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Our aim is to calculate some graphs associated with two of the larger sporadic
simple groups, Fi24 and the Baby Monster.

Firstly we calculate the point line collinearity graph for a maximal 2-local geom-
etry of Fi24. If Γ is such a geometry, then the point line collinearity graph G will be
the graph whose vertices are the points in Γ, with any two vertices joined by an edge
if and only if they are incident with a common line. We found that the graph has
diameter 5 and we give its collapsed adjacency matrix.

We also calculate part of the commuting involution graph, C, for the class 2C of
the Baby Monster, whose vertex set is the conjugacy class 2C, with any two elements
joined by an edge if and only if they commute. We have managed to place all vertices
inside C whose product with a fixed vertex t does not have 2 power order, with all
evidence pointing towards C having diameter 3.
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Chapter 1

Introduction

The classification of finite simple groups was finally completed in 2004, after more

than one hundred years of work, involving hundreds of mathematicians and spanning

many tens of thousands of journal pages.

Theorem 1.0.1 (The Classification of Finite Simple Groups). Let G be a finite

simple group. Then G belongs to one of the following families of groups:

1. Cyclic groups of prime order.

2. Alternating groups of degree at least 5.

3. Simple groups of Lie type, including

• The classical groups of Lie type, PSL, PSp, PSU and O.

• The exceptional and twisted groups of Lie type, including the Tits group.

4. The 26 sporadic simple groups.

Even though these finite simple groups have been classified, still a lot is not known

about them, especially the larger sporadic simple groups.

Finding new ways to study these large sporadic groups, for example the Monster

and Baby Monster simple groups, is of upmost importance, as simply studying these

groups alone is not feasible. For example Linton et al constructed computationally

the Monster group, over GF (2) [36], and although generators are available the group

9



CHAPTER 1. INTRODUCTION 10

is too large to completely load on a computer, and Wilson [42] constructed computa-

tionally the Baby Monster over GF (2), and although it is possible to load the entire

group, carrying out anything other than very simple elementary calculations inside

it is asking for trouble.

Therefore, studying structures which these groups act on, especially when they

involve involutions, which play a very important role in the structure of a simple

group, could give us a practical route into studying these massive objects.

This thesis compromises of two main projects, both computational in nature,

regarding graph structures associated to Fi24 and the Baby Monster, the second and

third largest of the sporadic simple groups.

The second chapter is devoted to work carried out by myself in collaboration with

my supervisor Prof. Peter Rowley. It is concerned with calculating the point-line

collinearity graph for the maximal 2-local geometry for Fischer’s largest sporadic

simple group, Fi24. The geometry was first introduced by Ronan and Smith [24]

in 1980, and calculating the structure of this graph has been an open problem ever

since. The work is very computational in nature and although the graph is defined

in the language of incidence geometry, we quickly reduced the problem to simple

combinatorics to make the computations possible. As this graph is huge, a full

description is not given, as this would be impossible, however we do give a 120 by

120 matrix detailing the collapsed adjacency graph. The (i, j)th entry of this matrix

gives the number of points in the jth orbit of G connected to a single point in the ith

orbit, as the stabilizer of a point in Γ acts on G.

Chapter three is concerned with the commuting involution graph for the class

2C in the Baby Monster group, the second largest of the sporadic simple groups.

Classes 2A and 2B were completed by Bates, Bundy, Rowley and Perkins [12], and

2C is one of the two remaining cases for calculating commuting involution graphs

for all the sporadic simple groups - the cases not covered in [12] other than the two

remaining Baby Monster cases have been completed by Rowley and P. Taylor [39].

It is the overall aim to compute these commuting involution graphs for all the finite

simple groups, a large chunk of which have already been completed. Again this work



CHAPTER 1. INTRODUCTION 11

is rather computational in nature, however due to the restrictions in working inside

the 4370 dimensional linear representation (over GF (2)) of the Baby Monster, we

often had to drop down to more manageable representations for some of the maximal

subgroups.

Both chapters are devoted to graph structures associated with finite groups and

so have a few shared definitions. In both cases our graph is regular, that is each note

x has the same number of edges connected to it. So let G be a regular graph with

vertex set X. Firstly, for x, y ∈ X, we define a distance function on G, d(x, y), in

the obvious way. That is d(x, y) is the length of the shortest path connecting x and

y. It is clear that if we assume our graph is connected, this distance function follows

all the rules expected from a metric. Now for a fixed vertex t ∈ X we can define the

discs of G as

∆i(t) = {x ∈ X | d(t, x) = i}

for an integer i. In both chapters the structure of these discs will be independent

on the choice of t. Finally we define the diameter of G to be the maximum distance

between any two vertices of G.

All the calculations detailed in this thesis were carried out using Magma v2.15,

apart from a few which were carried out in Gap v4.4.10. In all cases we used several

3.2GHz machines, each with between 8 and 16GB of RAM, located in the School of

Mathematics at The University of Manchester.

One final remark, during this thesis we make great use of the Atlas of Finite

Groups [18] and the World Wide Web Atlas of Group Representations [22]. As we

refer to these almost every other sentence, we will simply refer to them as the Atlas

and The Online Atlas respectively and reference them here.



Chapter 2

The Point-Line Collinearity graph

for the Maximal Local 2-Geometry

of Fi24

2.1 Introduction and Basic Definitions

Definition 2.1.1. An Incidence Geometry is a 4-tuple (Γ, ?,∆, d) where Γ is a set,

whose elements are called varieties (that is points, lines, planes, hyper-planes, etc),

d is a map from Γ to the finite set ∆ which gives the type of each element in Γ,

that is whether the variety is a point, line, plane, etc, and ? is a binary symmetric

and reflexive relation on Γ called the incidence relation, where the above is subject to

axioms 1 and 2 given below. For i ∈ ∆ we denote d−1(i) by Γi, and call its elements i-

varieties, or simply just points, lines, planes etc. A flag F is a set of pairwise incident

varieties. The type of F is the set d(F ) ⊂ ∆ and the rank of F is the size of d(F ).

The residue R(F ) of a flag F is the ordered 4-tuple (Γ′, ?′, d′,∆′) where Γ′ is the set

of all varieties of Γ of type i ∈ ∆ \ d(F ) which are incident to all elements of F , ?′

and d′ are the restrictions of ? and d to Γ′ and ∆′ = d(Γ′).

Axiom 1 Every maximal flag contains one and only one variety of type i for every i ∈ ∆

and every non-maximal flag is contained in at least two maximal flags.

12
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Axiom 2 For any distinct i, j ∈ ∆, Γi ∪ Γj is connected under ?, that is for any two

x, y ∈ Γi ∪ Γj there exists a chain of elements xα ∈ Γi ∪ Γj where 0 ≤ α ≤ n

such that xα ?xα+1 and x0 = x, xn = y, and this property holds in every residue

R(F ) for a flag F .

Definition 2.1.2. Let Γ be an incidence geometry, then the Point-Line Collinearity

Graph, G, for Γ is a graph where the vertices are the points of Γ, with any two vertices

joined by an edge if and only if they are incident with a common line.

Now let G be a finite group; we can create an incidence geometry from G by

letting F = {Gi} be a family of subgroups of G, and letting the objects of type i be

the cosets of Gi in G, with two cosets xGi, yGj incident if and only if xGi∩ yGj 6= ∅.

Furthermore, if G has even order, we can let F be the collection of maximal 2-local

subgroups of G; then the geometry Γ created from F is the maximal 2-local geometry

for G. These geometries have been extensively studied in the case of groups of Lie

type by Tits [41] and Buekenhout [8] and for the sporadic groups by Ronan and Smith

[24]. This Chapter will be devoted to studying the point line collinearity graph for

the maximal 2-local geometry for Fischer’s larger sporadic group Fi24.

2.2 Literature Review

The maximal 2-local geometry for Fi24 was first described by Ronan and Smith in

[24]. In this paper they gave the diagram geometries for many of the sporadic simple

groups, in which the stabilizer of a vertex is a maximal 2-constrained 2-local subgroup.

The combinatorial structure of these geometries have been studied by many authors,

for example P. Rowley, L. Walker [31],[32],[33], J. Maginnis and S. Onofrei [21], Y.

Segev [37] and A. Ivanov [17]. Central to this structure is the point-line colinearity

graph G.

The structure of G for many of these geometries has been calculated and we will

outline these results here.

In [28], [29] and [30], Rowley and Walker calculated the point line collinearity

graph G for the maximal 2-local geometry Γ for Janko’s largest sporadic simple group
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J4. Throughout the paper they didn’t assume that the group G in question was in

fact J4, they only assumed the following geometric data.

Let Γ be a residually connected string geometry, with type set {0, 1, 2} and sup-

pose for x ∈ Γ, Γx = {y ∈ Γ | x?y}. Now let G be a subgroup of AutΓ which satisfies

the following properties:

1. For a ∈ Γ0, Γa is the rank 2 geometry of trios and sextets (defined on the Steiner

system S(5, 8, 24)), Ga/Q(a) ∼= M24 and Q(a) is the 11-dimensional M24 Todd

module.

2. For X ∈ Γ2, ΓX is the rank 2 geometry of duads and hexads (defined on the

Steiner system S(3, 6, 22)), GX/Q(X) ∼= M22 : 2 and Q(X) ∼= 21+12.3 with

O2(GX) = O2(Q(X)) the extraspecial group of order 213.

We note that the maximal 2-local geometry for J4 possesses both of these properties.

Now suppose G is the point line collinearity graph for such a geometry, and hence G

is the point line collinearity graph for the maximal 2-local geometry for J4; we have

the following theorem.

Theorem 2.2.1 (P. Rowley and L. Walker). Let G be the point line collinearity graph

for the geometry Γ defined above and suppose a ∈ Γ0. Then

1. |Γ| = 173, 067, 379.

2. G has diameter 3.

3. G consists of seven orbits as Ga acts on Γ0, labeled a, ∆1(a), ∆1
2(a), ∆2

2(a),

∆3
2(a), ∆1

3(a) and ∆2
3(a).

4. |∆1(a)| = 22.3.5.11.23, |∆2
1(a)| = 24.7.11.23, |∆2

2(a)| = 27.3.5.7.11.23, |∆3
2(a)| =

211.32.7.11.23, |∆1
3(a)| = 211.3.5.7.11.23 and |∆2

3(a)| = 218.32.5.7.

In [26] and [27], Rowley and Walker calculated the point line collinearity graph

for the maximal 2-local geometry for the Baby Monster BM . As in the J4 case, they

didn’t assume the group G was BM , and only assumed that Γ was a rank 4 geometry,

with G a subgroup of Aut(Γ) with the following properties:
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1. Γ is a string geometry.

2. For l ∈ Γ1, |Γ0(l)| = 3 and two collinear points in Γ determine a unique line.

3. For a ∈ Γ0 and X ∈ Γ3, Γa is isomorphic to the Co2-minimal parabolic geometry

and ΓX is isomorphic to a projective 3-space geometry (over GF(2)).

4. G acts flag transitively on Γ.

5. For a ∈ Γ0, Ga
∼= 21+22Co2, Q(a) ∼= 21+22 = O2(Ga) and Z1(a) = Z(Ga) =

Z(Q(a)) = Z2. Moreover Q(a)/Z(Q(a)) is isomorphic to the irreducible 22-

dimensional GF (2) Co2 module which occurs as a composition factor in the

Leech lattice reduced mod 2.

6. Let l ∈ Γ1 and X ∈ Γ3, then Gl
∼= 22+10+20(S3 ×M22.2) has a unique minimal

normal subgroup of order 22 and GX
∼= 29+16+6+4L4(2) with Q(X) = O2(GX) ∼=

29+16+6+4.

Note that all the properties above hold for G = BM and Γ the maximal 2-local

geometry for G. They proved the following theorem:

Theorem 2.2.2 (P. Rowley and L. Walker). Let G be the point line collinearity graph

for the geometry Γ described above and let a ∈ G. Then

1. G has diameter 4.

2. ∆1(a) consists of a single Ga orbit, as Ga acts on the vertices of G.

3. ∆2(a) consists of three Ga orbits.

4. ∆3(a) consists of four Ga orbits.

5. ∆4(a) consists of a single Ga orbit.

In [40], Rowley and Taylor studied the point line collinearity graphs for the min-

imal parabolic geometries for the sporadic simple groups HN and Th, geometries

closely related to the maximal 2-local geometries. These graphs are of interest be-

cause they appear in full as subgraphs of the point line collinearity graph for the
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maximal 2-local geometry of the Monster sporadic simple group. They proved the

following two theorems:

Theorem 2.2.3 (P. Rowley and P. Taylor). Let G be the point line collinearity graph

for the minimal parabolic geometry Γ for the Thompson sporadic simple group Th.

Then G has diameter 5 and for a fixed vertex a, the discs of G break up into the

following orbits, as Ga acts on the vertices of G.

1. |∆1(a)| = 270 and consists of a single Ga orbit.

2. |∆2(a)| = 64, 800 and consists of two Ga orbits.

3. |∆3(a)| = 15, 060, 480 and consists of six Ga orbits.

4. |∆4(a)| = 858, 497, 006 and consists of twenty Ga orbits.

5. |∆5(a)| = 103, 219, 200 and consists of two Ga orbits.

Theorem 2.2.4 (P. Rowley and P. Taylor). Let G be the point line collinearity graph

for the minimal parabolic geometry Γ for the Harada-Norton sporadic simple group

HN . Then G has diameter 5 and for a fixed vertex a, the discs of G break up into

the following orbits, as Ga acts on the vertices of G.

1. |∆1(a)| = 150 and consists of a single Ga orbit.

2. |∆2(a)| = 17, 760 and consists of three Ga orbits.

3. |∆3(a)| = 1, 638, 400 and consists of eight Ga orbits.

4. |∆4(a)| = 68, 721, 664 and consists of fifty Ga orbits.

5. |∆5(a)| = 3, 686, 400 and consists of three Ga orbits.

For both of these graphs they translated the geometric definition of G into a group

theoretic definition, then used Magma to calculate the graphs. This translation

worked in the following way. If x is a point in either of the geometries in question,

then it is true that Gx = CG(ix) where ix is an involution in G and Z(Gx) = 〈ix〉.
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Therefore we may identify Γ0 with the conjugacy class X = iGx . Under this translation

two points x, y ∈ X are joined by an edge if and only if y ∈ O2(CG(x)), and thus this

graph is closely related to the commuting involution graph. After this translation

calculation of the structure of G for both the groups Th and HN using Magma was

relatively simple as the size of both of the groups in question is relatively small.

Rowley and Walker calculated the point line collinearity graph for the maximal

2-local geometry for Fi23; this was a substantial amount of work and is spread over

three papers [31], [32] and [33]. They proved that the graph G has diameter 4, with

the following orbit decomposition with respect to a fixed vertex t.

1. ∆1(t) has size 506 and consists of a single Gt orbit.

2. ∆2(t) has size 141,680 and consists of two Gt orbits.

3. ∆3(t) has size 29,233,920 and consists of six Gt orbits.

4. ∆4(t) has size 166,371,328 and consists of six Gt orbits.

These calculations were obtained purely by hand, and no machine calculations were

used. They quickly proved that the number of points incident with a fixed line was

3, and any two of these 3 points uniquely determine the line. They studied the

graph in a similar way that we will study the Fi24 graph, by letting Gtx act on the

set of lines incident with a vertex x, and taking representatives from each of these

line orbits. They then calculated the two other points incident with these line orbit

representatives, to get a full list of representatives. As there was only a small number

of Gt orbits, this was possible to do by hand.

In [35], Rowley and Walker calculated the first three discs of the point line

collinearity graph for the maximal 2-local geometry for Fi24. This was relatively

straight forward, as the Fi23 graph embeds itself into the Fi24 graph, with only two

new Gt orbits found in the Fi24 case. These calculations were carried out entirely by

hand.
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2.3 Fi24

Let G be Fischer’s largest sporadic group Fi24. We first note that Fi24 is itself not

simple, however its derived group Fi′24 is, with Fi24 its automorphism group. We will

let F denote the derived group Fi′24, and thus F is simple. The group G contains

four classes of involutions, in Atlas notation denoted 2A, 2B 2C and 2D. The class

2C generate G, and are the so called 3-transpositions, that is the product of any two

involutions in 2C either is 1 if they are the same, an involution if they commute, or

an element of order 3. We will call a maximal set of mutually commuting involutions

from 2A a base. It is a fact that for a base B, |B| = 24, with any two bases B1 and

B2 conjugate in G (see the Atlas for these details).

As defined in section 2.1, we can define the maximal 2-local geometry for G, which

we will call Γ. The diagram for this geometry is given in Figure 2.1.

Figure 2.1: The maximal 2-local geometry for Fi′24

In Figure 2.1, the number given above each vertex is its type, that is point, line,

plane, hyper plane, etc and the groups given below are the stabilizers of such a point,

line, plane, etc in Fi′24. Note that because this diagram gives the stabilizers inside of

Fi′24, the stabilizer of a point in G has shape 212.M24.

Now the stabilizer in G of a base B is isomorphic to 212.M24, and since G only

contains one conjugacy class of groups of this shape we may identity points of Γ with

bases of G. Since G acting by conjugation on 2C has permutation degree 306,936

when studying G we may work inside Sym(306936) to make calculations possible. In

preparation for this task we prepare a representation for G inside Sym(306936) using

the following code

F<a,b1,c1,d1,e1,f1,b2,c2,d2,e2,b3,c3> := FreeGroup(12);



CHAPTER 2. THE POINT-LINE COLLINEARITY GRAPH FOR Fi24 19

Rels:={a^2=Id(F),b1^2=Id(F),c1^2=Id(F),d1^2=Id(F),e1^2=Id(F),

f1^2=Id(F),b2^2=Id(F),c2^2=Id(F),d2^2=Id(F),e2^2=Id(F),

b3^2=Id(F),c3^2=Id(F),

(a*b1)^3=Id(F),(a*c1)^2=Id(F),(a*d1)^2=Id(F),(a*e1)^2=Id(F),

(a*b2)^3=Id(F),(a*c2)^2=Id(F),(a*d2)^2=Id(F),(a*e2)^2=Id(F),

(a*b3)^3=Id(F),(a*c3)^2=Id(F),(b1*c1)^3=Id(F),(b1*d1)^2=Id(F),

(b1*e1)^2=Id(F),(b1*b2)^2=Id(F),(b1*c2)^2=Id(F),(b1*d2)^2=Id(F),

(b1*e2)^2=Id(F),(b1*b3)^2=Id(F),(b1*c3)^2=Id(F),(c1*d1)^3=Id(F),

(c1*e1)^2=Id(F),(c1*b2)^2=Id(F),(c1*c2)^2=Id(F),(c1*d2)^2=Id(F),

(c1*e2)^2=Id(F),(c1*b3)^2=Id(F),(c1*c3)^2=Id(F),(d1*e1)^3=Id(F),

(d1*b2)^2=Id(F),(d1*c2)^2=Id(F),(d1*d2)^2=Id(F),(d1*e2)^2=Id(F),

(d1*b3)^2=Id(F),(d1*c3)^2=Id(F),(e1*b2)^2=Id(F),(e1*c2)^2=Id(F),

(e1*d2)^2=Id(F),(e1*e2)^2=Id(F),(e1*b3)^2=Id(F),(e1*c3)^2=Id(F),

(b2*c2)^3=Id(F),(b2*d2)^2=Id(F),(b2*e2)^2=Id(F),(b2*b3)^2=Id(F),

(b2*c3)^2=Id(F),(c2*d2)^3=Id(F),(c2*e2)^2=Id(F),(c2*b3)^2=Id(F),

(c2*c3)^2=Id(F),(d2*e2)^3=Id(F),(d2*b3)^2=Id(F),(d2*c3)^2=Id(F),

(e2*b3)^2=Id(F),(e2*c3)^2=Id(F),(b3*c3)^3=Id(F),

(a*b1*c1*a*b2*c2*a*b3*c3)^10=Id(F),

(f1*e1)^3=Id(F),(f1*d1)^2=Id(F),(f1*c1)^2=Id(F),(f1*b1)^2=Id(F),

(f1*a)^2=Id(F),(f1*b2)^2=Id(F),(f1*c2)^2=Id(F),(f1*d2)^2=Id(F),

(f1*e2)^2=Id(F),(f1*b3)^2=Id(F),(f1*c3)^2=Id(F),

f1=(a*b1*c1*d1*b2*c2*b3)^9,f1=(a*b1*c1*d1*b2*b3*c3)^9};

Y442 := quo<Fr|Rels>;

S:={a,b1,c1,d1,e1,f1,b2,c2,d2,b3,c3,

(a*b1*c1*d1*e1*f1*a*b2*c2*d2*e2*a*b3*c3)^17};

H:=sub<Y442|S>;

m, G := CosetAction(Y442,H);
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g1 := m(f1);

g2 := m((f1*d1)^e1);

g3 := m((d1*b1)^c1);

g4 := m((b1*b2)^a);

g5 := m((b2*d2)^c2);

g6 := m((d2*f2)^e2);

g7 := m((b1*b3)^a);

g8 := m((b2*b3)^a);

g9 := m((b1*a*b2*b3*c3)^4);

This presentation is based on a Y -type diagram given in the Atlas, we recall

that Y542 = Y442
∼= 3·Fi24. We note that G ∼= Fi24 is generated by 12 permutations,

which we will call a1, . . . a12. For ease of use later on we will save these permutations

in a file Fi24perms.m and let G be the subgroup of Sym(306936) generated by them.

