).

Proof. Suppose [z,h]" € R(t) then ([z,h]*)" = [z, h]™, and thus by Lemma 3.2.17 we
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have [z, h]" € Cg(z). Therefore ([, h]) N R(t) C Cg(z) as required. O

Now suppose t and z are involutions in G. Now as z = tx is a real element in G
inverted by ¢, Lemma 3.2.18 leads us to the following algorithm to compute elements

in Cg(z).
1. Use Bray’s algorithm to produce an element h in Cg(t).
2. Calculate w = [z, h] and n, the order of w.
3. Test whether w® is inverted by ¢, where 1 < i < n.

4. If so output w’ and go to Step 1.

As for the previous algorithm if we produce enough elements in Cg(z) we may hope
to generate the entire centralizer, however knowing when to terminate is a difficult
question. In practice this algorithm isn’t nearly as efficient as Bray’s algorithm - it

will often only compute elements in (z).

3.3 The Baby Monster

The Baby Monster, BM is the second largest of the sporadic simple groups, having
an order of

4,154, 781,481, 226,426,191, 177,580, 544, 000, 000

with a factorisation of
24 5 31 % 5% % 72 x 11 x 13 x 17 x 19 x 23 x 31 x 47.

It is a so called {3, 4}-transposition group as it is generated by the class 2A of {3,4}-
transpositions, elements which product to an element of order 1,2,3 or 4. During
Fischer’s investigations on {3, 4}-transposition groups he calculated C(BM,2A) be-

fore the baby monster was even constructed. During this work, Fischer was led to
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predict a simple group of this order, but could not construct it. Eventually, after
extensive computation, Leon and Sims [19] gave a computational construction of a
group of the correct order, and proved it had the properties Fischer predicted and
showed it was unique. Later Griess gave a non computational construction of the
baby monster, related to the 196,884 dimensional Griess Algebra also used to con-
struct the monster. The baby monster has 184 conjugacy classes, with four involution
conjugacy classes and the maximum element order is 70. The smallest faithful linear
representation of the baby monster is 4370 dimensional over the field of two elements,
meaning that calculations inside BM are rather difficult and ingenious workarounds
need to be found for even simple calculations. This representation was originally
constructed by Rob Wilson [42] and can be found in the online ATLAS [22]. We will
use standard ATLAS notation for all conjugacy classes.

As has already been noted, the commuting involution graph for 2A was known
even before the construction of the baby monster. The class 2B was calculated by
Bundy, Bates, Rowley and Perkins in [12], using the point line collinearity graph for
the maximal 2-local geometry for the baby monster, computed by Rowley and Walker
in [26] and [27] . The commuting involution graphs for the classes 2C' and 2D are
still open, with the class 2C' being investigated in this thesis.

From now on in this chapter G will be the Baby Monster, X the class 2C' and
t will be a fixed element in X. We will denote the commuting involution graph of
G with respect to X by C(G,X). As in [12], we wish to calculate the diameter of
C(G, X), calculate the sizes of each of the discs and give the conjugacy classes of
products tx for x running through each of the discs. Not all of this has been possible,
however all classes X have been located within the disc structure of C(G, X), except
for those C' of elements of 2-power order, and the classes 7TA and 14D. The results

will be summarized in the following theorem.

Theorem 3.3.1 (B. Wright). The following table gives the locations of the sets X¢
in the graph C(G, X), where G is the Baby Monster and X is the conjugacy class 2C,

for various conjugacy classes C.
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Table 3.1: Location of X¢ in C(G, X)) for various classes C

Aq(t) As(t) As(t)
9B,2C,2D | 3A,5A4,6C,6G,6H,61,6K,9B, | 3B,5B,10D, 10F, 114, 12G, 127,
10B,10C, 12B, 12D, 12F, 12L, 12M,19A, 206G, 22 B, 24G, 33 A,
120,12R, 134, 154,174, 20D, 354,484
20F, 21 A, 24 A, 24C, 24 H, 26 A, 40D

Furthermore the sets X1sc and Xsop split over two discs of C(G, X), with
3311126603366400 elements from Xisc contained in Aqo(t) and the other
1103708867788800 elements in As(t) and 3311126603366400 elements from Xsop
contained in Ay(t) and the other 3311126603366400 elements in As(t).

The rest of this chapter will be devoted to the details of the calculation of this
graph. We first give a table of the sizes of the sets X where C' runs over all conjugacy
classes of GG. These were computed in GAP, using the
ClassMultiplicationCoefficient(tbl,i,j,k) command, where tbl is the char-
acter table for BM stored in the Character Table Library of GAP, i and k are equal
to 4, as 2C' is the fourth conjugacy class of BM, and j runs from 1 to 184 correspond-
ing to all conjugacy classes of BM. The classes C' for which X¢ is zero are obviously

omitted to conserve space. There are 77 non zero class structure constants.
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Table 3.2: Class Structure Constants For 2C.

Structure Constant | X¢|

factors

1A
2A
2C
2D
3A
3B
4B
4C
4E
4F
4G
4H
4]

5A
5B
6C
6G
6H
61

6K
TA
8B
8D
SE
8F
8G

1

4524975
184246272
350859600
4004675584
141937868800
6629575680
185253868800
224550144000
235777651200
1005984645120
1482030950400
3233522073600
4598786949120
11037088677888
6882212413440
22993934745600
14371209216000
11496967372800
30658579660800
110370886778880
17245451059200
30179539353600
17245451059200
25868176588800
51736353177600

1

32 x 5% x Tx13% x 17

213 % 33 x 7? x 17

24 x 3t x 52 x T x 13 x 17
215 x Tx 13 x 17 x 79

219 % 52 x 72 x 13 x 17

210 3B x5 x7x13x 17 x 31

B x 3P x5 xT?x11x13x17

2T % 3t x5 x 72 x 13 x 17

29 x 3P x52x 73 x13 x 17

215 %3t x Hx ¥ x 13 x 17

211
214
220

222

218
217

218

x 3°
x 36
x 34
x 35
x 32
x 3
x 34
x 31
x 33
x 3°
x 3°
x 3°
x 3°
x 36

x 36

X 52 x 7% x 11 x 13 x 17
X 52 x 7? x 13 x 17

x5 x T x13x 17

X T2 x 13 x 17

X5 x 7% x 13 x 17 x 431
X 52 x 7?x 13 x 17

x 5% x 72 x 13 x 17

x 52 x T* x 13 x 17

X 52 x 7? x 13 x 17

X5 xT7*x13x 17

x 52 x T* x 13 x 17

X 52 x 73 x 13 x 17

X 52 x 7* x 13 x 17

X 52 x 7?x 13 x 17

X 52 x 7?2 x13x 17
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SH
81
8J
8K
8L
8N
9B
10B
10C
10D
10F
11A
12B
12D
12F
12G
12J
12L
12M
120
12R
13A
14D
15A
16A
16C
16D
16E

103472706355200
51736353177600
155209059532800
137963608473600
248334495252480
275927216947200
572293487001600
344909021184000
331112660336640
331112660336640
275927216947200
2207417735577600
45987869491200
99640383897600
229939347456000
310418119065600
413890825420800
551854433894400
551854433894400
413890825420800
827781650841600
3311126603366400
1655563301683200
1765934188462080
827781650841600
1655563301683200
827781650841600
827781650841600

219 % 36
218 % 36
218 X 37
221 % 35
221 X 37
222 X 35
225 % 32
220 X 35
223 % 36
223 % 36
222 X 35
225 % 35
221 X 34
220 X 33
221 % 34
219 X 37
221 % 36
223 % 35
223 X 35
221 % 36
222 X 36
224 % 36
223 % 36
227 X 35
222 % 36
223 X 36
222 X 36

222 % 36

X 52 xT7?x13x 17
X 52 x 7?2 x13x 17
x 52 x 7% x 13 x 17

X 52 x 7?2 x13x17

X5 XT72x13x 17

X 52 x 7?2 x13x17
X 52 x 73 x13x 17

x5 x 7% x 13 x 17

X5 X T*x13x 17
X5 XT7%x13x 17

x 52 x T* x 13 x 17
X 52 x 7? x 13 x 17
x 52 x T* x 13 x 17
x 5% x 7% x 132 x 17
x 5% x 7? x 13 x 17
x 52 x T x 13 x 17
X 52 x 7? x 13 x 17
X 52 x 7* x 13 x 17
X 52 x 7?x 13 x 17
X 52 x 7?2 x 13 x 17
x 52 x T* x 13 x 17
X 52 x 7? x 13 x 17

X 52 x 7?2 x13x 17

X5 XT7®x13x 17

X 52 x 7?2 x13x 17
X 52 x 7% %x 13 x 17
X 52 xT7?x13x 17

X 52 xT7?x13x 17
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16F
17A
18C
19A
20D
20F
20G
21A
22B
24A
24C
24G
24H
26A
28A
28B
30D
32A
328
33A
35A
40D

48A

1655563301683200
6622253206732800
4414835471155200
13244506413465600
827781650841600
3311126603366400
3311126603366400
2207417735577600
6622253206732800
1103708867788800
1103708867788800
3311126603366400
3311126603366400
6622253206732800
3311126603366400
3311126603366400
6622253206732800
6622253206732800
6622253206732800
13244506413465600
13244506413465600
13244506413465600
13244506413465600

223

225
226
226
222
224
224
225
225
224
224
224
224
225

224

x 36
x 36
x 3°
x 36
x 30
x 36
x 36
x 3°
x 36
x 3°
x 3°
x 36
x 30
x 36
x 36
x 30
x 36
x 30
x 36
x 36
x 30
x 36

x 36

X 52
X 52
X 52
x 52
X 52
X 52
X 52
X 52
X 52
X 52
X 52
X 52
x 52
X 52
X 52
X 52
X 52
X 52
X 52
X 52
X 52
X 52

X 52

x 72
X T2
X T2
X T2
X T2
X 72
x T2
X T2
X 72
X T?
X T2
X T2
X T2
x 72
x T2
X T2
x T2
X T2
X 72
X T2
X T2
x 72

X T2

x 13 x 17
x 13 x 17
x 13 x 17
x 13 x 17
x 13 x 17
x 13 x 17
x 13 x 17
x 13 x 17
x 13 x 17
x 13 x 17
x 13 x 17
x 13 x 17
x 13 x 17
x 13 x 17
x 13 x 17
x 13 x 17
x 13 x 17
x 13 x 17
x 13 x 17
x 13 x 17
x 13 x 17
x 13 x 17
x 13 x 17
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At this point we make a comment on how we differentiate between conjugacy
classes in BM. Obviously, as the order of BM is large and it has a large matrix
representation dimension, using the IsConjugate command in MAGMA is impossible.
Instead we use the co-dimension of the fixspace of an element to distinguish between
classes. In [43], Rob Wilson gave the co-dimensions for all the classes of even order
elements in BM. In most cases this will tell us exactly which class a particular
element is in. If we have a number of classes with the same co-dimension of fixspace,
we can load the element into the 4371 dimensional representation for BM over Fj
and check the trace of the elements in question.