The elements g1, . . . , g9 generate a subgroup of shape 212M24 which will play the part

of Ga in our calculations.

Now let x ∈ Γ0, that is x is a point of Γ, then by our previous observation, we

may identify x with a base of G, which we will denote Ωx. So in particular |Ωx| = 24

and Gx, the stabilizer of Ωx in G has shape 212.M24. More importantly Gx acts on

Ωx, with the induced action being the standard action of M24 on a 24 point set.

Therefore when studying Γ we may use the powerful machinery of Curtis’s Miracle

Octad Generator (the MOG) [14]. From this point of view the lines of Γ incident with

x can be identified with the octads of Ωx. If we consult the Atlas, we see that the

octads of Ωx are precisely the subsets of Ωx of size 8 which product to 1 in G (recall

that all involutions in Ωx commute). As we are considering the standard action of

M24 on a 24 point set, there are 759 such octads for each base x. Therefore we can

now describe G in a more accessible way. Indeed, the vertices of G are the bases of



CHAPTER 2. THE POINT-LINE COLLINEARITY GRAPH FOR Fi24 21

G, with two vertices Ωx and Ωy joined by an edge if and only if Ωx ∩ Ωy is an octad

of either Ωx or Ωy. We now note that G acts transitively on the set of bases of G,

therefore if Ωx ∩ Ωy is an octad of Ωx then it is also an octad of Ωy and vice versa.

We will now introduce an important tool when studying this graph, that of the

transposition profile. For a ∈ Γ0, we can let Ga act on the set of 3-transpositions for

G. In our setup this corresponds to letting Ga act on the set Ω = {1 . . . 306936} with

the standard permutation action. Then Ω splits into 3 orbits of sizes 24, 24,288 and

282,624 (see the Atlas for these details). The first orbit corresponds to the base

Ωa, the second we will call the cctadic transpositions and denote Oa, and third the

duadic transpositions, denoted Da. So for a base Ωy of G, we assign l1 = |Ωy ∩ Ωa|,

l2 = |Ωy∩Oa| and l3 = |Ωy∩Da|. Then l1|l2|l3 will be referred to as the transposition

profile for Ωy (with respect to Ωa). Clearly if two bases Ωx and Ωy are in the same

Ga orbit then they will have the same transposition profile. Therefore this gives us

a useful and easily calculated Ga orbit invariant. However the opposite is far from

true, for example the orbits ∆9
3(a) and ∆7

4(a) both have transposition profile 1|1|22

with respect to Ωa.

The main results from this investigation are given in the following two theorems.

We first remark that as G acts on the set of bases of G, G induces graph automor-

phisms on G. As this action is transative the disc structure of G will not depend on

the original choice of Ωa. We also note that Ga acts on the vertices of G and for any

two vertices x and y in the same Ga orbit, d(a, x) = d(a, y). Therefore, for a Ga orbit

X, if x ∈ X belongs to ∆i(a) then X ⊆ ∆i(a). Thus we will break down the discs of

G into their constituent Ga orbits. Details of these orbits are given in Theorem 2.3.2.

By using Gap and the class structure constants for G, S. Linton [20] calculated the

permutation rank, that is the number of orbits as Ga acts on the vertices of G to be

120.

Theorem 2.3.1 (P. Rowley and B. Wright). Let G be the point line collinearity graph

for the maximal 2-local geometry for Fi24. Then

(i) The diameter of G is 5.
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(ii) |∆1(a)| = 1518 and ∆1(a) is a Ga orbit.

(iii) |∆2(a)| = 1, 560, 504 and ∆2(a) consists of three Ga orbits.

(iv) |∆3(a)| = 1, 400, 874, 432 and ∆3(a) consists of ten Ga orbits.

(v) |∆4(a)| = 656, 569, 113, 600 and ∆4(a) consists of 46 Ga orbits.

(vi) |∆5(a)| = 1, 845, 442, 396, 160 and ∆5(a) consists of 59 Ga orbits.

Note that the number of orbits in each disc add up to 119 which with the vertex a

stabilized by Ga, make up the 120 orbits calculated by S. Linton. The next theorem

gives more details about each Ga orbit. For a representative x of each Ga orbit, we

present the structure of Gax, that is the stabilizer of x in Ga. For these groups we

mostly use notation from the Atlas, apart from using Sym(n), Alt(n) and Dih(n)

for the symmetric, alternating and dihedral groups. For a vertex x of G, recall that

Ga has shape 212.M24, and Fa has shape 211.M24. We use Qx to denote the largest

normal 2-group of Fx, so Qx is elementary abelian of order 211. The final column of

the table below lists the sizes of the sets Fax ∩ Qx. Finally all transposition profiles

given in the table below are with respect to a.

Theorem 2.3.2 (P. Rowley and B. Wright). For i = 1, . . . , 5, ∆i(a) is the union of

the Fa-orbits ∆j
i (a) as detailed in the table below.

Table 2.1: The Orbits of G

∆j
i (a) |∆j

i (a)| Transposition Profile Structure of Fax |Fax ∩Qx|

∆1
0(a) 1 24|0|0 211.M24 2048

∆1
1(a) 1518 8|16|0 210.24.Alt(8) 1024

∆1
2(a) 30360 0|24|0 29.26.(L3(2)× 3) 512

∆2
2(a) 170016 4|20|0 27.26.3.Sym(5) 128

∆3
2(a) 1360128 2|6|16 25.24.Sym(6) 32

∆1
3(a) 282624 2|0|22 2.M22.2 2

∆2
3(a) 566720 0|24|0 27.26.3.32.4 128
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∆3
3(a) 1036288 3|21|0 22.L3(4).Sym(3) 4

∆4
3(a) 11658240 2|14|8 24.23.(L3(2)× 2) 16

∆5
3(a) 21762048 2|16|6 2.24.Sym(6) 2

∆6
3(a) 40803840 0|8|16 23.22.24.Sym(4) 8

∆7
3(a) 40803840 0|8|16 24.22.23.Sym(4) 16

∆8
3(a) 108810240 1|7|16 22.22.22.3.Sym(4) 4

∆9
3(a) 522289152 1|1|22 24.Alt(5) 1

∆10
3 (a) 652861440 0|2|22 2.2.23.Sym(4) 2

∆1
4(a) 11658240 0|16|8 24.24.L3(2) 16

∆2
4(a) 11658240 0|16|8 24.24.L3(2) 16

∆3
4(a) 24870912 1|15|8 Alt(8) 1

∆4
4(a) 65286144 0|0|24 2.26.Alt(5) 2

∆5
4(a) 93265920 0|2|22 2.24.L3(2) 2

∆6
4(a) 93265920 0|2|22 2.24.L3(2) 2

∆7
4(a) 198967296 1|1|22 Alt(7) 1

∆8
4(a) 217620480 0|8|16 26.(Sym(3)× Sym(3)) 1

∆9
4(a) 217620480 0|8|16 26.(Sym(3)× Sym(3)) 1

∆10
4 (a) 217620480 0|8|16 22.24.(Sym(3)× Sym(3)) 4

∆11
4 (a) 217620480 0|8|16 22.24.(Sym(3)× Sym(3)) 4

∆12
4 (a) 244823040 0|8|16 23.22.23.23 8

∆13
4 (a) 326430720 0|0|24 2.24.24.3 2

∆14
4 (a) 652861440 0|10|14 2.22.24.Sym(3) 2

∆15
4 (a) 652861440 0|10|14 2.22.24.Sym(3) 2

∆16
4 (a) 746127360 1|9|14 2.L3(2).2 2

∆17
4 (a) 759693312 1|11|12 L2(11) 1

∆18
4 (a) 870481920 1|3|20 26.32 1

∆19
4 (a) 1305722880 0|6|18 2.25.Sym(3) 2

∆20
4 (a) 1305722880 0|6|18 2.25.Sym(3) 2

∆21
4 (a) 1392771072 1|5|18 (3×Alt(5)).2 1

∆22
4 (a) 2611445760 0|4|20 22.23.Sym(3) 1
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∆23
4 (a) 2611445760 0|4|20 25.Sym(3) 1

∆24
4 (a) 2611445760 0|4|20 2.24.Sym(3) 2

∆25
4 (a) 3917168640 0|0|24 22.25 1

∆26
4 (a) 3917168640 0|6|18 2.23.23 2

∆27
4 (a) 5222891520 0|2|22 2.23.Sym(3) 1

∆28
4 (a) 5222891520 0|6|18 24.Sym(3) 1

∆29
4 (a) 5222891520 0|6|18 24.Sym(3) 1

∆30
4 (a) 5222891520 0|6|18 2.23.Sym(3) 2

∆31
4 (a) 5222891520 0|6|18 2.23.Sym(3) 2

∆32
4 (a) 6963855360 0|0|24 22.(3× 3).2 1

∆33
4 (a) 6963855360 0|0|24 22.(3× 3).2 1

∆34
4 (a) 10445783040 0|2|22 23.Sym(3) 1

∆35
4 (a) 10445783040 0|2|22 23.Sym(3) 1

∆36
4 (a) 10445783040 0|2|22 23.Sym(3) 1

∆37
4 (a) 10445783040 0|2|22 23.Sym(3) 1

∆38
4 (a) 15668674560 0|2|22 23.22 1

∆39
4 (a) 15668674560 0|2|22 23.22 1

∆40
4 (a) 41783132160 0|2|22 Dih(12) 1

∆41
4 (a) 50139758592 0|1|23 Dih(10) 1

∆42
4 (a) 50139758592 0|1|23 Dih(10) 1

∆43
4 (a) 62674698240 0|2|22 23 1

∆44
4 (a) 62674698240 0|2|22 23 1

∆45
4 (a) 125349396480 0|1|23 22 1

∆46
4 (a) 125349396480 0|1|23 22 1

∆1
5(a) 24870912 0|16|8 Alt(8) 1

∆2
5(a) 24870912 0|16|8 Alt(8) 1

∆3
5(a) 232128512 0|6|18 3.Sym(6) 1

∆4
5(a) 232128512 0|6|18 3.Sym(6) 1

∆5
5(a) 870481920 0|4|20 24.(Sym(3)× Sym(3)) 1

∆6
5(a) 870481920 0|4|20 24.(Sym(3)× Sym(3)) 1
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∆7
5(a) 2611445760 0|4|20 25.Sym(3) 1

∆8
5(a) 2611445760 0|4|20 25.Sym(3) 1

∆9
5(a) 2611445760 0|4|20 25.Sym(3) 1

∆10
5 (a) 2611445760 0|4|20 25.Sym(3) 1

∆11
5 (a) 2984509440 0|2|22 L3(2) 1

∆12
5 (a) 2984509440 0|2|22 L3(2) 1

∆13
5 (a) 3481927680 0|2|22 22.(Sym(3)× Sym(3)) 1

∆14
5 (a) 3481927680 0|2|22 22.(Sym(3)× Sym(3)) 1

∆15
5 (a) 3917168640 0|0|24 22.25 1

∆16
5 (a) 4642570240 0|3|21 31+2

+ .22 1

∆17
5 (a) 4642570240 0|3|21 31+2

+ .22 1

∆18
5 (a) 4642570240 0|9|15 31+2

+ .22 1

∆19
5 (a) 4642570240 0|9|15 31+2

+ .22 1

∆20
5 (a) 7958691840 0|3|21 3.7.3 1

∆21
5 (a) 8356626432 0|6|18 Alt(5) 1

∆22
5 (a) 8356626432 0|6|18 Alt(5) 1

∆23
5 (a) 10445783040 0|6|18 23.Sym(3) 1

∆24
5 (a) 10445783040 0|6|18 23.Sym(3) 1

∆25
5 (a) 10445783040 0|2|22 23.Sym(3) 1

∆26
5 (a) 10445783040 0|2|22 23.Sym(3) 1

∆27
5 (a) 13927710720 0|4|20 Sym(3)× Sym(3) 1

∆28
5 (a) 13927710720 0|4|20 Sym(3)× Sym(3) 1

∆29
5 (a) 13927710720 0|7|17 Sym(3)× Sym(3) 1

∆30
5 (a) 15668674560 0|4|20 21+4 1

∆31
5 (a) 15668674560 0|2|22 23.22 1

∆32
5 (a) 15668674560 0|2|22 23.22 1

∆33
5 (a) 20891566080 0|2|22 Sym(4) 1

∆34
5 (a) 20891566080 0|2|22 Sym(4) 1

∆35
5 (a) 25069879296 0|0|24 Dih(20) 1

∆36
5 (a) 41783132160 0|0|24 Dih(12) 1
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∆37
5 (a) 41783132160 0|3|21 Dih(12) 1

∆38
5 (a) 41783132160 0|3|21 Dih(12) 1

∆39
5 (a) 41783132160 0|3|21 Dih(12) 1

∆40
5 (a) 41783132160 0|3|21 Dih(12) 1

∆41
5 (a) 41783132160 0|3|21 Dih(12) 1

∆42
5 (a) 41783132160 0|3|21 Dih(12) 1

∆43
5 (a) 41783132160 0|1|23 Dih(12) 1

∆44
5 (a) 41783132160 0|1|23 Dih(12) 1

∆45
5 (a) 41783132160 0|1|23 Dih(12) 1

∆46
5 (a) 41783132160 0|1|23 Dih(12) 1

∆47
5 (a) 50139758592 0|1|23 Dih(10) 1

∆48
5 (a) 62674698240 0|0|24 2× 4 1

∆49
5 (a) 62674698240 0|4|20 2× 4 1

∆50
5 (a) 62674698240 0|4|20 2× 4 1

∆51
5 (a) 62674698240 0|2|22 2× 4 1

∆52
5 (a) 62674698240 0|2|22 2× 4 1

∆53
5 (a) 62674698240 0|2|22 2× 4 1

∆54
5 (a) 62674698240 0|2|22 2× 4 1

∆55
5 (a) 83566264320 0|0|24 6 1

∆56
5 (a) 83566264320 0|1|23 Sym(3) 1

∆57
5 (a) 83566264320 0|1|23 Sym(3) 1

∆58
5 (a) 125349396480 0|3|21 22 1

∆59
5 (a) 250698792960 0|1|23 2 1

The final result of this chapter is the collapsed adjacency matrix for G. This is a

120 by 120 matrix with entries aij detailing the number of elements in the jth orbit

which are connected to a single fixed element in the ith orbit. Since this is a rather

unwieldy beast it has been demoted to the end of the chapter, however a more usable

electronic version will also be included.
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2.4 Calculating the Discs

During these calculations we will work inside the 306,936 degree permutation repre-

sentation of G, as G acts on its 3-transpositions. Obviously the set Ω = {1 . . . 306936}

represents the actual transpositions with the bases of G being certain subsets of Ω

of size 24. We firstly run the following code to get our hands on a copy of 212.M24

inside G, which we will call Ga.

Ga := sub<G|g1,g2,g3,g4,g5,g6,g7,g8,g9>;

a := Orbit(Ga,1);

b := a^G.10;

As G only has one conjugacy class of subgroups of the shape 212.M24, the group

Ga must be the stabilizer of some base in G. By asking Magma for the orbits as Ga

acts on Ω we can recover the base Ωa which we will assume to be the centre of our

graph, that is the point from which each disc of G will be measured, as well as Oa

and Da, the octadic and duadic transpositions.

Within our representation we have an element called a10, the 10th generator of

Fi24, which takes the base Ωa to Ωb, where a and b are adjacent in G. Now for any

vertex x of G and octad X of Ωx there are two vertices y1 and y2 such that the bases

Ωy1 and Ωy2 intersect Ωx in X. In fact the octad X corresponds to a line l in Γ, with

the three points x, y1, y2 incident with l, with two of x, y1, y2 determining l uniquely.

With this in mind, let a, b, b′ be the three points incident with the line determined

by a and b. Let O = Ωa ∩ Ωb(= Ωa ∩ Ωb′ = Ωb ∩ Ωb′) and l be the corresponding line

in Γ then

twiddle := g1^(g2*g3*g4*g5);

is an element of G which interchanges b and b′ and stabilizes a. The following code

also defines a subgroup of shape 212.24.Alt(8)

Gal := sub<F|g1,g2,g3,g4,g6,g7,g8,g9,g1^g5,g2^g5,g3^g5,g7^g5,

g1^(g2*g5),g1^(g2*g3*g5),g1^(g3*g5),g1^(g4,g5),g1^(g2*g4*g5),

g1^(g2*g3*g4*g5),g1^(g3*g4*g5)>;
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This subgroup, named Gal, is the stabilizer of both the base Ωa and the octad O.

We have also created an array Tran which contains a transversal for Gal in Ga of size

759. At this point we remark on the way that we store elements of G. As we wish

to store quite a few elements of G, we thought it best not to store them as actual

permutations as this would require a lot of memory. So instead we store an element x

of G as an array [gi1 , . . . gin ] representing a word for x in the generators g1 . . . g9. We

have created functions called MultiplyRandomWord and RandomWord used to create

and convert these arrays and the use of these functions will be explained in Section

2.5. Using the array Tran and our original octad O, we can now create all the octads

of Ωa, which we will call Octadsa, as well as the first disc of G, ∆1(a). Indeed, all

the octads of the base Ωa are given by

Octadsa = {Ot | t = Tran[i], 1 ≤ i ≤ 759}.

For the octad Ot where t = Tran[i], we will refer to i as the octad number for Ot.

We also have

∆1(a) = {Ωh
b | h = Tran[i], 1 ≤ i ≤ 759} ∪ {Ω(twiddle∗h)

b | h = Tran[i], 1 ≤ i ≤ 759}

= {Ω(a10∗h)
a | h = Tran[i], 1 ≤ i ≤ 759} ∪ {Ω(a10∗twiddle∗h)

a | h = Tran[i], 1 ≤ i ≤ 759}.