For elements of odd order it is fairly straight forward to calculate the dimension
of the fixspace from the character table, however in most cases (apart from elements
of order 3 and 5) the order of an element uniquely defines which class it belongs to.

From the ATLAS, we glean the following information about centralizers of involu-

tions
Class | Shape of Centralizer Size of Centralizer
2A 2.2F¢(2) : 2 238 x 39 x 52 x T* x 11 x 13 x 17 x 19
2B 21422 Co, 241 % 35 x 53 x 7 x 11 x 23

227 % 36 x 52 x 72 x 13 x 17
238 %3 x5 xT

20 (22 x Fy(2)) :
2D 29216 OF(2) :

2
2

Using Lemma 3.2.2 part (i), we can quickly calculate the first disc of C(G, X).
Indeed A;(t) = Xop U Xoc U Xop, and thus |A(t)] = 539,630,847. We can also
use Lemma 3.2.2 to gather some information about the other discs of C(G, X). The
ATLAS[18] gives us information about which conjugacy class different powers of ele-
ments of G are contained in - for example we know that the cube of a 6A element in
(G is contained in 2A, and the fourth power of a 20B element lives in 5B. We can
use this information as well as part (ii) from the lemma to determine whether certain
sets X are contained in the second disc.

Indeed, consider the class C' = 6K. From the ATLAS we know the cube of an

element from 6K is contained in 2C. Hence by Lemma 3.2.2 (ii), Xex C Aq(t). The
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same argument can be used to show Xjoc and X964 are both contained in the second
disc.

Now part (iv) of Lemma 3.2.2 gives us a final bit of easy information about
C(G,X). Indeed, consider x € X such that z = tx € 19A. Now suppose there
existed a ¢ € G such that ¢ = z. From the ATLAS, we know that ¢ € 38A4. The
19th power of such an element lives in 2A, and hence there does not exist a g € G
such that ¢> = z and ¢* € X. Thus d(¢,z) > 3. Again the same argument can be
used to show for z € X¢ with C' € {5B,11A4,33A,35A} that d(t,x) > 3.

For the sets X194, X334 and X354 we can prove something further, that they are
all in fact orbits of X as Cg(t) acts by conjugation. Indeed, consider = € Xy94, that
is z =tz € 19A4. We wish to prove that Xjg4 = z¢¢®. Now by the Orbit Stabilizer

Theorem and Lemma 3.2.3

Calt)| — Ca(t)]  |Ca(t)]

X = .
| Coco@] ~ Con

We now note that

Cet] _,
| X194

Now as 296 C Xig4, if we can prove |Coy(»)(t)| = 2 then we must have X¢ = 26
and thus X¢ is a C(t) orbit. Consulting the ATLAS we see that |Cg(2)| = 38 = 2x19,
so the possible orders of Ce(.)(t) are 1, 2, 19 and 38. Now Cg(»)(t) cannot have
order 38 as z € Cy(2) and ¢ inverts z, so definitely doesn’t commute with it. So if
we prove Cge,(.)(t) contains an involution we are done.

On the other hand ¢ € C}(z), and since z is real, Lemma 3.2.12 tells us that
[C&(2) : Ca(2)] = 2, so in particular Cg(z) < C%(z). Hence we must have Cg(z)! =
Cq(2). Now by Sylow’s Theorems, any Sylow 2-subgroup of Cg(z) will have order 2,
that is they are just the identity and an involution, and there will be an odd number
of such subgroups. Thus, as ¢ is an involution, there must exist a Sylow 2-subgroup
P such that P' = P. Therefore the single involution in P must commute with ¢ and

thus we are done.
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This same method can be also used to show that X334 and X354 are both Cg(t)
orbits. Now we can easily prove these elements are in the third disc of C(G, X)
by finding an element in the second disc which commutes with our z in question,
proving that d(t,z) < 3, and thus must be equal to 3. For x € Xjg4, using the 4370
dimensional representation for BM, and Bray’s Algorithm, we can find a 7 € X4p
such that  commutes with 7. Since X4p C Aq(t) and d(t,x) > 3, we have d(t,x) =
3. Now as Xjga is a Cg(t) orbit, we have Xi94 C As(t). Similarly we can find a
T € Xyp and € € X7 such that 7 commutes with an z € X334 and £ commutes
with a y € X354. Hence X334, X354 C As(t). Details of these calculations will be
given in Appendix 4.

We now change tactic slightly, and instead of fixing an element ¢ of X and varying
x € X¢ for a certain conjugacy class C, we will fix a z € C' and vary t and then
x = tz. In this case assuming z has order at least 3, we want to vary ¢ over all 2C'

elements which invert z. Hence we want to vary ¢ over

Y = (C5(2)\ Cal2)) N2C,

Now as t; runs over Y, then for each t; as t,t; € 2C where t is our fixed element,
there exists a ¢ € BM such that t{ = ¢, and hence we can also spin around z, so that
d(t,z) = d(t,t1z) where x will run over Xc.

The original tactic was to let C(t) act on X and take a representative x; from
each orbit, and calculate d(¢, x;). Letting Cs(z) act on Y will do exactly the same
job for us. First note that C(2) can act on Y, that is for t € Y and g € Cg(z), that

t? inverts z. Indeed

t9
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Now since t7 is clearly a 2C' element, t9 € Y and Cg(z) does act on Y. Now suppose
t1,to € Y are in the same Cg(2) orbit. Then there exists g € Cg(z) such that ¢ = ¢,.
Now let 21 = t;2 and x9 = toz. Now as g € Cg(2), 2§ = x9 and d(t1, z1) = d(ts, z2).

So for z € C' with |z| > 3 we carry out the following routine

1. Calculate Y = (C&(2)\ Ca(z))N2C. If X was empty for a class C' then clearly

so will Y, so we will ignore it.
2. Let Cg(z) act on Y and split Y into Orbits Y7,...Y,,.

3. For a representative t; € Y; Calculate d(t;,t;z), which will correspond to d(t, x)

for different C;(t) orbit representatives = as Cg(t) acts on X¢.

Step 3 above can be carried out using the following method. Calculate C; = Cey,(»)(t;)
and see if C; N2C # (. If so then d(t;,t;z) = 2. If C; N2C = ) then try and find a
path of length 3 or 4 between t; and ;2.

In practice this routine won’t always work as calculating C(z) and C}(z) inside
BM is very difficult. So the general idea will be to go down to a maximal subgroup
M, or part of M which contains C}(z). By having a stand alone version of M with
a reasonably sized permutation representation and understanding the fusion between

classes of M and classes of BM we hope to be able to carry out this routine.

3.3.1 The Class 17A

Let z = tx € 1TA. From the ATLAS it is easy to see that Cg(z) = 17 x 2% and
Ck(z) =2 (17 : 2) x 2% So suppose Cf(z) = Ly x Ly where L; & 17 : 2 and Ly & 22.
Now as t € Cg(2), t = tity where t; is an involution in L; and ty € Ly and either

to = 1 or an involution. Now as Cg(z) = (z) X L and ¢ inverts z we can deduce that

CCG(Z)(t> = Lo
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and in particular |Cey,(.)(t)] = 4. Thus

Ceal(t
|xCG(t)| _ | G'4( )| _ |X17A’

and hence Xj74 is a Cg(t) orbit.
Now by applying Bray’s Algorithm to an z € X,p we can find a w € Xy74 which
commutes with . Hence d(t,w) < 2, and since tw is not an involution we deduce

that Xj74 C As(t). See Appendix 2 for calculation details.

3.3.2 The Class 3A

In this subsection we will be swopping between conjugacy classes of G and conjugacy
classes of Fligs : 2, so to make things clear we will write Cgy, for conjugacy class C
in the Baby Monster and Yp;,,.0 for class Y in Fligy : 2.

Now suppose z = tx € 3Agy, and thus © € X34. From the ATLAS we see that
Ca(2) =3 x Figg : 2= (2) X Figy : 2 and Cf(z) = S3 X Fy : 2. For compactness we
will write C§(z) =S x L where S = S3 and L = Fligy : 2.

We claim that 2Cpy N L = 2Fp;,,.2. Indeed, suppose that u € 2Cgy N L, then

1

zu is an element of order 6. Now (zu)? = 2% = 27! = 2! and therefore zu cubes to a

2C' gy element. Similarly, zu must square to a 3Ag)y, element. Now from the ATLAS,
(G has eleven classes of elements of order 6, however only the class 6F'z); squares to

a 3Agy and cubes to a 2Cg). Hence zu € 6F ). Therefore

|Cq(zu)| = 2" x 3% x 5 x 7.

Now as z and u commute and Cg(z) = (2) X L

|Cp(u)| = 2" x 3* x5 x 7.

Consulting the ATLAS, we see that Figs : 2 has 6 classes of involutions, with the

following centralizer sizes:
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Class Centralizer Size
2Apip0 | 27 x 35 x5 x T x 11
2By | 28 x 31 x 5

20Fz’22:2 217 X 33

2Dpiy0 | 2 x 30 x 52 x 7
25,0 | 2 x 3t x5

2F iy | 2M x 3t x5 x 7

Therefore we must have that u € 2Fp;,,». The argument in the other direction is
similar, showing that indeed, 2Cpy N L = 2Fp;y,.0.

Now using MAGMA and the 3510 degree permutation representation for Fiss : 2 we
found a v € 2Fp;,,». This was done by randomly searching for a involution and check-
ing whether Cp;,,.2(v) had the correct size. We then found a P € Syly(Crpipy2(v))
and checked whether P contained a representative for each class of involutions in
Figy : 2 (again done by checking whether the centralizer of each representative had
the desired size).

On the other hand, ¢,z € C&(2), and hence

t = tiu; and T = tous

where t1,t, € S and uy,us € L. Now

z = tx
= tiurlaus

= t1tauius as we have a direct product.

However z € S hence ujus = 1 and z = t1ty. Now 1 = t? = ¢,%u,2, and as we have a
direct product we thus have both t; and u; involutions or the identity, similarly for
uo and to. Note that on the other hand, z must have order 3, hence neither ¢; or

can be the identity and they cannot be equal. Also note that as ujus = 1 we must
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have u := u; = uy. Therefore

t =tiu and x = tyu

where 1, ty are distinct involutions in S and wu is either the identity, or an involution
in L.

Now whichever class of involutions of Figs : 2 the element u belongs to, we know
that a conjugate of it (in Fligs : 2) commutes with our element v € 2Fp;99.0. Hence
u must commute with a conjugate of v, say w, again a 2Fr;99.0 element. Therefore
w € 2Cpy N L. Again as we have a direct product in Cf(z) and w € L, w must
also commute with both ¢; and ¢, and hence with both x and ¢t. Now as ¢z is not an

involution this shows that d(¢,z) = 2 and thus X34 C Ay (t).

3.3.3 The Class 5A

The case where z = tx € 5A can be handled in a similar manner to 3A. From the
ATLAS, we have C%(2) =5:2x HS : 2 and Cg(z) =5 x HS : 2. Therefore if we let
C& =95 x L where S=5:2and L= HS : 2 then Cg(z) = (2) x L.

Now we claim 2Cgy N L = 2Bgs.0. Indeed, consider the element of order 10, zu.
Now (zu)® = u and hence is an element of 2Cg),. The only class of elements of order
10 in G that does this is 10Cpy;. So in particular |Cg(zu)| = 27 x 32 x 5%, and hence
|Cr(u)| = 27 x 32 x 5. Now HS : 2 has 4 classes of involutions, with the following

centralizer sizes

Class Centralizer Size
Mpss | 29 x 3% 5
2BH5;2 27 X 32 X 5
20hg2 | 22 x 32 x5x%x7
2Dpgso | 22 x3 x5

Hence u € 2Bggs.o and 2Cgy N L = 2Bys.o. Now using MAGMA and the degree

100 permutation representation of HS : 2 we can find a v € 2Bgg.2 and confirm that
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Cys2(v) contains a representative for each of the 4 classes of involutions. The same

argument as in the 3A case shows that X54 C Ay(?).

3.3.4 The Class 10B

Let z = tx € 10B and hence from the ATLAS we see that 22 € 5A4. The ATLAS also
tells us that

Ch(z)) =S x L

where S = Dih(10) and L = HS : 2. Note that t,x € C}(2?), and hence t = tgt,
r = xprs and z = zpzg, with tp,xp, 2, € L and tg,xg,2¢ € S. Both t and x are
involutions hence tg, g must also be involutions and ¢, x;, are either involutions or
the identity. Also note that zg must have order 5 and zy must be an involution. Now
zg = tgxg hence tg # xg and z;, = tpxy therefore t;, and x; must commute.

Now from the ATLAS we see that z; € 2Bpg)s, however we wish to know which
class of HS : 2 z; belongs to. Indeed consider the element 2722 = 27, a 10Bgy,
element. Hence

|Cq(202%)] = 21 x 3 x 5

and thus

|CL(zL)] = 2" x 3 x 5.

Looking this up in the ATLAS, we see that z;, € 2Ayg.0 and more generally, 2By N
L =2Apss.

Since Cg(s) > L where s = tg or xg we can easily work out which class of
involutions (in the Baby Monster) tg and zg live in. Indeed, as L = HS : 2 and
11 divides |HS : 2| but doesn’t divide |Fy(2)| we can deduce that s € 2Cpyy, as the
centralizer of a 2C element in BM has shape (2% x Fy(2)) : 2. Similarly, 5% divides
|HS : 2|, but not |*Eg(2)| or |Of (2)], hence s & 2Apyr and s & 2Dpyr. Therefore, we
must have s € 2Bg, for s = tg or xg.

We also wish to know which class of GG, and thus HS : 2, t;, and x, live in. Note
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that t = tgty, and that t € 2Cp) and tg € 2Bg);. We see from the table in Appendix
1 that the only way a 2Bp,; element and another involution can product together
to get a 2Cgys element is for it to be a 2Cp), element. Hence we must have that
tr,xr € 2Cgy, and hence in 2Byg..

We wish to know pull everything across to HS : 2 and use MAGMA to finish off
the job - working in the degree 100 permutation representation of HS : 2. We will
change tack, and instead of fixing ¢ and looking at possible zs we will fix z and look
at the possible ¢ts and thus xs. We will use the following algorithm, which we have

already mentioned.

1. Pick a z, € 2Apg.0.

2. Calculate Y = (Cg.9(20) \ (Crs2(21)) N2Bps.2, this will give us a possible list

of ts.
3. Let C' = Cgga(zr) act on Y and spit into orbits U; with representatives u;.

4. For each representative calculate C; = Ce(u;), this will be equal to Cey,, (2 (t)

for appropriate choices of zg and tg.

5. For each C;, check whether it contains a 2Byg.0 and thus a 2Cg),

We note that if we find an orbit representative u; such that the element w;z;, ¢ 2Bpg.o
then we can ignore it as x; = u;z;, must also be a 2Bgg.o element. If we find that all
C; contain a 2Byg.o for all relevent u; then we may deduce that X195 C Ay(t).

In this case we find that |Y'| = 200 which splits into two orbits U; and U, under
action by CL(zr) of sizes 120 and 80. Let u; € Uy and uy € Uy, then [Ce, .,y (u1)| =
128 and |Ce, (2, (w1)| = 192, with both of these centralizers containing a 2Bpg:

element. Hence Xj0p C Ay(t). We also note that

1Ca(t) n |Cq(t)]

X —
|05 192 128
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and thus Xop must be the union of two C¢(t) orbits.

The Classes 15A, 20D, 20F, 30D and 40D can all be dispatched in a similar way. In
these cases let z = tx be a member of the required class, in all these cases z taken
to an appropriate power is a 5A element, and hence ¢,z € S x L where S = Dih(10)
and L =2 HS : 2. Hence let z = zgz1,, t = tgt; and x = xgx;. Note that we must still
have tg, x5 € 2Bgy and tr, x, € 2Cg)s, and hence t,x;, € 2Byg.. In these cases
we will work in the degree 100 permutation representation of HS : 2 and calculate

Y = (Cfg.0(20) \ (Crsa(zr)) N 2Bugs.2 where zg, is the element in question.

3.3.5 The Class 15A

In this case we must have z;, € 3Agy and as HS : 2 only has one class of elements
of order 3, we must have z;, € 3Ayg.0. We now have that |Y| = 48 which splits into
two orbits Uy, Us with representatives wuy, us under action by Cp(zr). Now in both
cases CCL(ZL)(UZ') contains a 2Byg.o element, with these centralizers having sizes 16
and 240. Consulting our table of class structure constants we see that

1Ca(t) n |Cq(t)]

Xieal =
[Xisa] 16 240

and thus X514 C Ay(t) and splits into two orbits under the action by Cg(t).

3.3.6 The Class 20D

94s a 20Dpz); element and hence

In this case z; € 4Bgy. Now we have z;2% = 2
|Ca(zr2)| = 22 x 5, thus |Cr(z1] = 2°. Looking this up in the ATLAS we see that
21, € 4Bps.e. Calculating as before we see that |Y| = 32 which splits into two orbits

both of size 16. However we may instantly ignore one of these as for a representative

Uz, Ugzr, € 2Aps:2. For a representative u; of the other orbit we see that Ce, (., (u1)
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contains a 2Bpg.o element and has size 32. Now as we expect

Ca(t)]

X. -
[Xaon| = =53

and thus Xyp is a single Cg(t) orbit in Aq(t).

3.3.7 The Class 20F

In this case we have z; € 4Ggy and again zpz* = 2° is a 20Fg), element. Thus

|Ca(zr2*)] = 27 x 5 and hence |Cr(z1)| = 27. Using our trusty companion, the
ATLAS, we see that z;, € 4Cygs.o. Now |Y| = 20 and splits into three orbits of sizes
8,8 and 4 with representatives uy, us and ug. Instantly we see that we can ignore ug
as uzzg, € 2Apg.2. For the other two, C¢, (., )(u;) contains a 2Byg.» element in both

cases, and these centralizers both have size 16. We note that

_ 1G] | [Cet)]

X
[ Xaor| 16 16

and thus Xyor splits into two orbits under action by Cg(t) and Xogr C Ao(2).

3.3.8 The Class 30D

In this case z;, € 6Bgy. We quickly see that z72% is a 30D element, and hence
|Ca(22%)| = 24 x3x 5. Therefore |Cp(z1)| = 24 x3 and hence 2, € 6Bjg.2 or 6Eps.0.
Without loss of generality we pick our z;, € 6Bpyg.0 and calculate as usual. In this
case we have |Y| = 12 which splits into 3 orbits of sizes 6,3 and 3 with representatives
uy, ug and uz. Now let C; = Ce, .,y (u;), then |Cy] =8, [Cy] = 16 and |Cs| = 16 with
Cs, C5 containing a 2By .0 element, and C not. We now note that

Ca(t)]  |Ca(t)]  |Calt)]
8 + 16 + 16

’X30D‘ =
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and thus we must have that exactly half of X30p is in Ag(f) and the other half has
distance at least 3 from ¢. On the other hand, in all cases the commuting involution

graph for HS : 2 has diameter 3, hence we must have the other half of X30p in Az(t).

3.3.9 The Class 40D

For z € 40D we must have z; € 8Ly and |Cq(2%21)| = 2% x 5. Hence |Cr(z1)| = 2*
and therefore z;, € 8Byg.o. So we again choose a z;, € 8Bpyg.o and calculate as
usual. In this case |Y'| = 12 which splits into three orbits of size 4. We may instantly
dismiss one of these as uiz;, € 2Agg.o for a representative u;. For the other two orbits,
|Cey (21)(u;)| = 4 for representatives u;, with both of these centralizers containing a
2Bps.2 element. Hence Xyp C Ay(t), and by considering | X4op| , we see that Xyop

splits into two orbits under the action by Cg(?).

3.3.10 The Class 13A

From the ATLAS we see that for z = tx € 134, C5(z) = L x S where L = 13 : 2 and
S = Sym(4). Now S has two conjugacy classes of involutions, 2Ag,,,4) represented
by (1,2) and 2Bgym), represented by (1,2)(3,4). Clearly |Csyma)(2Asym1))| = 22
and |Csym()(2Bsym(s))| = 2°. Now let v € 2Cpy NS, then vz is an element of
order 26 which to the 13th power is in 2Cgy;. So by consulting the ATLAS we see
that vz € 26Apgy, and thus |Cg(vz)] = 23 x 13. Hence |Cs(v)| = 2% and therefore,
v € 2Bgym(4), giving 2Cpy NS = 2Bgym). Now let t = trtg and x = rpxg where
tr,xr, € L and tg,xg € S. As before it is easy to see that ¢, and z are distinct
involutions and ts = xg = w is either the identity or an involution.

So now consider the element v = (1,2)(3,4) € 2Bgym(), an easy calculation
shows that Cgym(v) = ((1,3)(2,4),(3,4)). In particular it is clear that Cygym,)(v)
contains a representative for each of the two involution conjugacy classes in Sym(4).

An argument identical to that in 34 and 5A shows that X34 C Ay(t).
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3.3.11 The Class 6C

Let z =tz € 6C. As 2% € 3A we can determine which disc Xgc is in by calculating
inside Fligy : 2 using the same method as in 10C. Indeed note that z, ¢,z € C§(2?) =
S x L where S = Sym(3) and L = Fliy : 2. From the 3A calculation recall that
20y N L = 2Fp;,,2. Let z = zg2zp, t = tgty and © = xgry. The calculation
proceeds just as in 10C, and we see that zg € 3Ag), and z;, € 2Bg),. So consider the
element 222y, clearly a 6C' element, and thus |Cg(2%21)| = 2'® x 35 X 5 implying that
|CL(z1)| = 2'¥ x 31 x 5. Hence 21, € 2Bpy,,.2 and more generally, 2Bz NL = 2Bp;,, ..
Now as before, Cs(ts) > L and hence we must have |L| dividing |Cg(ts)|. Now note
that 3% divides | Fli : 2| but not the sizes of the centralizers of 2Bgy;, 2C5as or 2D gy
elements. Thus we must have tg,xg € 2Agy;. Hence we have the 2Cpg,, elements ¢
and x being the products of a 2Ag); element and another involution. Looking at the
Class Structure Constants given in Appendix 1 we see that ty,x; € 2Agy U2Dpy,.