Now as G acting on the vertices of G acts as a graph automorphism, G must be a reg-

ular graph. The calculation above shows that the valency of G is 1518, a remarkably

low number, which makes these calculations possible. Another useful observation is

that we may swing around Octadsa and ∆1(a) to get the octads and neighbours for

any other vertex x. Indeed if Ωg
a = Ωx for some g ∈ G, then if we call the octads of

x, octadsx we have

Octadsx = Octadsag and

∆1(x) = ∆1(a)g.
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As we create new Ga orbits we wish to store a representative Ωx, so instead of

storing the base Ωx we felt it was more useful to store a group element g which takes

us from our fixed base Ωa to Ωx. As commented on before, instead of actually storing

the element g, as we have 120 of these to store, we will instead store a word in the

generators of G for g. From work done by hand in [35], we know that ∆1(a) consists

of a single Ga orbit, thus we will store the word [a10], the group element which takes

us from Ωa to Ωb.

In [35], the authors fully determined the first three discs of G by hand, so we will

proceed as follows to calculate the second and third discs. From [35] we know that

∆2(a) consists of three Ga orbits and ∆3(a) consists of ten Ga orbits. Now ∆1(b) as

calculated before, gives all 1518 neighbours of the vertex b. In [35] the transposition

profiles for representatives in the three orbits of ∆2(a) were calculated and known to

be different from a and b, hence we can easily pluck out representatives for the three

orbits of ∆2(a), using the transposition profile as an orbit invariant. We then repeat

this procedure on each of these representatives from ∆2(a) and pluck out the ten

representatives for ∆3(a). However in this case we have a small problem, as two of

the orbits in ∆3(a) have the same transposition profile (both ∆6
3(a) and ∆7

3(a) have

the profile 0|8|16), and ∆2
3(a) shares its transposition profile with an orbit from the

second disc. The latter is easily solved as we can tell if a point is in ∆2(a) by checking

if it is a neighbor of ∆1(a), and since ∆1(a) is small this is computationally easy. To

differentiate between the two orbits in ∆3(a) with profile 0|8|16, we use the fact that

for x1 ∈ ∆6
3(a) and x2 ∈ ∆7

3(a) there exists an x3 ∈ ∆1(a) such that |Ωx1 ∩ Ωx3| = 2

and |Ωx2∩Ωx3| = 4. We should also now note that there is some discrepancy between

the orbits named here and those in [34] and [35]. It was decided from an early stage

that the orbits of G should be named in order of stabilizer (in Ga) size, starting with

the smallest from each disc. This is untrue in [34] and [35], and hence the orbits

are labeled slightly differently. To compensate for this we have included a listing in

Appendix 6 on how to map orbits of G in this thesis to orbits in [34] and [35].

Moving out from ∆3(a) to ∆4(a) we use the combinatorial data from [34] in the

following way. For a representative Ωx from one of the ten Ga orbits in ∆3(a), we let
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Gax, the stabilizer of x in Ga act on Octadsx, the octads of the base Ωx. If we take

an octad orbit representative X, then there exists two vertices y and y′ such that

Ωx ∩ Ωy = Ωx ∩ Ωy′ = Ωy ∩ Ωy′ = X.

Now suppose that g is the group element that takes us from our fixed vertex a to x

and suppose the octad number for X is i, that is X is the ith member of the array

Octadsag. Then

Ωy = Ω(a10∗h∗g)
a and

Ω′y = Ω(a10∗twiddle∗h∗g)
a

where h = Tran[i], the element of the array Tran corresponding to the octad number

i. Now as we run through all Ga orbit representatives x for ∆3(a) and all Gax

orbit representatives as Gax acts on the octads of Ωx we will pick up a Ga orbit

representative for all the orbits of G which are distance 1 away from some point in

∆3(a). As expected some of these points will be in either ∆2(a) or ∆3(a). From

[35], we know that up to a few easy exceptions that have already been dealt with,

the transposition profiles in the first three discs of ∆3(a) are unique, hence these

extra representatives in ∆2(a) ∪ ∆3(a) can be quickly crossed off our list. Out of

the remaining representatives, it is highly possible that many of these are in the

same Ga orbit. To deal with this, we first use the transposition profiles as an initial

sieve, grouping the remaining representatives into sets with the same transposition

profile, then using the Magma command IsConjugate inside these subsets to settle

matters. As the size of Ga is computationally fairly small, we find that IsConjugate

takes around 7 seconds on a 3.2GHz machine with 8GB of memory. By removing

duplicates in this way we are able to give a full list of the Ga orbit representatives

for ∆4(a), we found there were 46 of them.

We would quickly like to remark on how we gained the representatives X for

the octad orbits, as Gax acts on the octads of a base Ωx. In [34], the authors give
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combinatorial data in the form of the MOG for a representative of each of the octad

orbits for a representative x from the Ga orbits in the first discs of G. We converted

this data in these tables into their corresponding octad numbers by first fixing an

octad of x, usually the first one, then running through all the possible octads for

x, asking which intersected our fixed octad in a particular number of points, this

information being given in the MOG tables. As the size of Gax is also reasonably

small, using the Stablizer command in Magma is possible, so we could also use

the stabilizer size for a possible octad orbit representative to distinguish between

particular octad orbits. We will now give the octad numbers for each octad orbit

for each representative x for Ga orbits in the first three discs. At this point we

would like to stress that the names given here are those quoted in [34], and not the

names in this thesis. To convert between the two you can use the table in Appendix 6.

∆1
1(a), L = StabG{Λ1} where

Λ1 = {6032, 6158, 6734, 22973, 22975, 22977, 38858, 83012}.

L - Orbit Size Octad Number L - Orbit Size Octad Number

α8 1 1 α2 448 62

α0 30 248 α4 280 2

∆1
2(a), L = StabG{Λ1} where

Λ1 is the partition given by

{{540, 573, 583, 586, 590, 1177, 1192, 1200},

{306821, 306823, 306922, 306923, 306925, 306927, 306935, 306936},

{2, 43, 183, 792, 948, 970, 1080, 17319}}
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L - Orbit Size Octad Number L - Orbit Size Octad Number

α802 3 1 α422 672 100

α42 84 2

∆2
2(a), L = StabG{Λ1} where

Λ1 = {22973, 22977, 38858, 83012}, and Λ2 is the sextet given by

{{4, 20, 77, 349}, {6393, 21350, 49646, 61991},

{2951, 3008, 3320, 12882}, {948, 970, 1080, 17319},

{17400, 21982, 22598, 62004}, {22973, 22977, 38858, 83012}}

L - Orbit Size Octad Number L - Orbit Size Octad Number

α4,42 5 1 α2,24 240 3

α0,42 10 101 α0,24 120 344

α1,315 320 59 α3,315 64 5

∆3
2(a), L = StabG{Λ1} where

Λ1 = {2, 43, 948, 16365, 17319, 22977, 29733, 83012} and

Λ2 = {22977, 83012}

L - Orbit Size Octad Number L - Orbit Size Octad Number

α8,2 1 1 α2,1 192 62

α2,2 16 111 α4,0 60 55

α4,2 60 2 α2,0 240 176

α4,1 160 6 α0,0 30 248

∆1
3(a), L = StabG{Λ1} where
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Λ1 = {22977, 83012}.

L - Orbit Size Octad Number L - Orbit Size Octad Number

α2 77 5 α0 330 55

α1 352 6

∆2
3(a), L = StabG{Λ1,Λ2,Λ3} where

Λ1 is the sextet whose tetrads are {540, 573, 583, 590}, {300337, 301248, 301594, 305089},

{300364, 300688, 301606, 305099}, {948, 970, 1080, 17319}, {1749, 1850, 1883, 1896},

{2951, 3008, 3320, 12882}.

Λ2 = {540, 573, 583, 590, 300337, 300364, 300688, 301248, 301594, 301606, 305089, 305099}

Λ3 = {948, 970, 1080, 1749, 1850, 1883, 1896, 2951, 3008, 3320, 12882, 17319}

L - Orbit Size Octad Number L - Orbit Size Octad Number

α42,8,0 3 751 α24,2,6 72 3

α42,0,8 3 1 α24,4,4 216 100

α42,4,4 9 723 α315,5,3 192 114

α24,6,2 72 214 α315,3,5 192 5

∆3
3(a), L = StabG{Λ1} where

Λ1 = {22973, 22977, 83012}.

L - Orbit Size Octad Number L - Orbit Size Octad Number

α3 21 1 α1 360 6

α2 168 3 α0 210 101
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∆4
3(a), L = StabG{Λ1,Λ2} where

Λ1 = {37797, 38920, 60738, 61698, 62101, 62131, 62135, 62140}

Λ2 = {22977, 83012}

L - Orbit Size Octad Number L - Orbit Size Octad Number

α8,0 1 759 α2,2 56 8

α0,2 7 1 α4,1 112 146

α0,0 7 26 α
(2)
4,0 112 744

α4,2 14 136 α2,0 168 49

α0,1 16 3 α2,1 224 5

α
(1)
4,0 42 745

∆5
3(a), L = StabG{Λ1} where

Λ1 = {479, 1125, 1151, 2252, 1151, 2252, 6955, 16379, 22977, 83012} and

Λ2 = {22977, 83012}

L - Orbit Size Octad Number L - Orbit Size Octad Number

α8,2 1 1 α2,1 192 62

α2,2 16 100 α4,0 60 13

α4,2 60 2 α2,0 240 87

α4,1 160 3 α0,0 30 248

∆6
3(a), L = StabG{Λ1,Λ2,Λ3} where

Λ1 = {4, 349, 970, 3320, 12882, 17319, 49646, 61991}

Λ2 = {11170, 12411, 12416, 12422, 20545, 20551, 20560, 22613}



CHAPTER 2. THE POINT-LINE COLLINEARITY GRAPH FOR Fi24 35

Λ3 is the partition of Λ1 given by {4, 349}, {970, 17319}, {3320, 12882},

{49646, 61991}.

L - Orbit Size Octad Number L - Orbit Size Octad Number

α8,8,24 1 1 α4,0,22 12 400

α0,8,04 1 595 α4,2,14 32 44

α0,0,04 1 635 α4,2,212 192 2

α
(1)

0,4,04 12 730 α2,2,2 32 261

α
(2)

0,4,04 16 504 α2,4,2 32 510

α4,4,14 16 24 α2,2,12 192 408

α4,0,14 16 56 α2,4,14 192 406

α4,4,22 12 113

∆7
3(a), L = StabG{Λ1,Λ2,Λ3} where

Λ1 = {43, 948, 17319, 29733}

Λ2 = {158373, 169472}

Λ3 = {182449, 194482}

L - Orbit Size Octad Number L - Orbit Size Octad Number

α1,1,0 128 653 α3,0,1 32 5

α1,0,1 128 657 α4,2,2 1 136

α1,1,2 32 649 α4,0,0 4 662

α1,2,1 32 292 α
(1)
0,0,0 6 101

α2,2,0 24 77 α
(2)
0,0,0 24 607

α2,0,2 24 14 α0,2,2 4 1

α2,1,1 96 24 α0,2,0 16 519

α2,0,0 96 3 α0,0,2 16 511

α3,1,0 32 10 α0,1,1 64 386
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∆8
3(a), L = StabG{Λ1,Λ2,Λ3} where

Λ1 = {4, 970, 1080, 12882, 17319, 21350, 22598, 83012}

Λ2 = {970, 1080, 17319, 83012}

Λ3 = {83012}

L - Orbit Size Octad Number L - Orbit Size Octad Number

α8,4,1 1 1 α4,2,1 72 2

α
(1)
0,0,0 6 248 α2,0,0 96 491

α
(2)
0,0,0 24 504 α2,1,0 192 195

α4,4,1 4 15 α2,2,0 48 226

α4,1,1 16 21 α4,0,0 4 102

α2,2,1 48 213 α4,1,0 48 10

α4,3,1 48 17 α4,2,0 72 6

α2,1,1 64 150 α4,3,0 16 65

∆9
3(a), L = StabG{Λ1,Λ2,Λ3} where

Λ1 = {445, 452, 1059, 1125, 16105, 17319, 28307, 83012}

Λ2 = {17319}

Λ3 = {83012}
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L - Orbit Size Octad Number L - Orbit Size Octad Number

α8,1,1 1 1 α
(2)
4,0,1 40 23

α
(1)
0,0,0 10 617 α4,1,1 60 2

α2,1,1 16 111 α4,0,0 60 55

α
(2)
0,0,0 20 248 α2,1,0 96 100

α
(1)
4,1,0 40 11 α2,0,1 96 300

α
(2)
4,1,0 40 81 α2,0,0 240 176

α
(1)
4,0,1 40 13

∆10
3 (a), L = StabG{Λ1,Λ2,Λ3,Λ4} where

Λ1 = {2, 445, 452, 948, 1059, 1151, 16105, 16379}

Λ2 = {30887, 34121, 52240, 57768, 102195, 142053, 273221, 297652}

Λ3 = {34642, 51319, 56950, 79889, 102237, 142051, 302809, 302904}

Λ4 = {2, 948}
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L - Orbit Size Octad Number L - Orbit Size Octad Number

α8,0,0,2 1 1 α4,4,0,0 6 105

α0,8,0,0 1 741 α4,0,4,0 6 81

α0,0,8,0 1 594 α4,2,2,0 48 11

α
(1)
0,4,4,0 12 368 α2,2,4,2 8 116

α
(2)
0,4,4,0 16 248 α2,4,2,2 8 188

α4,4,0,2 6 94 α2,2,4,1 96 62

α4,0,4,2 6 23 α2,4,2,1 96 108

α4,2,2,2 48 3 α
(1)
2,4,2,0 24 235

α4,4,0,1 16 18 α
(2)
2,4,2,0 96 100

α4,0,4,1 16 38 α
(1)
2,2,4,0 24 253

α
(1)
4,2,2,1 96 2 α

(2)
2,2,4,0 96 150

α
(2)
4,2,2,1 32 5

Moving out from ∆4(a) to ∆5(a) is far more complicated problem. We now have

many more Ga orbits to deal with, and for each representative x from the Ga orbits

in ∆4(a) we have many more Gax octad orbits, as Gax acts on the octads of Ωx. Thus

working out the octad orbit representatives by hand, as was done for the first three

discs, would be impractical. Therefore we use the following routine in Magma to

calculate all the octad numbers for y a representative of ∆j
4(a), as Gay acts on the

octads of Ωy.

1. For a representative y ∈ ∆j
4(a) calculate Oy the octads of Ωy.

2. Choose an octad O ∈ Oy, note its octad number and calculate H = StabGay(O).

3. Calculate T , a transversal for H in Stabay, then {Ot | t ∈ T} will be an octad

orbit as Gay acts on Oy.

4. Let Oy = Oy \ {Ot | t ∈ T} and go back to 2, until Oy = ∅.

This will give us a full list of all the octad numbers for a representative from each

of the octad orbits for each representative y of the 46 Ga orbits in ∆4(a). Repeating
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the process as before we then calculate

Ωy = Ω(a10∗h∗g)
a and

Ω′y = Ω(a10∗twiddle∗h∗g)
a

where h = Tran[i] corresponding to the octad number i in question and h is the group

element that takes us from a to our representative y in ∆4(a). As before we now

need to cross off anything in the third and fourth discs, again using the transposition

profiles as an initial sieve, which will settle matters for elements in ∆3(a), and then

using IsConjuagte to finish things off. After carrying this out, we will have a list

of vertices which are in ∆5(a) and include a representative for each of the Ga orbits.

However as in the ∆4(a) case we will have many repetitions which need to be dealt

with. Repeating the process as before, we can deal with these repetitions by using

transposition profiles and IsConjuagte. We would like to point out that this took a

considerable amount of time, in the region of a week on a 3.2GHz machine running

Magma V2.11-15. Luckily we found there were 59 Ga orbits in ∆5(a), giving us a

total number of Ga orbits found as 120, the number calculated by S. Linton, proving

G has diameter 5.

At this point we created a Magma command WhereAmI, which takes as input any

base Ωx of G and outputs which orbit of G the base Ωx belongs to. This function

works in the obvious way, firstly calculating the transposition profile for Ωx, and then

using the IsConjugate command on all the orbit representative of G with the same

profile as Ωx to determine exactly which orbit Ωx belongs to.

We can now calculate all the neighbor data for our graph G. That is, we can

compute an array named NeighbourData, whose entries are themselves 1518 element

arrays. Now say we calculate all 1518 neighbours for the ith orbit representative of

G (where we order all 120 orbits of G first by which disc they are in, and then by

stabilizer size), and suppose the jth neighbour was in orbit ∆n
m(a), then the entry

NeighbourData[i][j] = [m,n]. This array was calculated as expected, by running

through all Ga orbit representatives x, calculating all 1518 neighbours of x and then
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using WhereAmI on each of them. As expected this was a considerable amount of

work, in fact it took in excess of 28 days, running on 10 different machines (each a

3.2GHz machine running Magma V2.11-15 with 8GB of memory), giving us a total

computational time of 280 days. At this point I would like to apologize to anybody

who was trying to run calculations in the Mathematics Department of Manchester

University over christmas 2008.

From this neighbour data, working out the collapsed adjacency matrix is very

easy, we just needed to run through each of the 120 Ga orbit representatives and

count up the number of neighbours from each Ga orbit. As all the hard work is

already done this takes a matter of seconds. We give the full collapsed adjacency

matrix in Section 2.6.

2.5 The Computer Files

In this section we will give descriptions for all the files associated with the investiga-

tion of G. These files will be included both online at

www.maths.manchester.ac.uk/~bwright/Fi24.zip

and on CD. We first remark that the easiest way to load all the relevant files is to

call the file Fi24load.m in Magma.

Fi24perms.m

In this file we have included the following:

• Generators a1, . . . , a12 of Fi24 stored as permutations in Sym(306936).

• Commands to define G = Fi24 and F = Fi′24.

• Generators g1, . . . , g9, again stored as permutations in Sym(306936) which gen-

erate Ga, a subgroup of shape 212.M24. This is the stabilizer of some base Ωa

of G, which corresponds to our fixed vertex a of G.
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• The base Ωa, calculated as the smallest of the orbits asGa acts on {1, . . . , 306936}

and stored as the set a, as well as Oa, the octadic transpositions for a, stored

as OctTran, and the base Ωb, stored as b, a neighbour of a.

• Words in the generators g1, . . . , g9 which generate Gal, a subgroup of shape

212.24.Alt(8) which is the stabilizer in Ga of a line l, corresponding to the octad

O of a, which is the intersection of a and b.

• An array named Neighboursa giving all 1518 neighbours of our fixed vertex a

in G. For a base Ωx, such that Ωx = Ωg
a for some g ∈ G, then the neighbours of

x in G are given by Neighboursa^g.

• A word in the generators of G for the element twiddle. This is the element

which takes us from x1 to x2, where a, x1 and x2 are the three points incident

with the line l corresponding to the octad O = Ωa ∩ Ωb.

reps for all discs.m

• Contains words in the generators for G for group elements which take us from

a to each of the 120 Ga orbits contained in the five discs of G. These words

are stored as arrays named DisciOrbitj corresponding to a representative in

∆j
i (a). Use the function MultiplyRandomWord to convert this array into a

usable group element.

• Contains arrays named Disci, containing the words for all representatives in

∆i(a).

• Contains the array Orbits, containing all representatives.

MultiplyRandomWord.m

Contains the function MultiplyRandomWord used to convert a word in the generators

of G into a usable permutation. To use type

MultiplyRandomWord(~z,Disc4Orbit23,G)
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to convert, for example, the representative of ∆23
4 (a) into a usable group element,

stored in Magma as the element z.

Tran.m

Contains an array named Tran, which contains a transversal for Gal in Ga, stored as

words in the generators forG. Use the function MultiplyRandomWord to convert these

into usable group elements. We remark that since we wanted these elements stored

as words instead of actual permutations we couldn’t simply use the Transversal

command in Magma. This saved a considerable amount of memory - instead of

needing 1.5GB to store the transversal, we only need 70KB. Storing the transversal

in this way also guaranteed that we got the same coset representative every time,

making our results reproducible. This transversal was produced using the following

procedure.