Now we wish to know which classes of Fligy : 2, 2Ag) and 2D gy, correspond to.
Indeed suppose v € 2Agy N L then 2%v is an element of order 6 which squares to a
3Apy and cubes to a 245,,. Hence 22v € 6Apy U6Bgy;. First suppose 2%v € 6Agy
then |Cg(2%v)] = 21" x 3" x5 x 7x 11 and thus |Cy(v)] = 2" x 36 x5 x 7 x 11 implying
that v € 2Ap;,,.0. On the other hand if v € 6Bp);, then a similar argument shows
that v € 2Dp;,,.0. Hence 2Agy N L = 2Ap;,,0 U 2Dp;y,.0. Similarly, 2Dy N L =
2CFiyy2 U2ER;,,». We are now in a position to write down the total fusion for the

involution classes of Fligy : 2 into involution classes of BM.

Involution Class in Figy : 2 | Centralizer size (in Fligs : 2) | Class in BM
2A 36,787,322,880 2A
2B 106,168,320 2B
2C 3,538,944 2D
2D 2,090,188,800 2A
2E 6,635,520 2D
2F 5,806,080 2C

By using MAGMA we can say more about ¢, and xy. By loading the 4370 dimen-

sional representation of BM and feeding in the generators for M = S3 X Fligy : 2 given
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in the ATLAS we can determine exactly which classes t; and x; belong to. Firstly
we produce elements in M which have orders not among the orders of elements from
Figs 1 2. We produced two elements uq, us of orders 60 and 33. As neither Fisy or
Sym(3) have elements of these orders we know that u?°,ui! € S and u3,u3 € L. In
fact we can quickly see that u2°, ui! generate S, and by checking element orders, we
can see that u3,u3 generate L. Now we can quickly produce the three involutions
in S and by producing elements of even order and powering down, and checking the
class structure constants given in [12] and the power maps given in the ATLAS, we
can produce a representative for each of the 6 classes of involutions in L. Now we just
need to check whether an involution from .S times the representative from each class
of involutions in L is a 2C' involution in BM, which we can easily check using the
dimension of its fixed space. We see that only involutions from the classes 2Dp;,,.2
and 2Fp;,,.» when multiplied by an involution from S are in 2C' in BM. Hence
tr,xp € 2Dpiy0 U2ER,,.o.

We will now proceed in MAGMA using the 3510 degree permutation representation
of Figy : 2. Now without loss of generality we may pick a z;, € 2Bp;,,» and follow
the procedure in the 10C case, however this time we have two separate cases, corre-
sponding to the two different possible classes for t,. So we calculate Yo = C&(z)NC
where C is either 2D or 2F in Fligy : 2.

In Case 1, where Y = Cp(z1) N 2Dpy,,.o we find that |Y| = 656 and there are 2
orbits of sizes 576 and 80. In both cases C¢, (-,)(¥i), where y; is a representative of
each orbit, contain 2Fp;,,.o elements.

In Case 2, where Y = Cr(z1) N 2Ep;,,.» we find that |Y| = 26928 and there are
4 orbits of sizes 8640, 17280, 576 and 432. In all cases Cg, (s,)(¥i), where y; is a
representative of each orbit, contain 2F¥p;,,.o elements.

So we deduce that Xgc C Ay(t).

We can use similar arguments to deal with the classes 6H, 12D, 12G, 12J, 12L,
21A, 24A, 24C, 24G, 30D and 48A. In each case let z be in the class mentioned in
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the section heading, zg be the 3A element in S corresponding to some appropriate
power of z and let z;, be the 3rd power of z living inside L = F'igs : 2. In all cases we
will use the routine used in the 6C' case, with ¢; and z in the classes 2Dp;,,.o and

2EFZ'22:2-

3.3.12 The Class 6H

Elements in 6H square to 3A, so we calculate in exactly the same way as in 6C.
In this case z;, € 2Dpgy, s0 2%22; = 2° = 27! = 2! is a 6H eclement and hence
|Cq(v?2r)| = 10616832. This implies that |Cf(z)| = 3538944 and thus z1, € 2Cry,, ..
As in 6C we pick a z;, € 2Cp;,,.2 and split our calculation into two cases.

In Case 1, we let Y = Cp(z1) N 2Dpyy,.» and find that |Y| = 288. Under the
action by Cr(z), Y splits into four orbits and Ce, (-,)(y;) contains a 2Fp;,,.o element
for each representative y;.

In Case 2, we let Y = CL(z1) N 2Ep;,,» and Y = 4704. In this case Y splits into

4 orbits and again Cc, (-,)(y;) contains a 2Fp;,,.o element for each representative y;.

Hence Xgg C As(t).

3.3.13 The Class 12D

Elements in 12D to the fourth power are in 3A, so we calculate in the usual way. In
this case 23 € 4B and clearly 2%z} is again a 12D element. Hence Cq(2*2) = 663, 552
and thus Cp(zp) = 221, 184 implying that z;, € 4Ap;,,0. So using the usual routine
and splitting our calculation into two cases we get the following results.

In Case 1, Y = (C5(z.) \CL(21)) N2Dpj,,2 and |Y| = 40. Y splits into two orbits
of sizes 36 and 4 and in both cases C¢, (»,)(y;) contains a 2Fp;,,.o element for the two
orbit representatives ;.

In Case 2, Y = (Cj(21) \ Cr(zL)) N 2Dpj,,.2 and |Y]| = 1368. In this case, Y
splits into five orbits Y7, Y5, Y3, Y, and Y5, with sizes 576, 576, 108, 36 and 72 and

representatives yi, s, Y3, y4 and ys respectively. We quickly see that g2z isn’t in
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one of the required classes so will be dismissed. For i = 2,3,4,5, C¢, (-;)(y;) contains
a 2Fp;,,.» element, however we see that CCL(ZL)(yl) doesn’t, so it was important for

us to dismiss it. Hence Xiop C Aq(t).

3.3.14 12G

We can quickly see that elements in 12G to the fourth power are in 3A and cube
down to 4C. An easy calculation shows that z;, € 4C;,,» and hence we will pick a
21, € 4CFpi,,.2 and carry out the usual routine.

In case 1, Y = (Cj(z1) \ CL(z)) N 2Dpy,,.2 and we see that |Y| = 16. We find
that Y is a single orbit with representative y under action by Cp(z;). However in
this case yzy, € 2Fp;,,.2 and so will be ignored.

In case 2, Y = (C;(z1) \ CL(z1)) N 2Ep;,,2 we see that |Y| = 528, which splits
into four orbits of sizes 19219248 and 48. However we may instantly dismiss two of
these orbits, one of size 192 and the other of size 48. So we are left with two orbits,
with representatives y; and y,. We can easily calculate that |Ce, (., )(y1)| = 128 and
|Cey (21)(y2)| = 256 and both of these centralizers do not contain a 2Fp;,,.o element,
and thus for x € Xjoq, d(t,z) > 3. As the commuting involution graph in all cases
for Fligs : 2 has diameter at most 3, we see that d(¢,z) < 3. Hence Xjo¢ C As(?).

We also note that
|Ca(t)] n |Ca(t)]

128 256~ [ Xndl

and so Xjo¢ splits into two orbits under action by Cg(t).

3.3.15 The Class 12J

Elements in 12J to the fourth power are in 34 and cube to 4E. Hence zg € 3A and
z;, € 4F and we may again calculate inside F'igs : 2. Firstly consider the element
2*21, a 12J element and hence |Cq(v*zy)| = 219 x 33, giving us |Cr(z1)] = 2'° x 32.
Hence z;, € 4Dpy,,.2. Now as usual, we pick a 2, € 4Dpy,,.» and carry out the usual

routine.
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Firstly we quickly note that (C5(z1) \ CL(z1)) N 2Dgiy,0 = 0. Thus in this case
tr, & 2Dpjyy:0.

ForY = (C;(20)\CL(z))N2E we see that |Y| = 144, which is itself an orbit under
the action by Cp(z;) with representative y. In this case we see that yz; € 2Ep;,,.0

and hence is a possible ¢, with |C¢, (-,)(y)| = 64. Now we also note that

|Ca(t)]
= | X12/]
1Coy () (W)
Hence X5 is indeed a single orbit under action by Cq(t). Furthermore Ce, (2,)(y)
doesn’t contain a 2Fp;,,» element, hence d(t,z) > 3 for © € X;5;. However as the

commuting involution graph for F'iss : 2 has diameter at most 3 in all cases we deduce

that X12J - Ag(t)

3.3.16 The Class 12L

Elements in 12L to the fourth power are in 34 and cube to 4G. By an easy calculation
we see that z; € 4Ep;,,.» and so we will carry out our usual routine.

In case 1, Y = (Cj(z1) \ Cr(z1)) N 2Dp;,,0 we see that |Y| = 12 which splits
into two orbits of sizes 8 and 4. The orbit of size 4 can be instantly dismissed as
Y221, € 2Fp;,,» for a representative y,. On the other hand, for a representative
for the orbit of length 8, we see that y;z;, € 2Fp;,,» and its centralizer in Cp(zy)
contains a 2F7p;,,.o element.

In case 2, Y = (Cj(z1) \ Cr(z1)) N 2Ep;,,» which has size 228. In this case, Y
splits into 9 orbits under action by Cp(zr), four of which can be instantly dismissed.
For representatives y; for the other 5 orbits, CCL(ZL)(yi) contains a 2Fp;,,.o element

in each case. Hence Xiop C As(t).

3.3.17 The Class 21A

Elements in 21A to the seventh power are in 3A and cube to 7TA. Now Fligy : 2 only

has one class of elements of order 7, so we must have z;, € TAp;,,.o. We will use the
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usual routine, with the following results.

In case 1, (C5(z1) \ CL(21)) N 2Dp;,,.2 = 0, and so this case will be ignored.

In case 2, Y = (C5(21) \ Cr(z1)) N 2Ep;y,.» with |Y| = 7. In this case, Cr(z) is
transitive on Y and C¢, ., )(y) contains a 2Fp;,,.» element for the single representative

y. Hence X914 € Ay(t) and Xo14 is a Cg(t) orbit.

3.3.18 The Classes 24A and 24C

Let z be in one of the classes 244 or 24C, then in both cases z® € 34 and so we may
use the usual procedure with a small twist. As usual let z = zgz;, and in both cases
we see that |CL(z1)| = 768. Now Fligy : 2 has 5 classes of elements of order 8 with
centralizer size 768, so we will have to check them all to cover both the 24A and the
24C cases. So we let z;, run over the classes 8Api,,.2, 8 Briy2, SEpiy:2, SFFi,.2 and
8GFiy2 and carry out the normal routine. Obviously telling exactly which classes
correspond to 24A and which to 24C will be very difficult as we cannot distinguish
between them easily, therefore we will produce 5 non-conjugate elements in BM of
order 8 whose centralizer size in L is equal to 768, which will cover the required
classes without explicitly knowing which class each z; belongs to. We will call these
five elements zq, ..., z5.

The results for z; are as follows. For Y = (C}(z1) \ Cr(21)) N 2Dpjp,0, |Y| = 4,
a single orbit. In this case C¢, (.,)(y) contains a 2Fp;,,.» element for a representative
y. For Y = (Cj(z1) \ CL(z1)) N 2Ep;,,2, |Y| = 68, which splits into six orbits of
sizes 12, 24, 12, 12, 4 and 4. Again Cg, (.,)(y;) contains a 2Fp,,,.» element for each
representative ;.

For z, we get exactly the same results as in z;.

For the z3 case we quickly see that (Cj(z3) \ Cr(z3)) N 2Dpjy,.2 = 0, so we only
have a single case to check. For Y = (C}(23) \ CL(23)) N2Ep;,,.2 we get a single orbit

[Ca(t)]

of size 48, whose centralizer size (in C(z3)) is 16. Note that == > [Xoya| = [Xosc|

and hence we cannot have z; in the same class as z3 so we will ignore this case.
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For z, we get the following results. For Y = (C}(z4) \ CL(24)) N 2Dpip,2, Y is a
single orbit of size 4 with representative y. In this case CCL(Z4)(y) contains a 2Fp;,,.2
element. For Y = (C}(2z4) \ Cr(24)) N 2ERiy,.2, |Y| = 52, which splits into 5 orbits.
All the centralizers in C(z4) for representatives of these five orbits contain a 2Fp;,, .
element.

The results for z; are very similar to the z4 and so will not be produced here.

Thus in all cases we see that d(t,z) = 2 for z in either Xoy4 or Xoyc, and therefore

Xoaa, Xoao C As(t).

3.3.19 The Class 24G

Elements in 24G to the sixth power are in 3A and cube to 8D, so we may cal-
culate inside Fisy : 2. Now consider the element 2827, a 24G element, and hence
|Ca(v82r)| = 768. Therefore |Cr(z1)| = 256 implying that z;, € 8Cpy,,.2. So we do
the usual job, by picking a z;, € 8Cp;,,.2 and carrying out the standard routine to get
the following results.

We quickly see that t7, & 2Dp;,,.0 as (C5(z1) \ CL(z1)) N 2D gy, 2 is empty. So we
only have a single case to check.

For Y = (C5(z1) \ CL(z1)) N 2Ep;,,» we see that |Y| = 48. Y splits into 4 orbits
under the action by Cp(z), with sizes 8, 16, 16 and 8. In this case all C¢, (., (y;) for
representatives y;, again do not contain a 2Fp;,,.o element.

Therefore we can deduce that for z € Xayq, d(t,z) > 3. However consulting [12]
we see that the diameter for the commuting involution graph for Figs : 2 in all cases

has diameter at most 3, thus d(t,z) < 3. Hence Xoyq C As(t).

3.3.20 The Class 48A

For z € 48A we have 2! € 34 so we may use the usual routine. Now |Cg(z)| = 96 so
it is easy to see that Cp(z1) = 32. Now Flis : 2 has two classes of elements of order

16, both of which have centralizer sizes of 32, so we will have to test both. As in the
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24 A — 24C case, we will produce two non conjugate elements of order 16 in Fligy : 2
and call them z; and 25, without knowing precisely which class each one is in.

For z; we only have a single case to check as (C(z1) \ CL(21)) N2Dp;,, 2 is empty.
For Y = (Cj(z1) \ CL(z1)) N 2Epiy,.2, we see that |Y'| = 24, which splits into three
orbits under the action by Cg(z1). We can discount one of these orbits straight away
as yzy, € 2Fp;,,» for a representative y. For the other two orbits, with representatives
y1 and yo, we see that |Ce, -,)(y:)| = 4 and both centralizers do not contain a 2Fp;,, .o
element.

For zo we find that (C}(22) \ CL(22)) N 2Dpjy,.2 is empty. In the other case we
get a single CL(z1) orbit of size 8, with centralizer of a representative y3 in Cp(22)
containing a 2Fp;,,.o elements, with this centralizer having size 6,635, 520.

We now note that

Ca(t)]

| Xuga| = 5

So the only way this is possible is for y; and ys to be in different orbits of X,54 and
y3 not being a possible t;, due to z;, not being in the class 16 Apy,,.2 or 16 Bpy,,.» which
corresponds to zy. Hence for z € Xyg4, d(t, ) > 3, however again as the diameter of
the commuting involution graph for Fiss : 2 in all cases is at most 3, we deduce that

Xusa € As(t).

3.3.21 Classes Which Power to 5B

Classes 5B, 10D, 10F and 20G all power down to 5B, so these classes will be treated
similarly. Since H = Npy(5B) = 51t* : 214 1 Al#(5).4, calculating inside this group
directly would be difficult due to its complex structure. So we wish to compute a
permutation representation of H of a reasonable degree in which to carry out our
calculations. Our general aim is to find 7, the central involution in the extraspecial
group 2t such that C' = Cy(7) = 5 : 2174 Alt(5).4. We will let the generators
of H act on the cosets of C'in H to produce a permutation representation of degree

5. Note that 7 will commute with the central element of order 5 in 5!, so this
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representation will not be faithful, however it will give us a faithful representation of
H/ (w) where w is this central 5 element, which will be sufficient for our purpose.

Our first job is to find the element 7. This is fairly straightforward, by taking
a random element of order 8 and powering down to an involution we have a good
chance of producing the required element, we can check by using Bray’s Algorithm
to produce elements in its centralizer and seeing if the element orders match those
which we expected. Since we are working in a large matrix representation of BM
we cannot ask directly for the coset action of H on H/Cy(7) as simply just storing
these groups would take up a huge amount of memory, so we have to be clever in our
approach.

We first note that if 7 is a transversal of Cy(7) in H, then 7 is also a transversal
for 5 in 5'**, which is much easier to produce. Indeed we can easily produce the 5
linearly independent generators for 5+ in H by powering down from appropriately
ordered random elements in H, with w being the central element of order 5. Now
since the other 4 generators commute modulo w, a transversal for 5 in 5!** will be
given by the 5* words in the four non-central generators in which we ignore the order
of the generators.

Now H = (wy, ws), with the generators w; and w, given as a straight line program
in the online ATLAS. We wish to calculate the action of w; and ws on v € 7. Indeed
we wish to write yw; as v'h where h € Cy(7) and 7/ € 7 . Hence we run through all
§ € T and determine whether 6 'w;y € Cy(7), by simply checking whether 6 1w;~y
commutes with 7. When we find such a ¢, of which there will be exactly one in 7, we
will let 7/ = §. If we then order our transversal, then if v is the m'* element of of 7
and ~' is the n'", then the element of our permutation representation corresponding
to w; will send m to n.

As we have 625 of these transversal elements to work through, instead of multi-
plying together the words in the generators of 5*4 to produce a transversal, we will
store it simply as a word (that is as an array containing the names of the generators in

question) and act on a random vector v from the natural 4370 dimensional G-module
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for BM over GF(2). This will at least give us a shortlist for possible elements +/,
which we can go through more carefully if we get more than one possibility. The
MAGMA code for this procedure is given in Appendix 3.

This procedure gives us a 625 degree permutation representation of the group
H = 5% 2" . Alt(5).4. Note that this group is isomorphic to H/ (w), where w
is the central 5 element in 5'7* inside H. Inside H we want copies of O (w) and
C%(w) modulo (w). The first is simply given by H , the derived subgroup of H, and
for the second we find an involution a not in H and calculate <ﬁ/, a>. We will call
these groups C' and C* respectively. These groups have the orders we expected from
the ATLAS, namely 1,200,000 and 2,400,000, the sizes of the centralizer and extended
centralizer in BM of a 5B element, divided by 5.

We now have to map the classes of involutions in H across to G. Indeed H has 4
classes of involutions. If we find words for representatives of these four classes in the
generators of H and map these over to H, sitting inside G, we can easily see which
class they belong to in G. This mapping works in the obvious way, if w; and ws; are
the two generators for H corresponding to the generators w; and w, of H. then we
simply replace w; with w; in a word for a particular element. Table 3.3 gives the

mapping of the involution classes of H to the involution classes in BM.

Table 3.3: Mapping between involution classes in H and BM.

Class in H | Size of Centralizer in H | Class in G
245 19200 2Bgu
2By 9600 2CBum
207 7680 2Dpur
2D+ 1600 2Dgumr

Now if we want to find the distance between t and x where x € X5p, we first
note that we may pick z € 5B as our central element of order 5, w. We now want to
calculate Cc,,(»)(t) for different choices of ¢ and see if it contains any 2Cz); elements.

We first note that as ¢ has order 2 and (w) is a 5-group,
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Ceuz)(t)/ (W) = Cogzyyw) () = Ca(t)

where £ is the image of ¢ in H.
We now calculate the possible ts in H. These must be 2Cg); elements which

invert, but don’t centralize z. Therefore the set of possible ts is given by
Y = (C*\ C)N2B7.

We can differentiate between the different involution classes of H by simply calcu-
lating the sizes of centralizers. We find that |Y'| = 500, and C' acts transitively on
Y. For y a random element from Y we see that |Cx(y)| = 2400, which is what we

expect, as that would make
1Ca(t)]
|Cea ()]

[ Xsp| =
agreeing with the fact that C' acts transitively on Y. We also find that C=(y) does not
contain any 2By and thus 2Cg), elements, hence d(t, ) > 3 for x € X5p. If we now
return to our 4370 dimensional representation of BM, we can easily find an s € BM
such that ¢t is a 5B element, and using Bray’s algorithm we can find a 7 € Xggx

such that 7 commutes with ¢°. Since Xog4 € As(f) we deduce that X5z C As(t).

Details of this calculation are given in Appendix 4.

For z = tx € 20G, we can again calculate inside H as z* € 5B. Firstly we must
work in the 4370 dimensional representation of H inside of G and find a 20G gy,
element inside of H which to an appropriate power is w. Once we have it, call it z
and transport it over to H to get Z, by taking a word of z in the generators for H,
and replacing these for the generators of H. We now have to find images of Cg(2)

and C%(z) inside of H, however this is easy due to the following observation.
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If 2 € 20G then z = wf where w € 5B and f has order 4. Now note that

K =Cq4(z) = Calw)nCq(f)

= Cc(f)

where C' = Cg(w). We wish to pinpoint K inside of H, however

K =Ce(f) = Ca(f)

as the order of w and f are coprime. Also note that f is equal to z once it has been
transported over to H.