1. Recall that a base Ωa of G is a certain 24 element subset of Ω, where Ω =

{1 . . . 306936}. Therefore we calculate the action of each of the generators gi of

Ga on Ωa. These permutations (in Sym(24)) gi will generate a subgroup Ga of

Sym(24) isomorphic to M24.

2. We now take the image of the generators for Gal under this mapping, to get

elements in Ga which generate a subgroup Gal isomorphic to 24.Alt(8).

3. By generating random words in Ga, in the generators gi, we can produce a

representative for each of the 759 cosets of Gal in Ga.

4. Finally we convert these words in the generators gi to exactly the same words

in the generators gi (by simply removing the bar) to get a transversal for Gal

in Ga as required.

Note that this procedure would have been impossible if we had stayed within the

group Ga in the Sym(306936) setting, as generating enough random elements to

produce representatives for each of the 759 cosets would have taken too long.
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TransProfile.m

Contains a function Transprofile(x), which gives the transposition profile for the

base Ωx. Note that we have not stored the duadic transpositions for a, however the

transposition profile for x can be calculated as l1|l2|(24− l1 − l2) where l1 = Ωx ∩Ωa

and l2 = Ωx ∩ Oa.

Octadsa.m

Gives all 759 octads for the base Ωa, stored in the array Octadsa. To calculate the

octads for the base Ωx such that Ωx = Ωg
a for g ∈ G, calculate Octadsa^g.

IsDistance3.m

Contains a function IsDistance3(g), which quickly determines whether the base

Ωx = Ωg
a is contained within the first three discs of G, and if so which orbit it is in.

It will output an array [i, j] corresponding to the orbit ∆j
i (a), and will output [0, 0]

if Ωx is not contained in the first three discs. This function is much faster than the

WhereAmI command below, as it utilizes the fact that transposition profiles in the

first three discs are (mostly) unique.

WhereAmI.m

Contains a function WhereAmI(g), that determines which orbit of G the base Ωx = Ωg
a

belongs to. Outputs an ordered pair [i, j] corresponding to the orbit ∆j
i (a).

CollapsedAdjacencyMatrix.m

• Contains the collapsed adjacency matrix for G, stored as an array (of arrays)

called CollapsedAdjacencyMatrix. To calculate the number of points in the

jth orbit connected to a single point in the ith orbit type

CollapsedAdjacencyMatrix[i][j]
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• Contains two functions NumberToName and NameToNumber. The first converts an

orbit number into its name (given as an array [i, j] corresponding to ∆j
i (a) and

the other converts a orbit name to its number. Thus to calculate the number

of elements in ∆30
5 (a) connected to a single point in ∆40

4 (a) type

CollapsedAdjacencyMatrix[NameToNumber([4,40])][NameToNumber([5,30])]

and you should get 18.

NeighbourData.m

Contains an array NeighbourData which gives information on the 1518 neighbours for

each of the 120 Ga orbit representatives for G. For the kth orbit (use NameToNumber

to determine what k is for a particular orbit), NeighbourData[k] is an array of length

1518 listing the location of each neighbour, as an ordered pair [i, j] corresponding to

the orbit ∆j
i (a).

Qa.m

Gives generators as words in the generators of G, for Qa, the elementary abelian

subgroup of Ga of order 212.

2.6 The Collapsed Adjacency Matrix for G

In this section we will give the collapsed adjacency matrix for G. As this matrix is

rather large it is spread over a multiple number of pages, therefore to make it more

usable we have included a map at the start to make finding a particular entry of

interest easier. We have of course omitted any page completely filled with zeros,

and this is indicated on the map. The entry, say d in the row indexed by ∆j
i and

column indexed by ∆n
m gives the number of points in the orbit ∆n

m(a) connected to

a single point in ∆j
i (a). For example the top row of our matrix tells us that the

1518 neighbours of the single point a in ∆1
0(a) are in ∆1

1(a) as expected and looking
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elsewhere in the matrix we can see that a vertex in ∆36
4 (a) is connected to 36 vertices

in ∆28
5 (a).
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4 0 0 0 0 0 0 0 96 96 0 0 0

∆14
4 16 0 0 0 0 0 0 0 24 32 0 0

∆15
4 128 0 0 0 0 0 0 24 0 0 32 0

∆16
4 0 0 0 56 56 112 84 0 0 0 0 0

∆17
4 55 0 0 0 0 0 0 0 0 0 0 0

∆18
4 0 0 0 16 16 0 0 36 36 0 0 0

∆19
4 0 0 0 0 0 0 0 36 12 64 0 0

∆20
4 0 0 0 0 0 0 0 12 36 0 64 0

∆21
4 15 0 0 0 0 0 0 0 0 30 30 0

∆22
4 0 0 0 80 80 112 36 12 12 32 32 0

∆23
4 0 48 48 0 0 48 48 0 0 32 32 0

∆24
4 0 24 24 0 0 32 96 0 0 0 0 48

∆25
4 0 0 0 0 0 0 0 28 28 0 0 128
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5 ∆39

5 ∆40
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5 ∆42
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5 ∆44
5 ∆45

5 ∆46
5 ∆47

5
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∆1
2 0 0 0 0 0 0 0 0 0 0 0 0

∆2
2 0 0 0 0 0 0 0 0 0 0 0 0

∆3
2 0 0 0 0 0 0 0 0 0 0 0 0

∆1
3 0 0 0 0 0 0 0 0 0 0 0 0

∆2
3 0 0 0 0 0 0 0 0 0 0 0 0

∆3
3 0 0 0 0 0 0 0 0 0 0 0 0

∆4
3 0 0 0 0 0 0 0 0 0 0 0 0

∆5
3 0 0 0 0 0 0 0 0 0 0 0 0

∆6
3 0 0 0 0 0 0 0 0 0 0 0 0

∆7
3 0 0 0 0 0 0 0 0 0 0 0 0

∆8
3 0 0 0 0 0 0 0 0 0 0 0 0

∆9
3 0 0 0 0 0 0 0 0 0 0 0 0

∆10
3 0 0 0 0 0 0 0 0 0 0 0 0

∆1
4 0 0 0 0 0 0 0 0 0 0 0 0

∆2
4 0 0 0 0 0 0 0 0 0 0 0 0

∆3
4 0 0 0 0 0 0 0 0 0 0 0 0

∆4
4 0 0 0 0 0 0 0 0 0 0 0 768

∆5
4 0 0 0 0 0 0 0 0 0 448 0 0

∆6
4 0 0 0 0 0 0 0 0 0 0 448 0

∆7
4 0 0 0 0 0 0 0 0 0 210 210 252

∆8
4 0 0 192 0 0 0 0 0 0 0 0 0

∆9
4 0 192 0 0 0 0 0 0 0 0 0 0

∆10
4 0 0 0 0 0 0 0 0 0 0 0 0

∆11
4 0 0 0 0 0 0 0 0 0 0 0 0

∆12
4 0 0 0 0 0 0 0 0 0 0 0 0

∆13
4 0 0 0 0 0 0 0 0 0 0 0 0

∆14
4 0 0 0 0 192 0 0 0 0 0 0 0

∆15
4 0 0 0 192 0 0 0 0 0 0 0 0

∆16
4 0 0 0 0 0 0 0 0 0 0 0 0

∆17
4 0 55 55 110 110 0 0 0 0 0 0 0

∆18
4 0 0 0 0 0 0 0 48 48 0 0 0

∆19
4 0 128 64 32 0 192 96 96 0 0 0 0

∆20
4 0 64 128 0 32 96 192 0 96 0 0 0

∆21
4 0 60 60 30 30 90 90 0 0 0 0 0

∆22
4 0 0 0 0 0 0 0 0 0 48 48 192

∆23
4 0 0 0 48 48 0 0 96 96 80 80 0

∆24
4 48 0 0 48 48 0 0 16 16 64 64 0

∆25
4 128 0 0 0 0 64 64 96 96 32 32 0
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∆2
2 0 0 0 0 0 0 0 0 0 0 0 0

∆3
2 0 0 0 0 0 0 0 0 0 0 0 0

∆1
3 0 0 0 0 0 0 0 0 0 0 0 0

∆2
3 0 0 0 0 0 0 0 0 0 0 0 0

∆3
3 0 0 0 0 0 0 0 0 0 0 0 0

∆4
3 0 0 0 0 0 0 0 0 0 0 0 0

∆5
3 0 0 0 0 0 0 0 0 0 0 0 0

∆6
3 0 0 0 0 0 0 0 0 0 0 0 0

∆7
3 0 0 0 0 0 0 0 0 0 0 0 0

∆8
3 0 0 0 0 0 0 0 0 0 0 0 0

∆9
3 0 0 0 0 0 0 0 0 0 0 0 0

∆10
3 0 0 0 0 0 0 0 0 0 0 0 0

∆1
4 0 0 0 0 0 0 0 0 0 0 0 0

∆2
4 0 0 0 0 0 0 0 0 0 0 0 0

∆3
4 0 0 0 0 0 0 0 0 0 0 0 0

∆4
4 0 0 0 0 0 0 0 0 0 0 0 0

∆5
4 0 0 0 0 0 0 0 0 0 0 0 0

∆6
4 0 0 0 0 0 0 0 0 0 0 0 0

∆7
4 0 0 0 0 0 0 0 0 0 0 0 0

∆8
4 0 0 0 0 288 0 0 0 0 0 0 0

∆9
4 0 0 0 288 0 0 0 0 0 0 0 0

∆10
4 0 0 0 0 0 288 0 0 0 0 0 0

∆11
4 0 0 0 0 0 0 288 0 0 0 0 0

∆12
4 0 0 0 0 0 256 256 0 0 0 0 0

∆13
4 192 0 0 0 0 0 0 0 0 0 0 768

∆14
4 0 288 0 0 96 0 0 0 0 0 0 0

∆15
4 0 0 288 96 0 0 0 0 0 0 0 0

∆16
4 0 0 0 84 84 0 0 0 0 0 336 0

∆17
4 0 165 165 0 0 0 0 0 0 0 0 0

∆18
4 0 0 0 72 72 144 144 0 96 96 144 0

∆19
4 0 48 0 0 0 0 0 0 0 0 0 0

∆20
4 0 0 48 0 0 0 0 0 0 0 0 0

∆21
4 0 90 90 0 0 0 0 0 0 0 0 180

∆22
4 24 0 0 0 0 0 0 0 96 96 240 0

∆23
4 0 0 0 0 0 144 144 0 0 0 240 0

∆24
4 0 0 0 24 24 120 120 0 64 64 192 0

∆25
4 112 0 0 32 32 16 16 64 64 64 0 0
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5 0 0 0 0 0 0 0 0 0 0 0 0
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5 0 0 0 0 0 0 0 0 0 0 0 0
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5 0 0 0 0 0 0 0 0 0 0 0 0
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5 0 0 0 0 0 0 0 0 0 0 0 0
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5 0 0 0 0 0 0 0 0 0 0 0 0

∆10
5 0 0 0 0 0 0 0 0 0 0 0 0
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5 0 0 0 0 0 0 0 0 0 0 0 0
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5 0 0 0 0 0 0 0 0 0 0 0 0

∆13
5 0 0 0 0 0 0 0 0 0 0 0 0

∆14
5 0 0 0 0 0 0 0 0 0 0 0 0

∆15
5 0 0 0 0 0 0 0 0 0 0 0 0
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5 0 0 0 0 0 0 0 0 0 0 0 0

∆17
5 0 0 0 0 0 0 0 0 0 0 0 0

∆18
5 0 0 0 0 0 0 0 0 0 0 0 0
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5 0 0 0 0 0 0 0 0 0 0 0 0
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∆28
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∆29
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∆30
4 0 0 1 1 0 0 0 0 1 0 0 0

∆31
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∆32
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∆33
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∆34
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∆35
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∆46
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5 0 0 0 0 15 16 0 0 0 0 0 0

∆2
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5 0 0 0 0 0 0 0 0 0 0 0 0
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5 0 0 0 0 0 0 0 0 0 0 0 0

∆5
5 0 0 0 3 0 0 0 0 0 0 0 12

∆6
5 0 0 0 0 3 0 0 0 0 0 12 0

∆7
5 0 0 0 0 0 0 3 0 0 0 0 4

∆8
5 0 0 0 0 0 0 3 0 0 0 4 0

∆9
5 0 0 0 0 1 2 0 0 0 0 0 0

∆10
5 0 0 0 1 0 2 0 0 0 0 0 0

∆11
5 0 0 0 0 0 0 0 0 1 2 0 0

∆12
5 0 0 0 0 0 0 0 1 0 2 0 0

∆13
5 0 0 0 0 0 0 0 0 3 2 0 4

∆14
5 0 0 0 0 0 0 0 3 0 2 4 0

∆15
5 0 0 0 0 0 0 4 4 4 0 0 0

∆16
5 0 0 0 0 0 0 0 0 0 0 0 3

∆17
5 0 0 0 0 0 0 0 0 0 0 3 0

∆18
5 0 0 0 0 0 0 0 0 0 0 0 0

∆19
5 0 0 0 0 0 0 0 0 0 0 0 0
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4 ∆11

4 ∆12
4 ∆13

4 ∆14
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4 ∆17

4 ∆18
4 ∆19

4 ∆20
4 ∆21
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∆26
4 0 0 2 0 12 12 0 0 0 10 10 0

∆27
4 0 0 0 0 0 0 0 0 0 0 0 0

∆28
4 0 0 3 0 0 3 4 0 0 6 1 0

∆29
4 0 0 3 0 3 0 4 0 0 1 6 0

∆30
4 9 5 6 0 0 6 6 0 0 8 3 0

∆31
4 5 9 6 0 6 0 6 0 0 3 8 0

∆32
4 0 0 0 0 0 0 0 0 0 0 0 0

∆33
4 0 0 0 0 0 0 0 0 0 0 0 0

∆34
4 0 0 0 0 0 0 0 0 0 0 0 0

∆35
4 0 0 0 0 0 0 0 0 0 0 0 0

∆36
4 0 0 0 0 0 6 0 0 0 0 0 0

∆37
4 0 0 0 0 6 0 0 0 0 0 0 0

∆38
4 0 0 0 2 2 1 0 0 0 3 2 0

∆39
4 0 0 0 2 1 2 0 0 0 2 3 0

∆40
4 0 0 0 0 0 0 0 0 0 0 0 0

∆41
4 0 0 0 0 0 0 0 0 0 0 0 0

∆42
4 0 0 0 0 0 0 0 0 0 0 0 0

∆43
4 0 0 0 0 0 0 0 0 0 3 0 2

∆44
4 0 0 0 0 0 0 0 0 0 0 3 2

∆45
4 0 0 0 0 0 0 0 0 0 1 0 0

∆46
4 0 0 0 0 0 0 0 0 0 0 1 0

∆1
5 70 0 0 0 0 0 0 0 0 0 0 0

∆2
5 0 70 0 0 0 0 0 0 0 0 0 0

∆3
5 0 15 0 0 45 0 0 0 0 0 0 6

∆4
5 15 0 0 0 0 45 0 0 0 0 0 6

∆5
5 0 2 0 0 0 0 0 0 4 0 0 0

∆6
5 2 0 0 0 0 0 0 0 4 0 0 0

∆7
5 1 1 3 3 12 0 0 0 4 0 0 0

∆8
5 1 1 3 3 0 12 0 0 4 0 0 0

∆9
5 2 0 0 0 0 0 0 0 2 0 12 0

∆10
5 0 2 0 0 0 0 0 0 2 12 0 0

∆11
5 0 7 0 0 0 0 0 0 0 0 0 0

∆12
5 7 0 0 0 0 0 0 0 0 0 0 0

∆13
5 1 0 0 0 0 0 0 0 0 0 0 0

∆14
5 0 1 0 0 0 0 0 0 0 0 0 0

∆15
5 1 1 1 4 0 0 0 0 0 0 0 0

∆16
5 0 0 0 0 0 9 0 0 0 0 9 3

∆17
5 0 0 0 0 9 0 0 0 0 9 0 3

∆18
5 0 0 0 0 0 27 0 9 0 9 0 0

∆19
5 0 0 0 0 27 0 0 9 0 0 9 0
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∆22
4 ∆23

4 ∆24
4 ∆25

4 ∆26
4 ∆27

4 ∆28
4 ∆29

4 ∆30
4 ∆31

4 ∆32
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4

∆26
4 0 0 8 0 15 0 44 44 44 44 0 0

∆27
4 0 0 0 0 0 3 6 6 6 6 0 0

∆28
4 2 26 0 0 33 6 33 30 0 0 8 0

∆29
4 2 26 0 0 33 6 30 33 0 0 0 8

∆30
4 6 0 26 0 33 6 0 0 33 36 0 4

∆31
4 6 0 26 0 33 6 0 0 36 33 4 0

∆32
4 0 0 0 0 0 0 6 0 0 3 0 0

∆33
4 0 0 0 0 0 0 0 6 3 0 0 0

∆34
4 0 0 0 12 0 0 0 12 6 6 0 0

∆35
4 0 0 0 12 0 0 12 0 6 6 0 0

∆36
4 0 0 0 0 0 0 0 6 0 6 0 0

∆37
4 0 0 0 0 0 0 6 0 6 0 0 0

∆38
4 0 0 0 5 1 0 0 18 2 2 0 0

∆39
4 0 0 0 5 1 0 18 0 2 2 0 0

∆40
4 0 0 0 0 0 12 6 6 3 3 0 0

∆41
4 0 0 0 5 0 0 0 0 5 0 0 10

∆42
4 0 0 0 5 0 0 0 0 0 5 10 0

∆43
4 4 2 1 3 1 0 4 2 1 5 5 0

∆44
4 4 2 1 3 1 0 2 4 5 1 0 5

∆45
4 0 0 0 0 0 6 2 1 0 2 6 4

∆46
4 0 0 0 0 0 6 1 2 2 0 4 6

∆1
5 0 210 0 0 0 0 0 0 0 0 0 0

∆2
5 0 210 0 0 0 0 0 0 0 0 0 0

∆3
5 0 0 0 0 0 0 0 0 0 0 0 0

∆4
5 0 0 0 0 0 0 0 0 0 0 0 0

∆5
5 0 6 12 0 0 36 0 36 0 36 0 0

∆6
5 0 6 12 0 0 36 36 0 36 0 0 0

∆7
5 32 0 20 3 12 0 0 0 0 0 0 0

∆8
5 32 0 20 3 12 0 0 0 0 0 0 0

∆9
5 12 8 0 0 12 0 0 0 0 0 0 0

∆10
5 12 8 0 0 12 0 0 0 0 0 0 0

∆11
5 0 0 0 0 0 42 0 0 0 0 0 0

∆12
5 0 0 0 0 0 42 0 0 0 0 0 0

∆13
5 0 0 0 18 18 0 0 0 0 6 24 0

∆14
5 0 0 0 18 18 0 0 0 6 0 0 24

∆15
5 0 0 4 7 8 0 0 0 0 0 48 48

∆16
5 9 0 9 0 0 0 0 27 0 9 18 0

∆17
5 9 0 9 0 0 0 27 0 9 0 0 18

∆18
5 0 0 0 0 0 0 45 27 0 36 0 0

∆19
5 0 0 0 0 0 0 27 45 36 0 0 0
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∆27
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∆28
4 0 24 0 12 0 54 48 0 0 48 24 48

∆29
4 24 0 12 0 54 0 48 0 0 24 48 24
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4 12 12 0 12 6 6 24 48 0 12 60 0