Hence inside H, let C, = C5(Z) where C = H’ as in the 5B case. We note that
|C.| = 96, which is equal to @ as expected. A similar technique can be used to

calculate CF(2), or a group close to it, however note that it is not necessary true that

Co(2) = C&=(2)

however C¢,(2) will always be contained in C2(). In fact in our case, |C5(%)| = 384,

so if we take a 2Bz involution, y, from C2_(%) such that yZ is also a 2Bz involution,

then C%(2) = <@, y>, which we will call C.

Now our list of possible ts is Y = (Cr \ C.) N 2B7. By calculating this in
MAGMA, we see that |Y| = 12 and C. acts transitively on this. Again |Ca(y)| = 8
for a representative y € Y, which agrees with X595 being a single C(t) orbit. Now
Cz-(y) does not contain any 2B elements, and thus d(t,z) > 3 for z € Xyq-

Exactly the same method also works for z € 10D. Indeed, in this case define C,
in exactly the same way as in 20G, and thus we have |C,| = 4800, which is what
we expected from the ATLAS. Now in this case |[CZ(%)| = 9600, twice that of IC.|,

and thus we must have Cg(2) = CZ(%), and so we set Cr = CZ(%z). Again set

Y = (Cr\ C.)N2Bg and let C, act on it. Again Y splits into a single orbit with y as

a representative. In this case [C(y)| = 80, agreeing with Xyp being a single Cq(t)
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orbit. Now Cz-(y) again doesn’t contain any 2Bz involutions, hence d(t,z) > 3 for
r € Xqop-

Similarly for z € 10F, we can define C, and C7 in exactly the same way as in
10D. In this case |Y| = 20 and C. again acts transitively on Y and |Cz(y)| = 96.
Now Cg(y) again contains no 2Bz involutions, hence d(t,z) > 3 for v € Xjop.

For C' one of the classes 5B, 10D, 10F and 20G we can easily prove that Xs C
A3(t). Indeed we choose a x € X¢ and calculating elements in Cg(x) by using Bray’s
algorithm. Once we have a list of elements w € Cg(x), we just check to see whether
w € 2C and tw is in a known class in the second disc. If this happens (which it does
in all cases) then d(t,w) < 3 and thus X¢ C As(t) as X¢ is made up of a single

Cq(t) orbit in these cases. Details of these calculations are given in Appendix 4.

3.3.22 Classes Which Power to 3B

The classes 3B,6G,61,6K,9B8,12B,12F,12M,120,12R, 18C and 24 H all power down

to a 3B element, and since H, the normalizer of a 3B element, has shape

H =~ 3182140 1,(2).2

it can be treated in a similar manner to 5B. Again we find the central involution in
216 which we will call 7, by finding a element of order 16 and taking it’s eighth power.
By doing this we give ourselves a good chance of finding the required involution, and
then using Bray’s Algorithm we check to see if elements in the centralizer of 7, which
has shape 3.211%.U,(2).2, have the required orders. As in the 5B case we compute
a transversal for 3 in 3'*® which will also be a transversal for Cy(7) in H. As in
5B, H acting on these cosets will give us a faithful permutation representation for
H/ (w) of degree 6561 where w is the central 3 element in 31*%. As this degree is
much larger than the representation in the 5B case obviously this calculation was

much more time consuming. To combat this problem the program was run on ten

machines each doing part of the transversal. Even so this still took seven days to
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calculate the coset action for the two generators for H, considerably longer than the
two hours it took to calculate the representation in the 5B case. It is easy to see that
H = H/ (z) has shape 3%.2'75.0,(2).2.

As in the 5B, case C = Oy (w)/ (w) = Cx(w) =2 38.2170.U,(2), is calculated by
taking the derived subgroup of H, and C* = O (w)/ (w) is just H itself. Now by
taking representatives for the 7 classes of involutions in H and transporting them
over to BM, can can calculate the mapping of the involution classes of H into BM,

which is given in Table 3.4.

Table 3.4: Mapping of involution classes of H into BM.

Class in H | Size of Centralizer in H | Class in BM
2A5 26,873,856 2ABM
2B7 9,953,280 2Bgpu
207 6,635,520 2Dpm
2D+ 373,248 2CBum
2E 331,776 2D
2F 948,832 208
2G 62,208 9D s

We now calculate in the same way as in 55, and as 2 is coprime to 3, we see that

Cogx) )/ (w) = Cogiey/ ) () = Cx(?)

where ¢ is an involution in H and ¢ is its image in H.

Now as 2Cpy corresponds to 2D U 2F5, we calculate

Y = (C*\ C)N (2D U 2F5).

However as |C*| = 43,535,646, 720 we have to be clever about this, as if we calculate
it naively we will quickly run out of memory. Since C* = H, we can simply calculate
the two classes 2D and 2F} on two different machines, and compute the elements
not in C. Once this is complete we will have two much smaller sets, which we can

combine on a single machine to get Y. In fact our job is made easier as (C*\ C)N2Fy
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is empty, hence

However again our job is made easy as if we pick a random 2D element y; € C*\C
and calculate
]

[Ca(y)]
which is equal to the size of of the orbit Y; of Y containing 1, as C acts on Y, we find
that |Y;| = 116, 640, the size of the conjugacy class 2D of H. Therefore we must have
had that Y = 2D with C acting transitively on it. Now we can easily calculate that
|C&(y1)| = 186,624, and this centralizer contains either a 2D or a 2F5 involution.

Since
|Ca(t)]
186624

| X3p| =

we deduce that Xsp C Ay(f) and is a single C(¢) orbit of X.
Now suppose z € 6G gy, such that 22 = w. We then transport z over to H to get

an involution, which we will call Z. We now calculate

and note that |C,| = 4,976,640 as expected. We now wish to calculate CF = C%(z2),

however in general

Chi(z) # Cx(7)

though as said before, Cj;(z) C C%(%). Hence we find an involution £ € C* which
inverts z, then together with C,, will generate C7. If we carry this out, we find
that C has the required size, twice that of |C.|. We follow the usual routine, by
calculating Y = (Cr \ C.) N (2D U 2F5), and we find that |Y| = 4320 and C. acts
transitively on this. We can also easily calculate that |Cc, (y)| = 1152, where y is a

random element from Y and C¢, (y) contains either a 2D or a 2Fj element. Thus
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as

Ca(t)]

Xor| —
[Xecl 1152

we see that Xee C Aq(t) and consists of a single C(t) orbit.
For z € 61, we find that |Y'| = 1440 and again C, acts transitively on Y. In this
case |Ce, (y)| = 2304, where y is a random element from Y and Ce-(y) contains either

a 2D or a 2F% element. Thus as

|Ca ()]
2304

| Xe1| =

we see that X C Aq(t) and consists of a single C(t) orbit.

For z € 6K we have |Y'| = 576, which splits into two orbits, Y7, Y5 as C, acts on
it. In this case, |Y1| = 432 and |Ya| = 144, however for y; € Y7, y12 € 2G3, and thus
is not a 2Cg)s element, so can be ignored. For gy in the other orbit, we have ysz a
2Dy; element. For this element, |Ce, (y2)| = 864, and contains either a 2Dz or a 2Fy

element. Hence as

Ca(t)]
864

| Xok| =

we see that Xgx C Aq(t) and consists of a single C(t) orbit.

For z € 12B we find that |Y'| = 1296 which splits into two orbits of sizes 864 and
432. For a representative y; from the first orbit, we find that y;z is a 2G5 element,
and so can be ignored. For ys in the other orbit, we have ysz is a 2D element and
|Ce.(y2)| = 576, with this centralizer containing either a 2Dy or 2F5; element. Hence

as

Ca(t)]

Xion| =
| X128 TG

we see that X195 C Ag(t) and consists of a single C(t) orbit.

For z € 12F, we see that |Y| = 400 we find that Y splits into two orbits as C, acts
upon it, of sizes 360 and 40. We can easily see that both these orbits are legitimate,
with centralizer sizes, in C., of representatives from the orbits of 128 and 1152. Both

these centralizers contain either a 2Dy or 2Fy element, and hence Xjop C Ag(?).
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We also see that
|Ca(t)] n |Ca(t)]

X -
[Xrer| 128 1152

and hence Xjor consists of two Cg(t) orbits.

For z € 12M, |Y'| = 192 which splits into 3 orbits of sizes 96, 48 and 48. The two
orbits of size 48 can instantly be discounted as y;z € 2G5 for representatives y; of the
two orbits. For a representative y for the orbit of size 96 we see that yz € 2D and
that |Cc, (v)| = 48 with this centralizer not containing either a 2D or 2F5 involution.

We also note that
|Ca(t)]
48

[ Xiom| =

so Xiop is a single Cg(t) orbit, with d(t,z) > 3 for x € Xj9y. Now by using Bray’s
Algorithm on an element € X9y, in BM, we can find an element 7 € X5op which
commutes with . Since we know Xoop C Ay(t) and Xi9p, consists of a single Cg(t)
orbit, we have d(t,z) < 3 for all z € Xy, and thus Xjops € As(t). Details of this
calculation are given in Appendix 4.

For z € 120, we have |Y'| = 144 splitting into two orbits of sizes 48 and 96. The
orbit of size 96 can be ignored as y2z € 2Gy; for a representative y,, however the
other must be considered as y;z € 2D7. For this orbit we have |Cc, (y1)] = 64 with

this centralizer containing either a 2D or a 2F5 involution. We note that

Ca(t)]
64

| X120 =

hence X190 is a single C(t) orbit contained in Aq(t).

For z € 12R, we find that |Y'| = 32, which splits into two orbits, both of size 16,
when acted on by C,. One of these orbits can be instantly ignored, however for the
other |Cc, (y)| = 32, for a representative y. This centralizer contains either a 2D or

a 2F involution, and since
1Ca(1)]
32

| X12r| =

we see that Xiop C Aq(f) and is a single C(t) orbit.
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For z € 24H we see that |Y| = 48, which splits into three orbits Y;, Y3 and Y3
when acted upon by C.. For y; a representative of Y; we see that y;2z € 2G, and
hence Y] can be ignored. For the other two orbits, y;z € 2D for representatives v;,
and in both cases |Cc, (y;)] = 16 and both centralizers either contain a 2D or a 2F

involution. We now note that

_|Ce(t)] | |Ca(t)]
=16 T 16

| Xoun|

and hence Xoup splits into two orbits of equal size when acted upon by Cg(t), both
of which are contained in Ay(t).

The classes 9B and 18C are a little more involved as the factorization of the order
of the element in question consists of multiple powers of 3. Hence it is not necessarily
true that

Cs(z) = Cu(z),

however it is true that

Suppose z € 9B such that 2% = w. Then in this case, |C5(Z)| = 11, 664, the same
size as Cg(2). Also [CZ(Z)] = 23,328, twice the size of C7(Z). We will proceed as
normal with Y = (C5(2) \ C(Z) N (2Dg U 2FF), with C(Z) acting upon this. We
find that |Y| = 84, splitting into two orbits Y; and Ya, with representatives y; and
Y2, of sizes 81 and 3. In both cases y;2 € 2D, and hence are legitimate orbits. We
can also easily calculate that |Co_(z)(y1)| = 144 and |Co_z)(y2)| = 3888, with both

centralizers containing either a 2D of 2F involution in H. We also note that

[Xon| = 3 x (|0G<t>| . |Oc<t>|)

114 3888
Hence the orbits of Xgp with Cg(t) acting upon it are 3 times larger than the

orbits of Y with Cg(Z) acting upon it. Thus Xgp breaks into two orbits, both of

which belong to Ay(t).
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Now suppose that z € 18C with 25 = w. In this case, again |C5(Z)| = 432, the
same size as Cg(2), so we need to be careful. As in the 9B case |C2(Z)| = 864,
twice the size of C(Z). Calculating Y as usual, we find that |Y| = 24, which splits
into three orbits when C(Z) acts upon it. These orbits, with representatives y;, yo
and ys have sizes 18, 3 and 3, all of which are 2D elements when multiplied by z,
and hence are legitimate orbits. The centralizer sizes of these three representatives
in Cx(Z) are 24, 144 and 144 respectively, with the second two containing either a

2D+ or a 2F5 involution and the first not. Again we note that

| Xop| =3 x (’CG(t)l + [Ca(®)| + |CG<t)|)

24 144 144

and thus the orbits of Xigc with Cg(t) acting upon it are 3 times larger than the
orbits of Y with Cy(Z) acting upon it. Therefore Xig¢ breaks into 3 orbits, with
3,311,126,603,366,400 elements of distance at least 3 from ¢, and 1,103,708,867,788,800
in Aq(t).

For the elements which are a distance at least 3 from ¢, we can say more. Indeed, if
we take the element y; and map it over to BM then the elements of y; (w) will map to
y1 in H. In this coset only the element y;w? is an element of X;s¢, and hence this must
be a representative of the orbit contained in X;g¢ not in the second disc. Now by using
Bray’s Algorithm we can find an element of X544, which we know to be in the second
disc, which commutes with y; and thus d(¢,y;) < 3. Therefore 3,311,126,603,366,400
elements of X;g¢ are contained in Ag(t), and 1,103,708,867,788,800 elements in Ax(t).

Details of this calculation are given in Appendix 4.

3.3.23 Classes Which Power to 114

The classes 11A and 22B both power down to an 11A element, so will be treated
similarly. After consulting the ATLAS, we see that for z € 114, Ci(z) = 11 :
2 x Sym(5) and Cg(z) = 11 x Sym(5). Now as the 2 on the bottom inverts the 11,

11:2 = Dih(11), and hence Cf(z) = Dih(11) x Sym(5), which is easily produced in
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MAGMA, using the command
H := DirectProduct(DihedralGroup(11),SymmetricGroup(5)) ;.

Now H has 5 classes of involutions with the following centralizer sizes

Class in H | Size of Centralizer in H
2A 264
2B 240
2C 176
2D 24
2F 16

Now by studying the orders of products of pairs of element from each class in H we
can determine that 2Dy corresponds to 2Cg),. Now as the Baby Monster has only
one class of elements of order 11, we may pick any element of order 11 to be our
representative z € 11Ag),. In MAGMA we can easily calculate C' = Cy(z), and check
to see that |C'| = 1320 which is what we expect from the ATLAS, as |Cg(z)| = 1320
and Cg(z) < H. We also note that because of the way we have set things up,
EC =Ck(z)=H.

Now let Y = (EC \ C) N2Dy. This is easy to calculate using the size of the
centralizer as a conjugacy class invariant. We find that |Y'| = 110, which is a single
C orbit as C' acts on Y by conjugation. We also note that for a representative y € Y,
yz € 2Dy as expected. Now |Ce(y)| = 12 and Ce(y) only contains 24y and 2Cy
involutions, which do not correspond to 2Cp,, involutions. Hence Xji4 is a single
Cq(t) orbit and for @ € Xy14, d(t,z) > 3, which agrees with the information already
gained from the power maps of G.

We also note that | X114| = @ which agrees with the fact that X4 is a single
Cq(t) orbit, by using the orbit stabilizer theorem. Now for z € Xj;4 there exists a
7 € Xyop such that 7 commutes with x. Since 7 € Ay(t), we see that d(t,z) < 3
and thus d(t,z) = 3. As Xj14 is a single Cg(t) orbit we deduce that Xi;4 C As(t).

Details of this calculation will be given in Appendix 4.
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Now suppose z € 22Bg);. Now H contains ten classes of elements of order 22,
five with centralizer size 120 in H, which fuse to the class 224 in BM and the other
five of centralizer size 88 in H, which fuse to the class 22B in BM. Thus we pick
a z in H with a centralizer size in H of 88. We now let C' = Cy(z) and find an
involution in H which inverts z, with together with C' will generate EC = C}(z).
As per usual, we now let Y = (EC' \ C) N 2Dy, and find that |Y| = 22. Now C acts
transitively on Y, and |Co(y)| = 4 for a representative y € Y, with this centralizer
again only containing either 2Ay or 2C'y involutions. Hence Xa5p5 consists of a single
Ce(t) orbit and for x € Xoop, d(t,z) > 3.

Again we also note that | Xaop| = lciﬂ

confirming that Xyop is a single Cg(t)
orbit. Now for z € Xgsp there exists a 7 € Xj74 such that 7 commutes with z.
Since T € Ay(t), we see that d(t,z) < 3 and thus d(t,z) = 3. As Xop is a single
Cq(t) orbit we deduce that Xoop € As(t). Details of this calculation will be given in

Appendix 4.
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Appendices

4.1 Appendix 1

The following table gives the possible involution classes produced when you multiply

two involutions together in the Baby Monster. This table was computed in GAP

using the ClassMultipicationCoeffient command.

Class of involution

Class of involution v

Possible involution classes of product uv

2ABM
2Bpm

QABM
2Bgum
QCBM
QDBM
QBBM
QCBM
2Dy
QCBM
QDBM
2DBM

2Bgwn,2CBM
2ABw, 2B, 2D

4.2 Appendix 2

Details of the 17A calculations.

Using our standard generators for BM and our

standard representative ¢ for a 2C' element we carry out the following calculation.

Note that a and b in the following calculation correspond to the two generators of
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(22 x Fy(2)) : 2 given in the online ATLAS.

t := (a*axb*axb¥b*a*xaxbxaxbxbxbxb*axakxa*b*b*b*axb*axbxaxb) ~17;

UL IE S € AED CVENES A NES RS ENENES RS CNENE S CRED

w2 = tTwlkxtxt"wl;

x2d = t7w2;

pa-bele BIEE RIS CATES EAERES CVES CAENES EAES ERES CAENESCAED CAENEDS RS EERES A

X*y*y*x*y*x*y*x*y*y*X*y*y*x*y*y*x*y*y*x*y*X*y*x*y*x*y*y*x*y*y*x*y*x*
y*y*x*y*x*y*y*x*y*y*x*y*x*y*x*y*x*y*x*y*y;

BrayLoop2(~S,rand,G,x2d) ;

First note that 22d € X such that tx22d € 2D, and thus x2d € X5p. Now S contains

a single element, we’ll call it s

s := Random(S);

s is an element of order 12 which powers down to a 2C' element, which we’ll create.
s := s876;

We see that the order of ts is 17, and thus s € Xj74, and by the way we have created

it 22d and s will commute.
Order(t*s);

Hence d(t,s) = 2.

4.3 Appendix 3

Details of calculating a permutation representation for H = 5i+4 ol Alt(5) 4.
All calculations will be carried out in the 4370 dimensional representation of BM
with the generators w; and ws for H given in the online ATLAS.

The first job is to find the appropriate element 7, we find that

t 1= (W2Fw2Fw2Fw2kwilxw2xw2xwilrwlrwl*ywl) “4;
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should do the job for us. Indeed, if we use Bray’s algorithm on the element t we see
that possible element orders agree with our known shape of Cy(?).

The five generators for 51++4 are given by

x1 = (W2kWlkw2*wlkwl*xw2xwl w2kwl*xw2xw2 wlrw2xw2xwlkxw2xwl wl*w2*xwl*xw2*w2) ~6;
x2 = (wikwl*wlswl*xw2kwlswlsxwlrwlswlxwlrwlsw2xwlkwlswl*xwl*xw2xwl*xw2*xw2) "8;

x3 := x27wl;

x4 = x27w2;

x5 = x4" (Wwi*xw2);

with x1 being the central generator. We can check in MAGMA that the group gener-
ated by these five elements is indeed an extraspecial group of the required order.

We then create the transversal for 5 in 51++4

Trans := [];
for il in [0 .. 4] do
for i2 in [0 .. 4] do
for i3 in [0 .. 4] do
for i4 in [0 .. 4] do
z := [1;
if i4 ne O then
for j in [1 .. i4] do
z := Append(z,"x2");
end for;
end if;
if i3 ne O then
for j in [1 .. i3] do
z := Append(z,"x3");
end for;
end if;
if i2 ne O then

for j in [1 .. i2] do
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z := Append(z,"x4");
end for;
end if;
if i1l ne O then
for j in [1 .. i1] do
z := Append(z,"x5");
end for;
end if;
Trans := Append(Trans,z);

end for;end for;end for;end for;

Note that this will only give us words for each element in the transversal, if we want
to use the element we must multiply the word together first. Next we define two

functions which allow us to let a word z act on a vector v in the 4370 dimensional

G-module.

WordAct := function(z,v);
W o=V,
for i in [1 .. #z] do
if z[i] eq "wl" then
w = wwl;
end if;
if z[i] eq "w2" then
W o= WwW2;
end if;
if z[i] eq "x1" then
w o= wxl;
end if;
if z[i] eq "x2" then
W o= Wx2;
end if;

if z[i] eq "x3" then
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W = wWx3;
end if;
if z[i] eq "x4" then
W o= wx4;
end if;
if z[i] eq "x5" then
w = wxb;
end if;
if z[i] notin {"wi","w2","x1",6 "x2",6"x3","x4","x5"} then

print "ERROR!";

return O;
end if;
end for;
return w;
end function;
wlinv := wil™-1;
w2inv = w2"-1;
xlinv := x1°-1;
x2inv = x27-1;
x3inv := x3°-1;
x4inv := x4°-1;
xbinv := x57-1;
WordActInv := function(z,v);
W oI= Vv,

for i in [0 .. (#z-1)] do
if z[#z-i] eq "wl" then
W := wwlinv;
end if;

if z[#z-i] eq "w2" then
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end if;

if z[#z-i]
W

end if;

if z[#z-i]
W

end if;

if z[#z-i]
W

end if;

if z[#z-il
W

end if;

if z[#z-i]
W

end if;

w w2inv;

eq "x1" then

= wxlinv;

eq "x2" then

= wx2inv;

eq "x3" then

:= wx3inv;

eq "x4" then

= wx4inv;

eq "x5" then

:= wxbinv;

147

if z[#z-i] notin {"wi","w2","x1","x2","x3","x4","x5"} then

print "ERROR!";

return O;

end if;

end for;

return w;

end function;

WordAct produces the vector v* and WordActInv produces the vector v* . We will

then run the following code to create the permutation representation of wl.