∆31
4 12 12 12 0 6 6 24 0 48 60 12 48

∆32
4 0 0 0 0 0 0 0 0 72 45 0 108

∆33
4 0 0 0 0 0 0 0 72 0 0 45 72

∆34
4 3 26 0 24 0 30 0 48 0 6 72 24

∆35
4 26 3 24 0 30 0 0 0 48 72 6 72

∆36
4 0 24 24 3 0 24 0 72 24 24 108 0

∆37
4 24 0 3 24 24 0 0 24 72 108 24 156

∆38
4 0 20 0 16 3 20 16 48 16 16 76 48

∆39
4 20 0 16 0 20 3 16 16 48 76 16 96

∆40
4 0 0 0 0 6 6 5 48 48 33 33 42

∆41
4 10 0 15 5 15 5 40 26 26 40 40 125

∆42
4 0 10 5 15 5 15 40 26 26 40 40 105

∆43
4 1 12 4 18 4 19 22 32 32 57 40 70

∆44
4 12 1 18 4 19 4 22 32 32 40 57 56

∆45
4 2 6 0 13 6 12 14 50 42 35 28 83

∆46
4 6 2 13 0 12 6 14 42 50 28 35 91

∆1
5 0 0 0 0 0 0 0 0 0 0 0 0

∆2
5 0 0 0 0 0 0 0 0 0 0 0 0

∆3
5 0 45 0 90 0 0 0 0 216 0 0 0

∆4
5 45 0 90 0 0 0 0 216 0 0 0 0

∆5
5 0 48 0 72 36 144 0 0 0 0 0 0

∆6
5 48 0 72 0 144 36 0 0 0 0 0 0

∆7
5 48 24 24 0 36 0 32 0 0 24 0 96

∆8
5 24 48 0 24 0 36 32 0 0 0 24 0

∆9
5 0 16 80 0 84 0 96 0 0 0 0 48

∆10
5 16 0 0 80 0 84 96 0 0 0 0 0

∆11
5 42 35 7 21 0 0 0 84 84 0 84 0

∆12
5 35 42 21 7 0 0 0 84 84 84 0 126

∆13
5 3 0 0 90 0 72 84 72 0 36 36 0

∆14
5 0 3 90 0 72 0 84 0 72 36 36 108

∆15
5 16 16 32 32 28 28 0 64 64 64 64 96

∆16
5 0 27 0 0 0 27 18 0 0 27 81 54

∆17
5 27 0 0 0 27 0 18 0 0 81 27 54

∆18
5 0 0 0 9 0 27 0 0 0 27 27 0

∆19
5 0 0 9 0 27 0 0 0 0 27 27 27



CHAPTER 2. THE POINT-LINE COLLINEARITY GRAPH FOR Fi24 62

∆46
4 ∆1

5 ∆2
5 ∆3

5 ∆4
5 ∆5

5 ∆6
5 ∆7

5 ∆8
5 ∆9

5 ∆10
5 ∆11

5

∆26
4 0 0 0 0 0 0 0 8 8 8 8 0

∆27
4 144 0 0 0 0 6 6 0 0 0 0 24

∆28
4 24 0 0 0 0 0 6 0 0 0 0 0

∆29
4 48 0 0 0 0 6 0 0 0 0 0 0

∆30
4 48 0 0 0 0 0 6 0 0 0 0 0

∆31
4 0 0 0 0 0 6 0 0 0 0 0 0

∆32
4 72 0 0 0 0 0 0 0 0 0 0 0

∆33
4 108 0 0 0 0 0 0 0 0 0 0 0

∆34
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∆36
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∆37
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5 0 0 2 0 0 18 0 0 0 3 8 32
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∆16
5 54 0 0 0 0 0 12 0 0 0 0 0
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∆18
5 27 3 0 0 0 0 3 0 0 9 0 0

∆19
5 0 0 3 0 0 3 0 0 0 0 9 0



CHAPTER 2. THE POINT-LINE COLLINEARITY GRAPH FOR Fi24 63

∆12
5 ∆13

5 ∆14
5 ∆15

5 ∆16
5 ∆17

5 ∆18
5 ∆19

5 ∆20
5 ∆21

5 ∆22
5 ∆23

5

∆26
4 0 16 16 8 0 0 0 0 0 0 0 0

∆27
4 24 0 0 0 0 0 0 0 0 8 8 8

∆28
4 0 0 0 0 0 24 40 24 0 16 16 72

∆29
4 0 0 0 0 24 0 24 40 0 16 16 0

∆30
4 0 0 4 0 0 8 0 32 0 24 48 60

∆31
4 0 4 0 0 8 0 32 0 0 48 24 0

∆32
4 0 12 0 27 12 0 0 0 0 0 0 0

∆33
4 0 0 12 27 0 12 0 0 0 0 0 0

∆34
4 10 1 0 6 0 12 0 0 0 0 0 27

∆35
4 12 0 1 6 12 0 0 0 0 0 0 0

∆36
4 6 0 30 12 0 0 0 4 0 0 8 0

∆37
4 2 30 0 12 0 0 4 0 0 8 0 2

∆38
4 0 0 16 7 0 8 0 8 0 0 0 0

∆39
4 0 16 0 7 8 0 8 0 0 0 0 4

∆40
4 0 7 7 0 2 2 0 0 12 0 0 2

∆41
4 5 5 0 5 0 0 0 0 0 1 1 0

∆42
4 5 0 5 5 0 0 0 0 0 1 1 5

∆43
4 4 2 2 4 2 6 2 2 0 4 2 17

∆44
4 0 2 2 4 6 2 2 2 0 2 4 4

∆45
4 3 0 3 3 2 2 0 1 8 2 1 4

∆46
4 0 3 0 3 2 2 1 0 8 1 2 2

∆1
5 0 0 0 0 0 0 560 0 0 336 0 0

∆2
5 0 0 0 0 0 0 0 560 0 0 336 0

∆3
5 90 0 60 0 0 0 0 0 0 0 0 0

∆4
5 0 60 0 0 0 0 0 0 0 0 0 225

∆5
5 0 0 32 0 0 64 0 16 0 0 0 0

∆6
5 0 32 0 0 64 0 16 0 0 0 0 0

∆7
5 0 32 0 3 0 0 0 0 0 32 32 24

∆8
5 0 0 32 3 0 0 0 0 0 32 32 0

∆9
5 0 0 0 0 0 0 16 0 0 0 0 0

∆10
5 32 0 0 0 0 0 0 16 0 0 0 96
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5 ∆28
5 ∆29

5 ∆30
5 ∆31

5 ∆32
5 ∆33

5 ∆34
5 ∆35

5

∆26
4 0 16 16 32 32 128 0 24 24 0 0 0

∆27
4 8 8 8 0 0 0 0 30 30 16 16 0

∆28
4 0 0 0 0 0 0 6 6 0 0 48 0

∆29
4 72 0 0 0 0 0 6 0 6 48 0 0

∆30
4 0 0 0 0 24 0 6 6 6 24 16 0

∆31
4 60 0 0 24 0 0 6 6 6 16 24 0

∆32
4 0 9 18 0 0 0 0 0 45 0 0 36

∆33
4 0 18 9 0 0 0 0 45 0 0 0 36

∆34
4 0 33 0 12 24 4 36 30 12 2 28 12

∆35
4 27 0 33 24 12 4 36 12 30 28 2 12

∆36
4 2 26 0 12 36 12 0 6 24 2 30 0

∆37
4 0 0 26 36 12 12 0 24 6 30 2 0

∆38
4 4 40 24 0 0 8 4 20 2 0 32 0

∆39
4 0 24 40 0 0 8 4 2 20 32 0 0

∆40
4 2 15 15 13 13 26 18 0 0 18 18 12

∆41
4 5 0 5 20 5 5 5 20 20 10 5 26

∆42
4 0 5 0 5 20 5 5 20 20 5 10 26

∆43
4 4 11 0 14 12 10 8 19 20 4 12 16

∆44
4 17 0 11 12 14 10 8 20 19 12 4 16

∆45
4 2 13 8 8 0 4 9 11 5 8 12 18

∆46
4 4 8 13 0 8 4 9 5 11 12 8 18

∆1
5 0 0 0 0 0 0 0 0 0 0 0 0

∆2
5 0 0 0 0 0 0 0 0 0 0 0 0

∆3
5 225 0 0 180 0 0 0 270 0 0 0 0

∆4
5 0 0 0 0 180 0 0 0 270 0 0 0

∆5
5 0 0 0 0 32 0 0 0 0 0 144 0

∆6
5 0 0 0 32 0 0 0 0 0 144 0 0

∆7
5 0 0 0 32 0 0 0 0 36 0 0 0

∆8
5 24 0 0 0 32 0 0 36 0 0 0 0

∆9
5 96 0 0 0 0 0 12 36 0 0 0 0

∆10
5 0 0 0 0 0 0 12 0 36 0 0 0

∆11
5 14 0 0 28 0 0 0 0 0 14 42 0

∆12
5 7 0 0 0 28 0 0 0 0 42 14 0

∆13
5 0 3 0 8 24 0 0 0 0 0 78 0

∆14
5 42 0 3 24 8 0 0 0 0 78 0 0

∆15
5 0 0 0 0 0 0 16 20 20 0 0 64

∆16
5 0 27 0 3 27 0 0 27 27 0 27 0

∆17
5 0 0 27 27 3 0 0 27 27 27 0 0

∆18
5 0 27 9 12 54 138 27 0 27 0 0 0

∆19
5 81 9 27 54 12 138 27 27 0 0 0 0
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∆36
5 ∆37

5 ∆38
5 ∆39

5 ∆40
5 ∆41

5 ∆42
5 ∆43

5 ∆44
5 ∆45

5 ∆46
5 ∆47

5

∆26
4 0 0 0 0 0 32 32 32 32 32 32 64

∆27
4 0 24 24 72 72 0 0 0 0 48 48 48

∆28
4 0 48 40 0 104 72 24 0 24 0 8 0

∆29
4 0 40 48 104 0 24 72 24 0 8 0 0

∆30
4 0 48 96 24 48 72 56 24 0 0 0 0

∆31
4 0 96 48 48 24 56 72 0 24 0 0 0

∆32
4 72 0 0 36 0 30 36 36 18 54 78 36

∆33
4 72 0 0 0 36 36 30 18 36 78 54 36

∆34
4 36 0 8 0 48 24 8 0 28 36 24 72

∆35
4 36 8 0 48 0 8 24 28 0 24 36 72

∆36
4 24 0 48 0 36 28 24 0 36 24 36 48

∆37
4 24 48 0 36 0 24 28 36 0 36 24 48

∆38
4 16 8 48 16 32 24 16 24 56 40 40 32

∆39
4 16 48 8 32 16 16 24 56 24 40 40 32

∆40
4 12 12 12 15 15 15 15 31 31 42 42 42

∆41
4 30 40 15 25 10 15 20 15 15 20 30 66

∆42
4 30 15 40 10 25 20 15 15 15 30 20 66

∆43
4 24 20 18 10 50 36 20 26 18 26 24 28

∆44
4 24 18 20 50 10 20 36 18 26 24 26 28

∆45
4 28 15 17 12 36 16 12 31 29 45 36 28

∆46
4 28 17 15 36 12 12 16 29 31 36 45 28

∆1
5 0 0 0 0 0 0 0 0 0 0 0 0

∆2
5 0 0 0 0 0 0 0 0 0 0 0 0

∆3
5 0 0 0 0 0 0 0 0 0 0 0 0

∆4
5 0 0 0 0 0 0 0 0 0 0 0 0

∆5
5 0 0 48 0 144 48 48 0 96 0 96 0

∆6
5 0 48 0 144 0 48 48 96 0 96 0 0

∆7
5 96 128 0 0 0 128 96 0 32 0 32 0

∆8
5 96 0 128 0 0 96 128 32 0 32 0 0

∆9
5 0 48 0 208 48 0 0 0 32 0 96 0

∆10
5 0 0 48 48 208 0 0 32 0 96 0 0

∆11
5 0 28 42 0 0 0 28 0 112 0 0 0

∆12
5 0 42 28 0 0 28 0 112 0 0 0 0

∆13
5 0 0 36 0 72 0 12 0 48 0 0 72

∆14
5 0 36 0 72 0 12 0 48 0 0 0 72

∆15
5 0 0 0 0 0 32 32 64 64 0 0 0

∆16
5 54 0 63 0 36 27 27 27 63 0 45 0

∆17
5 54 63 0 36 0 27 27 63 27 45 0 0

∆18
5 0 0 54 45 54 45 0 0 0 27 0 0

∆19
5 0 54 0 54 45 0 45 0 0 0 27 0
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∆48
5 ∆49

5 ∆50
5 ∆51

5 ∆52
5 ∆53

5 ∆54
5 ∆55

5 ∆56
5 ∆57

5 ∆58
5 ∆59

5

∆26
4 0 16 16 96 96 32 32 0 0 0 256 64

∆27
4 0 48 48 12 12 72 72 0 32 32 0 240

∆28
4 0 96 120 60 0 72 0 0 0 0 48 96

∆29
4 0 120 96 0 60 0 72 0 0 0 48 96

∆30
4 24 168 60 0 12 12 12 0 48 0 24 96

∆31
4 24 60 168 12 0 12 12 0 0 48 24 96

∆32
4 36 9 0 36 54 45 0 144 0 72 36 216

∆33
4 36 0 9 54 36 0 45 144 72 0 36 216

∆34
4 36 24 24 24 24 96 60 48 96 24 72 72

∆35
4 36 24 24 24 24 60 96 48 24 96 72 72

∆36
4 24 24 0 42 90 24 0 48 56 0 84 96

∆37
4 24 0 24 90 42 0 24 48 0 56 84 96

∆38
4 20 24 8 48 104 72 20 32 32 0 72 112

∆39
4 20 8 24 104 48 20 72 32 0 32 72 112

∆40
4 12 21 21 66 66 51 51 72 42 42 168 126

∆41
4 55 20 40 30 10 15 40 50 65 60 50 160

∆42
4 55 40 20 10 30 40 15 50 60 65 50 160

∆43
4 32 35 36 44 20 72 32 48 76 44 76 124

∆44
4 32 36 35 20 44 32 72 48 44 76 76 124

∆45
4 34 26 17 47 40 51 33 68 76 50 71 164

∆46
4 34 17 26 40 47 33 51 68 50 76 71 164

∆1
5 0 0 0 0 0 0 0 0 0 0 0 0

∆2
5 0 0 0 0 0 0 0 0 0 0 0 0

∆3
5 0 0 270 0 0 0 0 0 0 0 0 0

∆4
5 0 270 0 0 0 0 0 0 0 0 0 0

∆5
5 0 0 0 0 72 144 0 0 0 0 0 0

∆6
5 0 0 0 72 0 0 144 0 0 0 0 0

∆7
5 0 0 144 96 24 24 48 0 32 32 0 0

∆8
5 0 144 0 24 96 48 24 0 32 32 0 0

∆9
5 24 0 96 48 0 0 144 0 32 96 48 0

∆10
5 24 96 0 0 48 144 0 0 96 32 48 0

∆11
5 84 0 84 84 0 84 0 0 84 112 84 0

∆12
5 84 84 0 0 84 0 84 0 112 84 84 0

∆13
5 72 54 0 0 0 90 0 0 168 24 0 72

∆14
5 72 0 54 0 0 0 90 0 24 168 0 72

∆15
5 240 16 16 0 0 32 32 0 64 64 0 0

∆16
5 0 81 27 27 135 54 0 0 0 54 81 108

∆17
5 0 27 81 135 27 0 54 0 54 0 81 108

∆18
5 0 135 54 54 27 0 27 0 0 0 162 0

∆19
5 0 54 135 27 54 27 0 0 0 0 162 0
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∆8
3 ∆9

3 ∆10
3 ∆1

4 ∆2
4 ∆3

4 ∆4
4 ∆5

4 ∆6
4 ∆7

4 ∆8
4 ∆9

4

∆20
5 0 0 0 0 0 0 0 0 0 0 0 0

∆21
5 0 0 0 0 0 0 0 0 0 0 0 0

∆22
5 0 0 0 0 0 0 0 0 0 0 0 0

∆23
5 0 0 0 0 0 0 0 0 0 0 0 0

∆24
5 0 0 0 0 0 0 0 0 0 0 0 0

∆25
5 0 0 0 0 0 0 0 2 1 2 4 0

∆26
5 0 0 0 0 0 0 0 1 2 2 0 4

∆27
5 0 0 0 0 0 0 0 0 0 0 0 2

∆28
5 0 0 0 0 0 0 0 0 0 0 2 0

∆29
5 0 0 0 0 0 1 0 0 0 0 2 2

∆30
5 0 0 0 0 0 0 0 0 0 0 0 0

∆31
5 0 0 0 0 0 0 0 0 1 0 0 0

∆32
5 0 0 0 0 0 0 0 1 0 0 0 0

∆33
5 0 0 0 0 0 0 0 0 0 0 0 0

∆34
5 0 0 0 0 0 0 0 0 0 0 0 0

∆35
5 0 0 0 0 0 0 0 0 0 0 0 0

∆36
5 0 0 0 0 0 0 0 0 0 0 0 0

∆37
5 0 0 0 0 0 0 0 0 0 0 0 1

∆38
5 0 0 0 0 0 0 0 0 0 0 1 0

∆39
5 0 0 0 0 0 0 0 0 0 0 0 0

∆40
5 0 0 0 0 0 0 0 0 0 0 0 0

∆41
5 0 0 0 0 0 0 0 0 0 0 0 0

∆42
5 0 0 0 0 0 0 0 0 0 0 0 0

∆43
5 0 0 0 0 0 0 0 0 0 0 0 0

∆44
5 0 0 0 0 0 0 0 0 0 0 0 0

∆45
5 0 0 0 0 0 0 0 1 0 1 0 0

∆46
5 0 0 0 0 0 0 0 0 1 1 0 0

∆47
5 0 0 0 0 0 0 1 0 0 1 0 0

∆48
5 0 0 0 0 0 0 0 0 0 0 0 0

∆49
5 0 0 0 0 0 0 0 0 0 0 0 0

∆50
5 0 0 0 0 0 0 0 0 0 0 0 0

∆51
5 0 0 0 0 0 0 0 0 0 0 0 1

∆52
5 0 0 0 0 0 0 0 0 0 0 1 0

∆53
5 0 0 0 0 0 0 0 0 0 0 0 0

∆54
5 0 0 0 0 0 0 0 0 0 0 0 0

∆55
5 0 0 0 0 0 0 0 0 0 0 0 0

∆56
5 0 0 0 0 0 0 0 0 0 0 0 0

∆57
5 0 0 0 0 0 0 0 0 0 0 0 0

∆58
5 0 0 0 0 0 0 0 0 0 0 0 0

∆59
5 0 0 0 0 0 0 0 0 0 0 0 0
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∆10
4 ∆11

4 ∆12
4 ∆13

4 ∆14
4 ∆15

4 ∆16
4 ∆17

4 ∆18
4 ∆19

4 ∆20
4 ∆21

4

∆20
5 0 0 0 0 0 0 3 0 0 0 0 0

∆21
5 0 0 0 0 0 0 0 6 0 15 0 0

∆22
5 0 0 0 0 0 0 0 6 0 0 15 0

∆23
5 1 0 0 0 8 1 0 4 0 0 0 2

∆24
5 0 1 0 0 1 8 0 4 0 0 0 2

∆25
5 1 0 0 0 0 0 0 0 0 0 0 0

∆26
5 0 1 0 0 0 0 0 0 0 0 0 0

∆27
5 3 0 0 0 0 0 3 0 1 0 0 0

∆28
5 0 3 0 0 0 0 3 0 1 0 0 0

∆29
5 0 0 0 0 0 0 6 0 0 0 0 0

∆30
5 2 2 1 0 0 0 4 0 0 0 0 0

∆31
5 0 0 1 2 0 1 0 0 2 3 1 0

∆32
5 0 0 1 2 1 0 0 0 2 1 3 0

∆33
5 1 0 0 0 1 0 0 0 0 4 0 2

∆34
5 0 1 0 0 0 1 0 0 0 0 4 2

∆35
5 0 0 0 0 0 0 0 0 0 0 0 0

∆36
5 0 0 0 0 0 0 0 0 0 0 0 0

∆37
5 0 0 0 0 0 0 0 1 0 4 2 2

∆38
5 0 0 0 0 0 0 0 1 0 2 4 2

∆39
5 0 0 0 0 0 3 0 2 0 1 0 1

∆40
5 0 0 0 0 3 0 0 2 0 0 1 1

∆41
5 0 0 0 0 0 0 0 0 0 6 3 3

∆42
5 0 0 0 0 0 0 0 0 0 3 6 3

∆43
5 0 0 0 0 0 0 0 0 1 3 0 0

∆44
5 0 0 0 0 0 0 0 0 1 0 3 0

∆45
5 0 0 0 0 0 0 0 0 0 0 0 0

∆46
5 0 0 0 0 0 0 0 0 0 0 0 0

∆47
5 0 0 0 0 0 0 0 0 0 0 0 0

∆48
5 0 0 0 1 0 0 0 0 0 0 0 0

∆49
5 0 0 0 0 3 0 0 2 0 1 0 2

∆50
5 0 0 0 0 0 3 0 2 0 0 1 2

∆51
5 0 0 0 0 0 1 1 0 1 0 0 0

∆52
5 0 0 0 0 1 0 1 0 1 0 0 0

∆53
5 1 0 1 0 0 0 0 0 2 0 0 0

∆54
5 0 1 1 0 0 0 0 0 2 0 0 0

∆55
5 0 0 0 0 0 0 0 0 0 0 0 0

∆56
5 0 0 0 0 0 0 0 0 1 0 0 0

∆57
5 0 0 0 0 0 0 0 0 1 0 0 0

∆58
5 0 0 0 0 0 0 2 0 1 0 0 0

∆59
5 0 0 0 1 0 0 0 0 0 0 0 1
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∆22
4 ∆23

4 ∆24
4 ∆25

4 ∆26
4 ∆27

4 ∆28
4 ∆29

4 ∆30
4 ∆31

4 ∆32
4 ∆33

4

∆20
5 0 0 21 0 0 0 0 0 0 0 0 0

∆21
5 0 0 0 0 0 5 10 10 15 30 0 0

∆22
5 0 0 0 0 0 5 10 10 30 15 0 0

∆23
5 0 0 0 0 0 4 36 0 30 0 0 0

∆24
5 0 0 0 0 0 4 0 36 0 30 0 0

∆25
5 0 12 6 0 6 4 0 0 0 0 6 12

∆26
5 0 12 6 0 6 4 0 0 0 0 12 6

∆27
5 15 0 0 0 9 0 0 0 0 9 0 0

∆28
5 15 0 0 0 9 0 0 0 9 0 0 0

∆29
5 21 9 6 0 36 0 0 0 0 0 0 0

∆30
5 6 8 16 0 0 0 2 2 2 2 0 0

∆31
5 2 0 0 7 6 10 2 0 2 2 0 20

∆32
5 2 0 0 7 6 10 0 2 2 2 20 0

∆33
5 4 4 0 0 0 4 0 12 6 4 0 0

∆34
5 4 4 0 0 0 4 12 0 4 6 0 0

∆35
5 0 0 5 20 0 0 0 0 0 0 10 10

∆36
5 0 0 3 12 0 0 0 0 0 0 12 12

∆37
5 0 0 0 0 0 3 6 5 6 12 0 0

∆38
5 0 0 0 0 0 3 5 6 12 6 0 0

∆39
5 0 3 3 0 0 9 0 13 3 6 6 0

∆40
5 0 3 3 0 0 9 13 0 6 3 0 6

∆41
5 0 0 0 6 3 0 9 3 9 7 5 6

∆42
5 0 0 0 6 3 0 3 9 7 9 6 5

∆43
5 0 6 1 9 3 0 0 3 3 0 6 3

∆44
5 0 6 1 9 3 0 3 0 0 3 3 6

∆45
5 3 5 4 3 3 6 0 1 0 0 9 13

∆46
5 3 5 4 3 3 6 1 0 0 0 13 9

∆47
5 10 0 0 0 5 5 0 0 0 0 5 5

∆48
5 1 0 0 7 0 0 0 0 2 2 4 4

∆49
5 0 0 0 0 1 4 8 10 14 5 1 0

∆50
5 0 0 0 0 1 4 10 8 5 14 0 1

∆51
5 0 0 1 2 6 1 5 0 0 1 4 6

∆52
5 0 0 1 2 6 1 0 5 1 0 6 4

∆53
5 0 6 5 1 2 6 6 0 1 1 5 0

∆54
5 0 6 5 1 2 6 0 6 1 1 0 5

∆55
5 0 0 0 3 0 0 0 0 0 0 12 12

∆56
5 3 0 2 3 0 2 0 0 3 0 0 6

∆57
5 3 0 2 3 0 2 0 0 0 3 6 0

∆58
5 5 5 4 0 8 0 2 2 1 1 2 2

∆59
5 0 0 0 0 1 5 2 2 2 2 6 6
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∆34
4 ∆35

4 ∆36
4 ∆37

4 ∆38
4 ∆39

4 ∆40
4 ∆41

4 ∆42
4 ∆43

4 ∆44
4 ∆45

4

∆20
5 0 0 0 0 0 0 63 0 0 0 0 126

∆21
5 0 0 0 10 0 0 0 6 6 30 15 30

∆22
5 0 0 10 0 0 0 0 6 6 15 30 15

∆23
5 27 0 0 2 0 6 8 0 24 102 24 48

∆24
5 0 27 2 0 6 0 8 24 0 24 102 24

∆25
5 33 0 26 0 60 36 60 0 24 66 0 156

∆26
5 0 33 0 26 36 60 60 24 0 0 66 96

∆27
5 9 18 9 27 0 0 39 72 18 63 54 72

∆28
5 18 9 27 9 0 0 39 18 72 54 63 0

∆29
5 3 3 9 9 9 9 78 18 18 45 45 36

∆30
5 24 24 0 0 4 4 48 16 16 32 32 72

∆31
5 20 8 4 16 20 2 0 64 64 76 80 88

∆32
5 8 20 16 4 2 20 0 64 64 80 76 40

∆33
5 1 14 1 15 0 24 36 24 12 12 36 48

∆34
5 14 1 15 1 24 0 36 12 24 36 12 72

∆35
5 5 5 0 0 0 0 20 52 52 40 40 90

∆36
5 9 9 6 6 6 6 12 36 36 36 36 84

∆37
5 0 2 0 12 3 18 12 48 18 30 27 45

∆38
5 2 0 12 0 18 3 12 18 48 27 30 51

∆39
5 0 12 0 9 6 12 15 30 12 15 75 36

∆40
5 12 0 9 0 12 6 15 12 30 75 15 108

∆41
5 6 2 7 6 9 6 15 18 24 54 30 48

∆42
5 2 6 6 7 6 9 15 24 18 30 54 36

∆43
5 0 7 0 9 9 21 31 18 18 39 27 93

∆44
5 7 0 9 0 21 9 31 18 18 27 39 87

∆45
5 9 6 6 9 15 15 42 24 36 39 36 135

∆46
5 6 9 9 6 15 15 42 36 24 36 39 108

∆47
5 15 15 10 10 10 10 35 66 66 35 35 70

∆48
5 6 6 4 4 5 5 8 44 44 32 32 68

∆49
5 4 4 4 0 6 2 14 16 32 35 36 52

∆50
5 4 4 0 4 2 6 14 32 16 36 35 34

∆51
5 4 4 7 15 12 26 44 24 8 44 20 94

∆52
5 4 4 15 7 26 12 44 8 24 20 44 80

∆53
5 16 10 4 0 18 5 34 12 32 72 32 102

∆54
5 10 16 0 4 5 18 34 32 12 32 72 66

∆55
5 6 6 6 6 6 6 36 30 30 36 36 102

∆56
5 12 3 7 0 6 0 21 39 36 57 33 114

∆57
5 3 12 0 7 0 6 21 36 39 33 57 75

∆58
5 6 6 7 7 9 9 56 20 20 38 38 71

∆59
5 3 3 4 4 7 7 21 32 32 31 31 82
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∆46
4 ∆1

5 ∆2
5 ∆3

5 ∆4
5 ∆5

5 ∆6
5 ∆7

5 ∆8
5 ∆9

5 ∆10
5 ∆11

5

∆20
5 126 0 0 0 0 0 0 0 0 0 0 0

∆21
5 15 1 0 0 0 0 0 10 10 0 0 0

∆22
5 30 0 1 0 0 0 0 10 10 0 0 5

∆23
5 24 0 0 0 5 0 0 6 0 0 24 2

∆24
5 48 0 0 5 0 0 0 0 6 24 0 4

∆25
5 96 0 0 0 0 0 0 0 0 0 0 0

∆26
5 156 0 0 0 0 0 0 0 0 0 0 0

∆27
5 0 0 0 3 0 0 2 6 0 0 0 6

∆28
5 72 0 0 0 3 2 0 0 6 0 0 0

∆29
5 36 0 0 0 0 0 0 0 0 0 0 0

∆30
5 72 0 0 0 0 0 0 0 0 2 2 0

∆31
5 40 0 0 4 0 0 0 0 6 6 0 0

∆32
5 88 0 0 0 4 0 0 6 0 0 6 0

∆33
5 72 0 0 0 0 0 6 0 0 0 0 2

∆34
5 48 0 0 0 0 6 0 0 0 0 0 6

∆35
5 90 0 0 0 0 0 0 0 0 0 0 0

∆36
5 84 0 0 0 0 0 0 6 6 0 0 0

∆37
5 51 0 0 0 0 0 1 8 0 3 0 2

∆38
5 45 0 0 0 0 1 0 0 8 0 3 3

∆39
5 108 0 0 0 0 0 3 0 0 13 3 0

∆40
5 36 0 0 0 0 3 0 0 0 3 13 0

∆41
5 36 0 0 0 0 1 1 8 6 0 0 0

∆42
5 48 0 0 0 0 1 1 6 8 0 0 2

∆43
5 87 0 0 0 0 0 2 0 2 0 2 0

∆44
5 93 0 0 0 0 2 0 2 0 2 0 8

∆45
5 108 0 0 0 0 0 2 0 2 0 6 0

∆46
5 135 0 0 0 0 2 0 2 0 6 0 0

∆47
5 70 0 0 0 0 0 0 0 0 0 0 0

∆48
5 68 0 0 0 0 0 0 0 0 1 1 4

∆49
5 34 0 0 0 1 0 0 0 6 0 4 0

∆50
5 52 0 0 1 0 0 0 6 0 4 0 4

∆51
5 80 0 0 0 0 0 1 4 1 2 0 4

∆52
5 94 0 0 0 0 1 0 1 4 0 2 0

∆53
5 66 0 0 0 0 2 0 1 2 0 6 4

∆54
5 102 0 0 0 0 0 2 2 1 6 0 0

∆55
5 102 0 0 0 0 0 0 0 0 0 0 0

∆56
5 75 0 0 0 0 0 0 1 1 1 3 3

∆57
5 114 0 0 0 0 0 0 1 1 3 1 4

∆58
5 71 0 0 0 0 0 0 0 0 1 1 2

∆59
5 82 0 0 0 0 0 0 0 0 0 0 0
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∆12
5 ∆13

5 ∆14
5 ∆15

5 ∆16
5 ∆17

5 ∆18
5 ∆19

5 ∆20
5 ∆21

5 ∆22
5 ∆23

5

∆20
5 0 0 0 0 0 0 0 0 24 42 42 0

∆21
5 5 0 0 0 0 0 0 25 40 46 36 30

∆22
5 0 0 0 0 0 0 25 0 40 36 46 0

∆23
5 4 14 0 0 0 0 36 0 0 24 0 32

∆24
5 2 0 14 0 0 0 0 36 0 0 24 26

∆25
5 0 1 0 0 12 0 12 4 0 0 8 4

∆26
5 0 0 1 0 0 12 4 12 0 8 0 0

∆27
5 0 2 6 0 1 9 4 18 0 18 6 45

∆28
5 6 6 2 0 9 1 18 4 0 6 18 12

∆29
5 0 0 0 0 0 0 46 46 0 39 39 60

∆30
5 0 0 0 4 0 0 8 8 0 32 32 16

∆31
5 0 0 0 5 8 8 0 8 0 0 0 4

∆32
5 0 0 0 5 8 8 8 0 0 0 0 0

∆33
5 6 0 13 0 0 6 0 0 8 12 0 12

∆34
5 2 13 0 0 6 0 0 0 8 0 12 6

∆35
5 0 0 0 10 0 0 0 0 0 2 2 0

∆36
5 0 0 0 0 6 6 0 0 0 0 0 0

∆37
5 3 0 3 0 0 7 0 6 16 14 6 15

∆38
5 2 3 0 0 7 0 6 0 16 6 14 0

∆39
5 0 0 6 0 0 4 5 6 4 2 14 3

∆40
5 0 6 0 0 4 0 6 5 4 14 2 0

∆41
5 2 0 1 3 3 3 5 0 12 12 8 6

∆42
5 0 1 0 3 3 3 0 5 12 8 12 6

∆43
5 8 0 4 6 3 7 0 0 0 0 0 0

∆44
5 0 4 0 6 7 3 0 0 0 0 0 6

∆45
5 0 0 0 0 0 5 3 0 0 9 0 0

∆46
5 0 0 0 0 5 0 0 3 0 0 9 0

∆47
5 0 5 5 0 0 0 0 0 0 1 1 10

∆48
5 4 4 4 15 0 0 0 0 0 0 0 0

∆49
5 4 3 0 1 6 2 10 4 8 12 6 9

∆50
5 0 0 3 1 2 6 4 10 8 6 12 24

∆51
5 0 0 0 0 2 10 4 2 8 6 2 12

∆52
5 4 0 0 0 10 2 2 4 8 2 6 0

∆53
5 0 5 0 2 4 0 0 2 0 10 4 1

∆54
5 4 0 5 2 0 4 2 0 0 4 10 4

∆55
5 0 0 0 0 0 0 0 0 0 0 0 0

∆56
5 4 7 1 3 0 3 0 0 6 6 0 3

∆57
5 3 1 7 3 3 0 0 0 6 0 6 3

∆58
5 2 0 0 0 3 3 6 6 4 10 10 15

∆59
5 0 1 1 0 2 2 0 0 8 2 2 2
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∆24
5 ∆25

5 ∆26
5 ∆27

5 ∆28
5 ∆29

5 ∆30
5 ∆31

5 ∆32
5 ∆33

5 ∆34
5 ∆35

5

∆20
5 0 0 0 0 0 0 0 0 0 21 21 0

∆21
5 0 0 10 30 10 65 60 0 0 30 0 6

∆22
5 30 10 0 10 30 65 60 0 0 0 30 6

∆23
5 26 4 0 60 16 80 24 6 0 24 12 0

∆24
5 32 0 4 16 60 80 24 0 6 12 24 0

∆25
5 0 2 2 0 0 0 0 0 54 28 2 24

∆26
5 4 2 2 0 0 0 0 54 0 2 28 24

∆27
5 12 0 0 21 25 8 9 18 18 0 0 18

∆28
5 45 0 0 25 21 8 9 18 18 0 0 18

∆29
5 60 0 0 8 8 34 0 9 9 0 0 0

∆30
5 16 0 0 8 8 0 31 18 18 16 16 16

∆31
5 0 0 36 16 16 8 18 11 20 0 16 16

∆32
5 4 36 0 16 16 8 18 20 11 16 0 16

∆33
5 6 14 1 0 0 0 12 0 12 15 22 0

∆34
5 12 1 14 0 0 0 12 12 0 22 15 0

∆35
5 0 10 10 10 10 0 10 10 10 0 0 30

∆36
5 0 0 0 6 6 0 0 0 0 18 18 33

∆37
5 0 12 7 4 6 11 33 0 9 6 24 6

∆38
5 15 7 12 6 4 11 33 9 0 24 6 6

∆39
5 0 21 3 0 27 18 15 6 3 0 33 6

∆40
5 3 3 21 27 0 18 15 3 6 33 0 6

∆41
5 6 6 6 23 12 12 27 6 3 12 15 12

∆42
5 6 6 6 12 23 12 27 3 6 15 12 12

∆43
5 6 9 2 3 6 3 3 9 0 15 21 24

∆44
5 0 2 9 6 3 3 3 0 9 21 15 24

∆45
5 0 0 0 6 4 0 0 18 0 16 12 18

∆46
5 0 0 0 4 6 0 0 0 18 12 16 18

∆47
5 10 0 0 0 0 0 0 15 15 0 0 20

∆48
5 0 8 8 4 4 0 3 9 9 12 12 24

∆49
5 24 2 6 32 18 30 16 20 5 16 2 0

∆50
5 9 6 2 18 32 30 16 5 20 2 16 0

∆51
5 0 4 12 6 2 6 8 6 11 10 26 8

∆52
5 12 12 4 2 6 6 8 11 6 26 10 8

∆53
5 4 4 8 8 2 8 6 5 12 30 8 16

∆54
5 1 8 4 2 8 8 6 12 5 8 30 16

∆55
5 0 0 0 0 0 0 3 6 6 12 12 33

∆56
5 3 1 12 16 2 3 6 9 9 18 6 18

∆57
5 3 12 1 2 16 3 6 9 9 6 18 18

∆58
5 15 2 2 3 3 7 4 10 10 13 13 8

∆59
5 2 4 4 5 5 0 6 6 6 13 13 20
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∆36
5 ∆37

5 ∆38
5 ∆39

5 ∆40
5 ∆41

5 ∆42
5 ∆43

5 ∆44
5 ∆45

5 ∆46
5 ∆47

5

∆20
5 0 84 84 21 21 63 63 0 0 0 0 0

∆21
5 0 70 30 10 70 60 40 0 0 45 0 6

∆22
5 0 30 70 70 10 40 60 0 0 0 45 6

∆23
5 0 60 0 12 0 24 24 0 24 0 0 48

∆24
5 0 0 60 0 12 24 24 24 0 0 0 48

∆25
5 0 48 28 84 12 24 24 36 8 0 0 0

∆26
5 0 28 48 12 84 24 24 8 36 0 0 0

∆27
5 18 12 18 0 81 69 36 9 18 18 12 0

∆28
5 18 18 12 81 0 36 69 18 9 12 18 0

∆29
5 0 33 33 54 54 36 36 9 9 0 0 0

∆30
5 0 88 88 40 40 72 72 8 8 0 0 0

∆31
5 0 0 24 16 8 16 8 24 0 48 0 48

∆32
5 0 24 0 8 16 8 16 0 24 0 48 48

∆33
5 36 12 48 0 66 24 30 30 42 32 24 0

∆34
5 36 48 12 66 0 30 24 42 30 24 32 0

∆35
5 55 10 10 10 10 20 20 40 40 30 30 40

∆36
5 36 12 12 12 12 6 6 36 36 18 18 72

∆37
5 12 47 54 14 61 42 31 24 36 27 15 18

∆38
5 12 54 47 61 14 31 42 36 24 15 27 18

∆39
5 12 14 61 24 50 12 15 16 33 18 21 24

∆40
5 12 61 14 50 24 15 12 33 16 21 18 24

∆41
5 6 42 31 12 15 55 57 18 27 18 21 36

∆42
5 6 31 42 15 12 57 55 27 18 21 18 36

∆43
5 36 24 36 16 33 18 27 39 25 26 30 42

∆44
5 36 36 24 33 16 27 18 25 39 30 26 42

∆45
5 18 27 15 18 21 18 21 26 30 25 25 30

∆46
5 18 15 27 21 18 21 18 30 26 25 25 30

∆47
5 60 15 15 20 20 30 30 35 35 25 25 2

∆48
5 68 8 8 8 8 20 20 28 28 36 36 40

∆49
5 8 30 18 42 28 26 34 16 8 16 18 20

∆50
5 8 18 30 28 42 34 26 8 16 18 16 20

∆51
5 12 30 30 32 66 22 12 18 20 28 22 48

∆52
5 12 30 30 66 32 12 22 20 18 22 28 48

∆53
5 24 54 28 28 10 44 42 30 20 12 20 32

∆54
5 24 28 54 10 28 42 44 20 30 20 12 32

∆55
5 51 12 12 12 12 12 12 36 36 24 24 48

∆56
5 42 33 3 16 10 21 21 29 15 29 35 36

∆57
5 42 3 33 10 16 21 21 15 29 35 29 36

∆58
5 12 36 36 42 42 40 40 18 18 16 16 20

∆59
5 32 21 21 20 20 20 20 35 35 27 27 19
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∆48
5 ∆49