V := GModule(G);

perm_wl := [];

for i in [1

poss

. #Trans] do

:= {};
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v := Random(V);

for j in [1 .. #Trans] do

w := WordActInv(Trans[j],v);
w o= wwl;

w := WordAct(Trans[i],w);

W = wW't;

s = Vvt

s := WordActInv(Trans[j],s);
s := s"wil;

s := WordAct(Trans[i],s);

if s eq w then
poss := poss join {j};
end if;
end for;
if #poss ge 2 then
poss2 := {};
v := Random(V);

for j in poss do

w := WordActInv(Trans[j]l,v);
w o= wwl;

w := WordAct(Trans[i],w);

W = wW't;

s = V't

s := WordActInv(Trans[j],s);
s := s"wl;

s := WordAct(Trans[i],s);

if s eq w then
poss2 := poss2 join {j};
end if;
end for;

poss := poss meet poss2;
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end if;

if #poss ge 2 then
poss2 := {};
v := Random(V) ;

for j in poss do

w := WordActInv(Trans[j]l,v);
w o= wwl;

w := WordAct(Trans[i],w);

W = wW't;

s = V't

s := WordActInv(Trans[j],s);
s := s"wl;

s := WordAct(Trans[i],s);

if s eq w then
poss2 := poss2 join {j};
end if;
end for;
poss := poss meet poss2;
end if;
if #poss ge 2 then
perm_wl eq Append(perm_w1l,0);
print "SORT OUT ENTRY ",i;
else
perm_wl := Append(perm_wl,Random(poss));
end if;
if 1 mod 50 eq O then
print i;
end if;

end for;

Note that this code runs through the full transversal to find possible vs by acting on
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a random vector v, the one we want being in this set. If the set of possibilities has
size one, then we know that this must be the real one however if there is more than
one we run the procedure on another random vector and take the intersection of the
possible s. If there is still more than one possibility after a third attempt we put a
zero in and deal with it manually. When we ran this code in all cases we never had
to do this.

We then repeat this code with w1 replaced with w2 in all cases. This code was
tested on smaller groups with similar maximal subgroups, in which the CosetAction
command in MAGMA could be used. Exactly the same group was calculated in both
cases.

The code used to produce the 3B representation is very similar, but involves a

great deal more computational time.

4.4 Appendix 4

Details for showing X C As(t) for C € {5B,10D,10F,11A,12M,18C,19A, 20G, 225,
33A,35A}. We have already proved that X is a single Cg(t) orbit, and that
d(t,z) > 3 for z € X¢o. So all we need to do is find a w € 2C which commutes
with x and which we know to be in the second disc. Now the centralizer of a 2C'
involution in BM has shape (2% x F4(2)) : 2, and we can get a straight line program
from the online ATLAS which gives generators a and b for a subgroup H of BM of
this shape. Now by taking an involution in the central 22 part of H, we can find a ¢
such that Cpp(t) = H. We will take this ¢ to be the origin of C(G, X) from which

we measure our discs. Thus we set t to be the following element
t := (a*xaxbxaxbxbxakxa*bxaxb*bxbxb*a*axa*b*bxb*axbxaxb*axb)~17;
For 5B, if we let

t° (y*y*x*y*x*y*x*y*y*x*y) *xt*xt” (y*y*x*y*x*y*x*y*y*x*y) ;

)
i

o
1]

VROKYROK YRR YRR YR YRR YRXKY
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where x and y are our generators for G, then t9 € X55 and if we use Bray’s algorithm
on t? with a being our random element we get a 2C' element in X544, which we know

to be in the second disc.

For 10D, if we let

NAal Ar SED S AED CAED AR AED CAES CAERN LD CAERED LD C LD € ) N

0
i

)
[}

y*y*x*y*y*x*y*x*y*x*y*y;

then t9 € Xi9p and again using Bray’s algorithm on t9 with a as the random element

we get a 2C element in Xogy.

For 10F, if we let

t”(y*x*y*y*x*y*x*y*y*x*y*x*y*x*y);

0
i

o
]

TRYRRYHR YRR TR YRR XY

then t9 € Xjop, and using Bray’s algorithm on t9 with a as the random element we

get a 2C element in X;74, which we know to be in the second disc.

For 11A4 is we let

)
i

VRYRXKYRYRXKYRXKY*RRKY ;

)
1]

pENED CAED CREDS SRS AR AED CAER LD C AL SN

then t9 € X114 and using Bray’s algorithm on ¢ with a as the random element we

get a 2C' element in Xy0p, which is in the 2nd disc.

For 12M, if we let

NAal Aor SN D S AR RAD RS CATLD €A AL REDS LD AR MED CAES SN LD S AL D €L AN

0
i

[
]

X*y*y*x*y*x*y*y*x*y*x*y*y*x*y*x*y;

then t9 € X5/, and using Bray’s algorithm on #9 with a as the random element we

get a 2C' element in Xyyp, which is in the 2nd disc.
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For 18C, if we let

y1 = (W2*wl*w2*w2*w2*wlxw2*wl*w2*w2kw2*wlxw2+xw2*w2*w 1k w2* w2+ w2 w2 w2k w2*w2xwl*w2*wl
W o= (Wlkwlwlxw2xw2*w2*xw2kwl w2 w2k w2xw2xw2x w2k w2*xw2*xw2kw2*xw2*xw2*xwl*w2) ~10;
S CAVAD S CED CED S D S D CATED C AL A €

Then y1 * w? is a member of the orbit contained in X;g¢, which is not in Ay(t). By
using Bray’s Algorithm on y1*w? with a as the random element we get a 2C' element
in Xy64 which commutes with y1 * w?. As we know that Xy, is contained in Ay(#)

we deduce that d(t,yl * w?) < 3.

For 194 is we let

X*Y*Y*X*Y*Y*X*Y*X*Y*X;

)
Il

)
1]

XKRYRYRKTRXK YRR YR YRR YRRy *Y

Then t9 € X194 and using Bray’s algorithm on ¢ with a as the random element we

get a 2C element in Xyop, which is in the 2nd disc.

For 20G, if we let

y*x*y*y*X*y*x*y*y*x*y*x*y*x*y;

0
i

o
]

XRYRIRYHR YRR YRR YRR YR YRXKY

then t9 € X0, and using Bray’s algorithm on 9 with a as the random element we

get a 2C element in X4, known to be in Ay(t).

For 22B is we let

g :=y*y*x*y*X*y*y*x*y*x*y*X*y*x*y*X*y*y*x*y*y*x*y*y*x*y*x*y*y*x*y*x*y*y*x;

QA = XRYRYRXRYRYRXKYRXKYRXKY ]

Then t9 € X555 and using Bray’s algorithm on t9 with a as the random element we

get a 2C' element in X474, which is in the 2nd disc.
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For 334 is we let

X*y*x*y*y*x*y*x*y*y*x*y*x*y;

0
i

a 1= PRXKPRYRIORYROCR YRR YRR IO YR YRR

Then t9 € X334 and using Bray’s algorithm on ¢ with a as the random element we

get a 2C element in Xyop, which is in the 2nd disc.

For 35A is we let

TRYRORFHR YRR YRYROKY*X

0
i

)
1]

y*y*x*y*x*y*y*x*y*y*x*y*y*x*y*x;

Then t9 € X354 and using Bray’s algorithm on t9 with a as the random element we

get a 2C' element in X474, which is in the 2nd disc.

4.5 Appendix 5

We will now give code listings for the programs used while studying the commuting

involution graph for the Baby Monster.

4.5.1 BrayLoop

The is procedure carries out a single loop of Bray’s algorthithm. Used as

BrayLoop(~S,h,G,g), where S is the set where the output is to be saved, h is the
random element to be used, G is the group that is being calculated inside (simply
used to get ahold of the identity) and g is the element you want to find commuting

elements for.

BrayLoop:= procedure(~S,h,G,g)
Z:=IntegerRing();
S:={};

c:=1;
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c:=c+l1;
com := (g"-1)*(h~-1)*g*h;
order_com := Order(com);

if (order_com mod 2) eq O then

p := order_com/2;
p := Z'p;
wl := com™p;

w2 = ((g"~-1)*h*gx(h~-1)) p;

S := 8 join {wl,w2};
else
p := (order_com - 1)/2;
p := Z'p;
wl := h*(com™p);
S := S join {wl};
end if;

end procedure;

4.5.2 RandomWord

RandomWord(n) is a function which produces a word of length n in the generators
x and y of BM and saves it as an array. Note that as x has order 2 and y order 3,
the function is carefulto make sure the word is in as compact a form as possible -
that is there are no consecutive s, and no strings of consecutive y’s of length 3 or
more. Note that this function simply creates a array where the entries are the names
“x"and “y” , and not the actual elements, to conserve space. To convert such an

array into a usable element use the function MultiplyRandomWord.

RandomWord := function(n)
if n le 2 then

print "Don’t be lazy, do it yourself!";
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return O;

else

while i le n do

if i eq 1 then

else

a:=Random(1) ;

if a eq O then

z[1] := "x";
z[2] := "y";
i:=3;
else
z[1]:= "y";
b:=Random(1) ;
if b eq O then
z[2] := "x";
i:=3;
else
z[2] := "y";
i:=3;
end if;
end if;
z1 := z[i-2];
z2 := z[i-1];

if z1 eq "x" then

a:=Random(1);

if a eq O then
z[i] = "x";
i:=i+1;

else

155
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z[i] := "y";
i:=i+1;
end if;
else
if z2 eq "y" then
z[i] := "x";
i:=i+1;
else
z[i] := "y";
i:=i+1;
end if;
end if;
end if;
end while;
return z;

end if;

end function;

4.5.3 MultiplyRandomWord

Used to convert an array produced using RandomWord into a using element. Used as
MultiplyRandomWord(~g,z,G) where g is where you want to store the element, z is

the word you want to convert, and G is a group you want to do it in.
MultiplyRandomWord := procedure(~a,z,G)

n:=#z;

a:=Identity(G);

for i in [1 .. n] do
if z[i] eq "x" then

a:=a*x;
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end if;
if z[i] eq "y" then
a:=axy;
end if;
end for;

end procedure;

4.6 Appendix 6

Table which gives correspondence between orbit names in Theorem 2.3.2 and orbit

names in [34] and [35].

Name in [34] | Name here || Name in [34] | Name here | Name in [34] | Name here
Aj(a) Aj(a) Aj(a) Aj(a) Aj(a) A(a)
Aj(a) A3(a) Aj(a) Aj(a) Ai(a) Aji(a)
A3(a) A3(a) Aj(a) A3(a) Aj(a) A(a)
A3(a) Aj(a) Aj(a) Ag(a) Ai(a) A} (a)
Az(a) A3(a) Aj(a) A3(a) Ai(a) Ai(a)
A3(a) Ag(a) Aj(a) A3 (a) Af(a) A7 (a)
A3(a) Aj(a) Ai°(a) Al(a)
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