5 ∆50
5 ∆51

5 ∆52
5 ∆53

5 ∆54
5 ∆55

5 ∆56
5 ∆57

5 ∆58
5 ∆59

5

∆20
5 0 63 63 63 63 0 0 0 63 63 63 252

∆21
5 0 90 45 45 15 75 30 0 60 0 150 60

∆22
5 0 45 90 15 45 30 75 0 0 60 150 60

∆23
5 0 54 144 72 0 6 24 0 24 24 180 48

∆24
5 0 144 54 0 72 24 6 0 24 24 180 48

∆25
5 48 12 36 24 72 24 48 0 8 96 24 96

∆26
5 48 36 12 72 24 48 24 0 96 8 24 96

∆27
5 18 144 81 27 9 36 9 0 96 12 27 90

∆28
5 18 81 144 9 27 9 36 0 12 96 27 90

∆29
5 0 135 135 27 27 36 36 0 18 18 63 0

∆30
5 12 64 64 32 32 24 24 16 32 32 32 96

∆31
5 36 80 20 24 44 20 48 32 48 48 80 96

∆32
5 36 20 80 44 24 48 20 32 48 48 80 96

∆33
5 36 48 6 30 78 90 24 48 72 24 78 156

∆34
5 36 6 48 78 30 24 90 48 24 72 78 156

∆35
5 60 0 0 20 20 40 40 110 60 60 40 200

∆36
5 102 12 12 18 18 36 36 102 84 84 36 192

∆37
5 12 45 27 45 45 81 42 24 66 6 108 126

∆38
5 12 27 45 45 45 42 81 24 6 66 108 126

∆39
5 12 63 42 48 99 42 15 24 32 20 126 120

∆40
5 12 42 63 99 48 15 42 24 20 32 126 120

∆41
5 30 39 51 33 18 66 63 24 42 42 120 120

∆42
5 30 51 39 18 33 63 66 24 42 42 120 120

∆43
5 42 24 12 27 30 45 30 72 58 30 54 210

∆44
5 42 12 24 30 27 30 45 72 30 58 54 210

∆45
5 54 24 27 42 33 18 30 48 58 70 48 162

∆46
5 54 27 24 33 42 30 18 48 70 58 48 162

∆47
5 50 25 25 60 60 40 40 80 60 60 50 95

∆48
5 65 8 8 28 28 34 34 132 68 68 48 216

∆49
5 8 76 84 32 42 41 44 24 40 44 162 120

∆50
5 8 84 76 42 32 44 41 24 44 40 162 120

∆51
5 28 32 42 55 42 40 24 32 60 40 54 160

∆52
5 28 42 32 42 55 24 40 32 40 60 54 160

∆53
5 34 41 44 40 24 23 44 44 28 44 62 152

∆54
5 34 44 41 24 40 44 23 44 44 28 62 152

∆55
5 99 18 18 24 24 33 33 87 60 60 36 228

∆56
5 51 30 33 45 30 21 33 60 52 68 51 186

∆57
5 51 33 30 30 45 33 21 60 68 52 51 186

∆58
5 24 81 81 27 27 31 31 24 34 34 78 164

∆59
5 54 30 30 40 40 38 38 76 62 62 82 198



Chapter 3

A Commuting Involution Graph

for the Baby Monster

3.1 Literature Review

Suppose G is a finite group and X is a subset of G. Then the commuting graph on X,

denoted C(G,X), is a graph whose vertex set is X, with any two points connected by

an edge if and only if they commute. If the set X is a conjugacy class of involutions

then we call the graph C(G,X) the commuting involution graph for G with respect

to X. These graphs have been studied by many different authors and a brief history

will be outlined here.

3.1.1 The Work of Brauer and Fowler

In Brauer and Fowler’s famous 1955 paper On Groups of Even Order, [5], the case was

studied where G was a group of even order and X the set of non identity elements.

One result states that if G has more than one conjugacy class of involutions then the

distance between any two involutions is at most 3. The proof is included here as it

is elementary, fairly short and elegant.

Lemma 3.1.1 (R. Brauer and K. Fowler). Let G be a finite Group of even order

76
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with more than one class of involutions. If x and y are two non-conjugate involutions

then there exists an involution w which commutes with both x and y.

Proof. Consider the subgroup D = 〈x, y〉 of G. It is a well known fact that D is a

dihedral group of order 2m where m is the order of xy. Furthermore if m is even

then (xy)
m
2 is an involution contained in the centre of D and in particular commutes

with both x and y. Therefore if we can prove that the order of xy is even then we

are done.

So suppose that m is odd. Then if S1 and S2 are Sylow 2-subgroups of D con-

taining x and y respectively, then |S1| = |S2| = 2. However by Sylow’s Theorems, S1

is conjugate to S2 implying that x is conjugate to y, a contradiction. Hence m must

be even and we are done.

Theorem 3.1.2 (R. Brauer and K. Fowler). If a group G of even order contains

more than one class of involutions then for any two involutions x, y ∈ G, we have

d(x, y) ≤ 3.

Proof. If x and y are not conjugate in G, then by Lemma 3.1.1, d(x, y) ≤ 2. Thus

suppose that x, y are contained in the same involution conjugacy class C. Now let

z be an involution not in C. Then again by Lemma 3.1.1, there exists an involution

w ∈ G such that w commutes with both y and z. First suppose that w /∈ C, then by

Lemma 3.1.1, d(x,w) ≤ 2 and since w commutes with y, d(x, y) ≤ 3. So assume that

w ∈ C, then there exists a g ∈ G such that x = wg. Then as w commutes with z,

x = wg commutes with zg. However as z /∈ C we have zg /∈ C, and thus by Lemma

3.1.1, d(zg, y) ≤ 2. Hence d(x, y) ≤ 3 as required.

This result also gives us two easy corollaries.

Corollary 3.1.3 (R. Brauer and K. Fowler). If G has even order and contains more

than one class of involutions then any two elements g1 and g2 such that |CG(g1)| and

|CG(g2)| are even have distance at most 5.
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Proof. Since CG(g1) and CG(g2) have even order they both contain involutions x1

and x2. Thus by Theorem 3.1.2, d(x1, x2) ≤ 3, and we have d(g1, x1) = 1 and

d(g2, x2) = 1, hence our result follows.

A similar argument gives us the second corollary

Corollary 3.1.4 (R. Brauer and K. Fowler). Let G be a group of even order which

contains a real element g such that CG(h) has odd order for every non-identity h in

CG(g). Then G contains involutions which have distance greater than 2.

3.1.2 The Work of Fischer

Commuting graphs came up in Fischer’s work on 3-transposition groups. A group G

is said to be a 3-transposition group if it is generated by a set D of involutions of G

such that D is a union of conjugacy classes of G and for all a, b ∈ D, the product

ab has order 1, 2 or 3. A good example of a 3-transposition group is the symmetric

group Sn, where the set D is the conjugacy class of transpositions.

The study of the commuting graph C(G,D) where D is a conjugacy class of 3-

transpositions in part led to the proof of Fischer’s Theorem, a classification of all

almost simple 3-transposition groups and led to the discovery of three new sporadic

simple groups.

Theorem 3.1.5 (Fischer’s Theorem, B. Fischer). Let D be a conjugacy class of 3-

transpostions of the finite group G. Assume the centre of G is trivial and the derived

subgroup of G is simple. Then one of the following holds:

1. G ∼= Sn and D is the set of transpositions of G.

2. G ∼= Spn(2) and D is the set of transvections of G.

3. G ∼= Un(2) and D is the set of transvections of G.

4. G ∼= Oε
n(2) and D is the set of transvections of G.
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5. G ∼= POµ,π
n (3) is the subgroup of an n-dimensional projective orthogonal group

over the field of order 3 generated by a conjugacy class D of reflections.

6. G is one of the three Fischer sporadic groups Fi22, Fi23 or Fi24, where D is a

uniquely determined class of involutions.

A proof of this theorem is given in [3].

3.1.3 The Work of Segev

In 2001, Segev published the following result in [38].

Theorem 3.1.6 (Y. Segev). Let G be a minimal non-soluble group, that is G is

not soluble but every proper quotient of G is soluble, and suppose X consists of all

non-identity elements of G. Then the commuting graph for G with vertex set X has

diameter at least 3.

This theorem was part of the solution of the Finite Soluble Quotients Conjecture,

that is that finite quotients of the multiplicative group of finite dimensional division

algebras are soluble. In an early paper by Rapinchuk and Segev [23], they proved the

following result

Theorem 3.1.7 (Non-Existence Theorem at Diameter ≥ 4, Y. Segev). Let G be a

class of finite groups. Then a member G ∈ G is called minimal if no proper quotient

of G belongs to G. If we assume that

1. The members of G are non-soluble.

2. If G ∈ G and N �G with G/N soluble, then N ∈ G.

3. If G ∈ G and N �G is a soluble normal subgroup of G then G/N ∈ G.

4. The commuting graph of minimal members of G has diameter ≥ 4.

Then no member of G is a quotient of the multiplicative group of a finite-dimensional

division algebra.
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Now if we could replace the bound in condition 4 above with ≥ 3, and if we

take G to be the class of non-soluble finite groups then the Finite Soluble Quotients

Conjecture will follow by using Theorem 3.1.6.

Important in the proof of Theorem 3.1.6 is the following idea. Let

C2(L) = {(a, b) ∈ L× L | CAut(L)(a) ∩ CAut(L)(b) = 1}

where L is a finite group. Now Aut(L) acts naturally on C2(L) in the following way

(a, b) 7→ (aα, bα)

for α ∈ Aut(L). Consider the following property:

Aut(L) has at least 5 orbits on C2(L).

Now suppose that G is a finite group, K 6= 1 is a normal subgroup of G and

L ≤ K is a subgroup such that

K = Lg1 × Lg2 × . . .× Lgn

for gi ∈ G. We assume that G acts transitively on

X = {Lg1 , Lg2 , . . . , Lgn}

by conjugation and suppose Σ ≤ Syn(n) is the permutation group induced from this

action. We assume Σ is soluble and that CG(K) = 1. Now it is true that G having

the structure as above, with L being non-abelian simple, is the same as saying that G

is minimal non-soluble. Now if we assume further that L has the property mentioned

above then we have the following lemma

Lemma 3.1.8 (Y. Segev). If G is as above, then the commuting graph for G on the
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set of all non-identity elements, has diameter at least 3.

Then using this lemma with the observation above we come to the proof of The-

orem 3.1.6. It must be noted that the proof of Lemma 3.1.8 relies on the following

theorem, originally proved in [15], which uses the Classification of Finite Simple

Groups in its proof.

Theorem 3.1.9 (G. Malle, J. Saxl and T. Weigel). Every Finite simple group except

U3(3) can be generated by two elements, one strongly real and the other an involution.

The proof of the Finite Soluble Quotients Conjecture was completed by A. Rap-

inchuk, G. Seitz and Y. Segev in [2].

3.1.4 The Work of Bundy, Bates, Rowley and Perkins

Peter Rowley has been the driving force behind the recent surge of results concerning

commuting involution graphs, where the set X is a conjugacy class of involutions of

a group G. It is the overall aim to calculate these graphs, to some extent, for all the

involution conjugacy classes for all the finite simple groups and their automorphism

groups as well as a few other interesting examples. Over the last 10 years Rowley

and three of his former PhD students, D. Bundy, C. Bates and S. Perkins (now S.

Hart) have written four papers [9],[11],[12] and [10] on the subject which cover many

of the simple groups, as well as the finite Coxeter groups. More recently A. Everett

and P. Taylor, two more of Rowley’s students, have completed work on some of the

remaining cases.

Commuting Involution Graphs for Symmetric Groups

In [10], Bundy, Bates, Rowley and Perkins carried out an extensive amount of work

on the commuting involution graphs for G ∼= Sn, see [10].

Now let G be the symmetric group on n objects, and let X be a conjugacy class

of involutions. A typical element of X will be the product of disjoint transpositions,
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hence we may assume that any element of X has cycle type 1r2m for a fixed m. Two

results were proved,

Theorem 3.1.10 (Bundy, Bates, Rowley and Perkins). For G ∼= Sn, C(G,X) is

disconnected if and only if n = 2m+ 1 or n = 4 and m = 1.

Theorem 3.1.11 (Bundy, Bates, Rowley and Perkins). If we suppose that C(G,X)

is connected then one of the following holds:

1. The diameter of C(G,X) is at most 3.

2. 2m+ 2 = n ∈ {6, 8, 10} and the diameter of C(G,X) is at most 4.

Important in the proofs of these two theorems is the idea of an x-graph. We now

pick a fixed a ∈ X and without loss of generality suppose a = (1, 2)(3, 4) . . . (2m −

1, 2m), so in particular a has cycle type 1(n−2m)2m. We now let G act on Ω = {1 . . . n}

in the usual manner and let

V = {{1, 2}, {3, 4} . . . {2m− 1, 2m}, {2m+ 1}, {2m+ 2}, . . . {n}}

so V is the set of orbits as a acts on Ω. Now for x ∈ X we will define a graph, denoted

Gx, whose vertex set is V with v1, v2 ∈ V connected by an edge if and only if there

exist α ∈ v1 and β ∈ v2 with α 6= β such that x interchanges α and β. Furthermore

the vertices corresponding to the 2-cycles of a will be coloured black, and the points

fixed by a coloured white. The x-graph gives us valuable information on C(G,X).

The following lemma gives a good example.

Lemma 3.1.12 (Bundy, Bates, Rowley and Perkins). Let x ∈ X. Then x ∈ ∆1(a)∪

{a} if and only if each connected component of Gx is one of the following:

The structure of the x-graph also gives us the sizes of each Ga orbit, and two

involutions x, y ∈ X are in the same Ga orbit if and only if their corresponding x-

graphs are isomorphic. These two facts alone give us a wealth of knowledge about
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C(G,X). This essentially means that all information about C(G,X) can be worked

out via these x-graphs and as they are purely combinatorial in nature, and fairly easy

to deal with, this simplifies the problem greatly.

Commuting Involution Graphs in Coxeter Groups

In [9], Bates, Bundy, Perkins and Rowley studied the commuting involution graphs

for the finite irreducible Coxeter groups. We recall there are three infinite families of

finite Coxeter groups, that is An, the symmetric group on n + 1 points, Bn and Dn

as well as the 7 exceptional finite coxeter groups E6, E7, E8, F4, H3, H4 and In.

We recall that we can think of Bn as the group of signed permutations on n

objects. That is, we define the sign change to be the element which sends i to −i

and fixes all other j. Then take this element and combine it with Sn to get Bn. More

precisely we write a permutation in Sn (including 1-cycles) and add a plus or minus

sign above each i. For example if

w = (
+

1,
−
2)(
−
3,

+

4) ∈ B4

then w(1) = 2, w(2) = −1, w(3) = −4 and w(4) = 3. The Coxeter Group Dn is the

subgroup of index 2 in Bn consisting of all elements which involve an even number of

sign changes. Now if we express an element w as a product of disjoint cycles, then we

say a cycle (i1, . . . in) is positive if it contains an even number of negative signs, and

negative if it contains an odd number. We can now define an obvious extension of

cycle type in the symmetric group, the signed cycle type, that is the usual cycle type,

but with a + or − sign above each cycle, where we again include cycles of length

1. As expected, it is true that elements in Bn are conjugate if and only if they have

the same signed cycle type, and conjugacy classes in Dn are parameterized by signed

cycle type, with one class for each cycle type except in the cases where the signed

cycle type contains only even length positive cycles, in which there are two. In [9]

the authors proved two main theorems, which we are now in a position to state.
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Theorem 3.1.13 (Bundy, Bates, Rowley and Perkins). Suppose that G ∼= Bn or Dn

and let

a = (
+

1,
+

2) . . . (
+

2m− 1,
+

2m)(
+

2m+ 1) . . . (
+

2m+ k1)(
−

2m+ k1 + 1) . . . (
−

2m+ k1 + k2).

Let X = aG and k = max{k1, k2}. Then we have the following:

(i) If m = 0 then C(G,X) is the complete graph.

(ii) If k = 0, then the diameter of C(G,X) is at most 2.

(iii) If k = 1 and m > 0 then C(G,X) is disconnected.

(iv) If k ≥ 2 and n > 5 then the diameter of C(G,X) is at most 4.

(v) If n = 5, m = 1 and k = 2 then the diameter of C(G,X) is 5.

(vi) If n = 5, m = 1 and k = 3 then the diameter of C(G,X) is 2.

(vii) If n = 4, m = 1 and k = 2 then C(G,X) is disconnected.

For the exceptional Coxeter groups we have the following result

Theorem 3.1.14 (Bundy, Bates, Rowley and Perkins). Suppose that G is an excep-

tional finite Coxeter group, X a conjugacy class of G and a ∈ X.

(i) If G ∼= In then C(G,X) is either disconnected or consists of a single vertex.

(ii) If G ∼= E6 then the diameter of C(G,X) is at most 5.

(ii) If G ∼= E7 or E8 then the diameter of C(G,X) is at most 4.

(iv) If G ∼= F4 and |X| > 1 then either C(G,X) is disconnected or has diameter 2.

(v) If G ∼= H3 or H4 and |X| > 1 either C(G,X) is disconnected or has diameter

2.
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Note that the commuting involution graph for the family An has already been

calculated in [10] as An ∼= Sym(n+ 1).

Theorem 3.1.14 is proved by using Magma and calculating the commuting invo-

lution graph directly. As these groups are relatively small this problem is computa-

tionally fairly easy, and just consists of some easy number crunching. For Theorem

3.1.13 as they had a more concrete understanding of the elements of Bn and Dn, the

commuting involution graphs can be constructed without use of a machine. As in

[10], central to the calculation is the idea of an x-graph. Indeed, for x ∈ X we define

a graph Gx as follows. Without loss of generality we fix a ∈ X,

a = (
+

1,
+

2) . . . (
+

2m− 1,
+

2m)(2m+ 1) . . . (n)

and define

V = {{1, 2}, . . . , {2m− 1, 2m}, {2m+ 1} . . . {n}}.

Then Gx has vertex set V , with v1, v2 ∈ V connected by an edge if and only if there

exists a α ∈ v1 and β ∈ v2 with α 6= β such that x interchanges ±α and ±β. Within

Gx we will colour the vertices corresponding to the 2 cycles black and the others

white.

As in [10], information on these x-graphs can be pulled across to C(G,X), however

whereas in the case of the symmetric groups two elements x, y ∈ X are in the same

Ga orbit if and only if Gx and Gy are isomorphic, for Coxeter groups this in general

is not true, however these graphs are still a great deal of use.

Commuting Involution Graphs in Special Linear Groups

In [11], the authors Bates, Bundy, Perkins and Rowley gave bounds on the commuting

involution graph for special linear groups over fields of characteristic 2, and gave the

exact disc sizes for 2 and 3 dimensional special linear groups over any finite field.

They proved the following theorems.
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Theorem 3.1.15 (Bundy, Bates, Rowley and Perkins). Suppose G ∼= L2(q), the 2

dimensional projective special linear group over the field of q elements, then

(i) If q is even then C(G,X) consists of q+ 1 cliques of size q− 1, that is C(G,X)

consists of q + 1 copies of the complete graph on q − 1 vertices.

(ii) If q ≡ 3 mod 4 with q > 3 then C(G,X) is connected with diameter 3. Fur-

thermore

|∆1(t)| = (q + 1)/2

|∆2(t)| = (q + 1)(q − 3)/4

|∆3(t)| = (q + 1)(q − 3)/4

(iii) If q ≡ 1 mod 4 with q > 13 then C(G,X) is connected with diameter 3. Fur-

thermore

|∆1(t)| = (q + 1)/2

|∆2(t)| = (q + 1)(q − 5)/4

|∆3(t)| = (q + 1)(q + 7)/4

Note that this theorem misses out the cases where q = 3, 5, 9 and 13. However in

three of the cases we have a isomorphism into the class of alternating groups, which

have already been studied, that is L2(3) ∼= Alt(4),L2(9) ∼= Alt(6) and L2(5) ∼= Alt(5),

and hence these graphs are given in [10]. Finally the graph for L2(13) is calculated

separately. We remark that the graphs for L2(9) and L2(13) are both connected and

have diameter 4 and that the graph for L2(3) is in fact the complete graph on 3

vertices.

Theorem 3.1.16 (Bundy, Bates, Rowley and Perkins). Suppose that G ∼= SL3(q).

Then C(G,X) is connected and has diameter 3. Furthermore we have
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(i) If q is even then

|∆1(t)| = 2q2 − q − 2

|∆2(t)| = 2q2(q − 1)

|∆3(t)| = q3(q − 1)

(i) If q is odd then

|∆1(t)| = q(q + 1)

|∆2(t)| = (q2 − 1)(q2 + 1)

|∆3(t)| = (q + 1)(q − 1)2

We also have that the commuting involution graphs for L3(q) and SL3(q) are isomor-

phic.

Theorem 3.1.17 (Bundy, Bates, Rowley and Perkins). Let K be a possibly infi-

nite field of characteristic 2 and suppose that G ∼= SLn(K). Also suppose that V

is the natural KG-module associated to G, and set k = dimK [V, t], where [V, t] =

〈vt + v | v ∈ V 〉. Then

(i) if n > 4k then the diameter of C(G,X) is 2;

(ii) if 3k ≤ n < 4k then the diameter of C(G,X) is at most 3;

(iii) if 2k < n < 3k or k is even such that n = 2k, then the diameter of C(G,X) is

at most 5;

(iv) if n = 2k where k is odd then the diameter of C(G,X) is at most 6.

Central to the proof of Theorem 3.1.17, is the following lemma

Lemma 3.1.18 (Bundy, Bates, Rowley and Perkins). Suppose x, y ∈ X then

(i) [V, x] ≤ CV (x)
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(ii) if [V, x][V, y] ≤ CV (x) ∩ CV (y) then [x, y] = 1.

Now if [x, y] = 1 then d(x, y) = 1 and so we can prove the following corollary

Corollary 3.1.19. Let x, y ∈ X with x 6= y. If CV (x) = CV (y) then d(x, y) = 1.

By using this corollary we can determine which vertices should be joined by an

edge by studying their fixed spaces. This converts our problem to simply studying

linear algebra.

Commuting Involution Graphs for Sporadic Groups

In [12], Bundy, Bates, Rowley and Perkins studied commuting involution graphs for

the 26 sporadic simple groups and their automorphism groups. All cases were covered

in this paper apart from J4 with the class 2B, Fi′24 with the classes 2B and 2D, the

Baby Monster, BM , with the classes 2C and 2D and the Monster M with the class

2B. The J4 and Fi′24 cases have recently been calculated by Rowley and P. Taylor

and will be published in the near future.

The idea of the calculations was to pick a fixed vertex t and split the involution

class X into smaller chunks, that is into the sets XC = {x ∈ X | tx ∈ C} where C is

any conjugacy class of the group G in question. They then determined which disc of

C(G,X) each XC belonged to. In all cases they found that the diameter of C(G,X)

was at most 4, only being 4 in a limited number of cases.

For many of the sporadic simple groups, the commuting involution graph for

the class 2A was calculated as part of the primary investigation into the group.

For example in Fi24 the commuting involution graph for the class 2A, the class of

3-transpositions which generate the group, was calculated during Fischer’s investi-

gation into 3-transposition groups. Similarly for the class 2A of the Baby Monster,

similar graphs were studied by Fischer and by Ivanov and data from these commuting

involution graphs can easily be extracted from these papers.

For the other cases a mixture of brain and machine was used. For the smaller

sporadic groups they used the following computational method, using the smallest
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degree non-trivial faithful permutation representation given in the online Atlas.

• Calculate C = CG(t) and S ∈ Syl2(C).

• Compute T = S ∩ X. This can be done easily by using the dimension of

the fixspace as a conjugacy class invariant, that is the subspace of the natural

G-module which is fixed by an element of the conjugacy class.

• Calculate ∆1(t), the first disc of C(G,X), which is the union of the conjugacy

classes of C in T \{t}. Let R1 be a full set of representatives for these conjugacy

classes.

For i ≥ 2 carry out the following steps

• Compute representatives Ri of the CG(t) orbits of ∆i(t). This is done as follows

1. For each r ∈ Ri−1 find g ∈ G such that r = tg.

2. Calculate ∆1(r) as ∆1(t)
g.

3. Run through ∆1(r) and discard element in orbits that have already been

found.

• Calculate |∆i(t)| =
∑

r∈Ri

|CG(t)|
|CG(〈t,r〉)| .

• Stop when
∑

i |∆i(t)| = |X|.

This method works well in Magma for the smaller sporadic groups, however fails

in larger ones as we often have to store many elements in a large matrix representation,

and we run out of memory. For the larger sporadic groups they changed tactics by

instead of considering the element t and varying the product z = tx, they fixed an

element z ∈ C, for a conjugacy class C, and considered all the possible elements

t which could arise. Using this method we can now consider the maximal p-local

subgroup M which contains z. In most cases a smaller permutation representation

for M is given in the online Atlas, which makes calculations possible. In this paper,

the authors also extensively used Bray’s algorithm [6], a very efficient method for
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calculating the centralizer of an involution. As this algorithm is fairly restrictive, as

it is only applicable to involutions, the authors used a slight modification, given in

[4], that can be applied to real elements, that is elements which are conjugate to their

inverse.

3.2 Basic Definitions and Results

From now on we will assume that X is a conjugacy class of involutions and C(G,X)

is the commuting involution graph of G with respect to X.

Now the following simple lemma shows that our graph is invariant under action

by G.

Lemma 3.2.1. The map ϕg : X 7→ X given by xϕg = xg is a graph automorphism.

Proof. Clearly ϕg is a bijection as X is a conjugacy class, therefore we just need to

show ϕg is compatable with the graph structure of C, that is x and y are joined by

an edge if and only if xϕg and yϕg are joined by an edge. So suppose that xy = yx

then

xϕgyϕg = g−1xgg−1yg

= g−1xyg

= g−1yxg

= g−1ygg−1xg

= yϕgxϕg

Clearly the opposite direction is also true, and hence ϕg is a graph automorphism.

Hence the distance between any two vertices x and y is the same as the distance

between xg and yg for any g ∈ G. Therefore the sizes and structures of the discs ∆i(t)
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are independent on our choice of t. We will frequently make use of this by choosing

a particular t which makes our life as easy as possible.

We have the following elementary result, proved in [12], which will be a very

powerful tool in the study of these graphs.

Lemma 3.2.2 (Bundy, Bates, Rowley and Perkins). Let x ∈ X and let z = tx.

Suppose z has order m, then the following are true.

(i) x ∈ ∆1(t) if and only if m = 2.

(ii) If m is even, greater or equal to 4 and zm/2 ∈ X, then x ∈ ∆2(t).

(iii) If CCG(z)(x) ∩X = ∅ then d(t, x) ≥ 3. In particular if CCG(z)(x) has odd order,

then d(t, x) ≥ 3.

(iv) Suppose m is odd and assume that there doesn’t exist any elements g ∈ G of

order 2m such that g2 = z and gm ∈ X. Then d(t, x) ≥ 3.

Proof. We follow the proof given in [12]. We first note that z being an involution is

equivalent to x and t commuting (as t and x are involutions). Hence m = 2 if and

only if x ∈ ∆1(t). Part (ii) follows from the properties of dihedral groups. Indeed

firstly note that t and x generate a dihedral group of order 2m and as m is even,

zm/2 ∈ Z(〈t, x〉). Hence zm/2 commutes with both t and x, and thus d(t, x) ≤ 2. On

the other hand, as m > 2, d(t, x) ≥ 2. Thus d(t, x) = 2 as required.

Now note that CG(t) ∩ CG(x) ∩ X = CCG(z)(x) ∩ X which we will assume to be

empty. Therefore there are no elements in X which commute with both t and x and

thus d(t, x) ≥ 3. So in particular if CCG(z)(x) has odd order, then it cannot contain

any involutions and thus its intersection with X must be empty. Hence (iii) follows.

Finally for (iv) note that if m is odd then d(t, x) ≥ 2 by (i). Now suppose that

d(t, x) = 2, then there exists y ∈ CG(t) ∩ CG(x) ∩X. Now z has odd order, so there
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exists an integer i such that (zi)2 = z. Let w = yzi, then

w2 = yziyzi

= y2(zi)2 as y commutes with both t and x

= z.

We also have

wm = (yzi)m

= ymzim

= y as y is an involution, and z as order m.

However by hypothesis G has no such element, and hence d(t, x) ≥ 3 as required.

The following elementary Lemma about centralizers of involutions will be useful.

Lemma 3.2.3. Let t and x be involutions in G and suppose z = tx. Then

CG(t) ∩ CG(x) = CCG(t)(x) = CCG(z)(t).

Proof. It is clear that CG(t) ∩ CG(x) = CCG(t)(x). Now suppose that g ∈ CCG(z)(t),

then g commutes with both z and t. Now x = tz and hence gx = gtz = tzg = xg

and hence g commutes with both t and x, so CCG(z)(t) ⊆ CG(t) ∩ CG(x). The other

inclusion is similar.

Crucial to the study of C(G,X) is the following idea.

Definition 3.2.4. For two conjugacy classes X and C of G, with t a fixed element

of X we define

XC = {x ∈ X | tx ∈ C}.

We first note that as both X and C are conjugacy classes, the sets XC will be

independent on the choice of t. Indeed we have the following easy lemma.
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Lemma 3.2.5. For t a fixed involution in X, C a conjugacy class of G and g ∈ G

we have

{x ∈ X | tx ∈ C} = {x ∈ X | tgx ∈ C}

Proof. The condition that tgx ∈ C is equivalent to txg
−1 ∈ C as C is a conjugacy

class. Hence

{x ∈ X | tgx ∈ C} = {x ∈ X | txg−1 ∈ C}

= {x ∈ X | tx ∈ C} as X is a conjugacy class.

The following lemma is an important observation about XC , and will play an

important role when we study commuting involution graphs, especially in the case of

sporadic simple groups.

Lemma 3.2.6. For C a conjugacy class of G, the set XC is a union of CG(t) orbits,

as CG(t) acts on XC by conjugation.

Proof. We must show that for g ∈ CG(t) and x ∈ XC , xg ∈ XC , then our result will

follow. That is, we must show that txg ∈ C.

txg = tg−1xg

= g−1txg as g commutes with t

= g−1cg where c ∈ C

Hence txg is an element of C as required.

Lemma 3.2.7. For x ∈ X and g ∈ CG(t), we have d(t, x) = d(t, xg).

Proof. Suppose d(t, x) = n, then there exists a chain of elements

t = x0, x1, x2, . . . , xn = x such that xi ∈ X and xixi+1 = xi+1xi, and no shorter chain
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exists. If we conjugate each element of the chain by g, then each pair of adjacent

elements still commute, so we get the following chain,

t = tg = xg0, x
g
1, x

g
2, . . . , x

g
n = xg

In this case, no shorter chain can exist between t and xg, as if there were, we could

conjugate back to t and x, producing a shorter chain between them. Hence d(t, x) =

n = d(t, xg) as required.

Now Lemma 3.2.7 shows us that the discs of C(G,X) consist of unions of CG(t)

orbits of X. Therefore our general tactic will be to pick a particular x ∈ X, calculate

which disc it belongs to and then note that the entire orbit xCG(t) belongs to this disc.

Now from Lemma 3.2.6, we see that the sets XC are also unions of CG(t) orbits, for

C a conjugacy class of G. So we will break down the sets XC into their constituent

orbits and determine in which disc each orbit belongs to. It is usually the case that

every orbit contained in a particular XC will belong to the same disc of C(G,X).

For example for the sporadic simple group J2 and the conjugacy class of involutions

X = 2A the set XC such that C = 2A make up the first disc, the set XC such that

C = 4A makes up the second disc, the set XC such that C = 3B makes up the third

disc and finally the sets XC such that C = 5A, 5B∗ make up the fourth disc. All the

other sets XC are empty.

If we have a set XC splitting between two discs we will simply write the size of

the intersection of XC and that disc in brackets after the Atlas name for C. For

example in the sporadic simple group McL, with the class X = 2B the set X4A splits

between the second and third discs, so we will write 4A(1980) in the second disc, and

4A(990) in the third.

Now due to some ingenious character theory by Burnside we can easily calculate

the sizes of the sets XC from the character table of G.

Definition 3.2.8. Let G be a finite group and Ci, Cj and Ck be three conjugacy

classes of G. Let aijk be the number of pairs (a, b) with a ∈ Ci and b ∈ Cj, such that
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ab = g where g is a fixed element in Ck. Then the integers aijk for all possible i, j

and k are called the class structure constants for G.

Using some character theory we can easily calculate the values of the class struc-

ture constants.

Lemma 3.2.9. Let C1, . . . Cn denote the conjugacy classes of G, and suppose that

gi ∈ Ci. Then for all i, j and k

aijk =
|G|

|CG(gi)||CG(gj)|
∑
χ

χ(gi)χ(gj)χ(gk)

χ(1)

where the sum is over all irreducible characters of G.

Proof. See [16], page 128, Lemma 2.12.

Lemma 3.2.10.

|XC | =
|G|

|CG(g)||CG(t)|
∑
χ

χ(g)χ(t)2

χ(1)

again where the sum is over all ireducible characters of G, and g is a representative

of C.

Proof. We must first show that

|XC | = |{(g, h) ∈ C ×X | gh = t}|

and then using Lemma 3.2.9 our result will follow. Indeed,

|{(g, h) ∈ C ×X | gh = t}| = |{(g, h) ∈ C ×X | g = th}|

= |{h ∈ X | th ∈ C}|

= |XC |.
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Another concept that will be important to us will be the extended centralizer of

an element g in G. The extended centralizer, C∗G(g) for g ∈ G is defined as follows

C∗G(g) = {x ∈ G | gx = g or gx = g−1}.

Note that C∗G(g) = NG({g, g−1}), so in particular C∗G(g) is a subgroup of G. The size

of the extended centralizer of an element with respect to the size of the centralizer is

closely related to that element being real or not.

Definition 3.2.11. An element g ∈ G is said to be real (in G) if there exists an

x ∈ G such that gx = g−1. Furthermore, g is said to be strongly real if there is a

conjugating element which is an involution.

Lemma 3.2.12. Let g ∈ G, then

(i) If g is an involution then C∗G(g) = CG(g).

(ii) If g is not real then C∗G(g) = CG(g).

(iii) if g is real and not an involution, then |C∗G(g)| = 2|CG(g)|

Proof. Parts (i) and (ii) follow easily from the definition. For part (iii), let C−1 =

{x ∈ G | gx = g−1}. Clearly C∗G(g) is the disjoint union of CG(g) and C−1 as any

element which centralizes g cannot invert it. Therefore if we show there exists a

bijection between CG(g) and C−1 then we are done. Indeed, consider the following

map

ϕ : CG(x) 7→ C−1 such that

gϕ = hg

for a fixed h ∈ C−1. Firstly, this map is well defined. Indeed, consider a g ∈ CG(x),

then xhg = (x−1)g = x−1, hence gϕ = hg ∈ C−1. Clearly ϕ is injective, therefore we
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just need to show it is surjective. So take z ∈ C−1 and let y = h−1z, then clearly

yϕ = z, thus we need to show is that y ∈ CG(x). Indeed,

xy = xh−1z

= h−1hxh−1z

= h−1x−1z

= h−1zxz−1z

= h−1zx

= yx.

Hence y ∈ CG(x)and our map is indeed a bijection. Therefore our lemma holds.

Lemma 3.2.13. Let t, x be non-commuting involutions from a finite group G and let

z = tx. Then

(i) z is strongly real in G

(ii) |C∗G(z)| = 2|CG(z)|

(iii) C∗G(z) = 〈CG(z), t〉

Proof. The element z is clearly strongly real as zt = (tx)t = xt = z−1. Part (ii)

of the lemma follows straight from Lemma 3.2.12. For part (iii), it is clear that

〈CG(z), t〉 ⊆ C∗G(z) as both CG(z) and t are contained in C∗G(z). Now suppose that

w ∈ C∗G(z) and thus either zw = z or zw = z−1. Now if zw = z then w ∈ CG(z) and

we are done, so suppose that zw = z−1. Then
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zwt = (z−1)t

= txtt

= tx

= z.

Hence wt ∈ CG(t) and therefore as w = wtt, we have w ∈ 〈CG(t), t〉 implying that

C∗G(z) ⊆ 〈CG(t), t〉, and we are done.

We will finally give two more useful tools, both of which we will use extensively

when studying C(G,X).

3.2.1 The Fix Space

Let ρ : G 7→ GLn(F) be a representation of a finite group G, where F is some

field of positive characteristic. Let V be the associated G-module, a copy of the

n-dimensional vector space over F with the obvious action. For an element g ∈ G,

we define the fixspace of g as follows

Fixg = {v ∈ V | vg = v}.

Note that Fixg is the eigenspace of the matrix ρ(g) corresponding to the eigenvalue

1, where 1 is to the multiplicative identity in F. Clearly, if 1 is not an eigenvalue of

ρ(g), then Fixg is trivial.

Lemma 3.2.14. For g ∈ G, Fixg is a subspace of V .

Proof. Let v, w ∈ Fixg and let λ1, λ2 ∈ F. Consider the following

(λ1v + λ2w)g = λ1v
g + λ2w

g

= λ1v + λ2w



CHAPTER 3. A COMMUTING INVOLUTION GRAPH FOR BM 99

Hence λ1v + λ2w ∈ Fixg, and our lemma follows.

The following Lemma will give us an important tool when studying C(G,X).

Lemma 3.2.15. Let g, h be two conjugate elements in G. Then

Fixg ∼= Fixh.

In particular the dimensions of the two fix spaces are equal.

Proof. As g and h are conjugate in G, there exists an a ∈ G such that ga = h.

Consider the following map,

θ : Fixg 7→ Fixh

θ(v) = va

Firstly suppose v ∈ Fixg, then

θ(v)h = (va)h

= vah

= vga

= va

= θ(v)

Hence θ(v) ∈ Fixh, and this map is well defined. Now by its definition, θ is clearly

linear, so all there is left to prove is that it is a bijection. Now θ is obviously injective,

so suppose w ∈ Fixh, and consider wa
−1

. Hence (wa
−1

)g = wa
−1g = wha

−1
= wa

−1
,

and thus wa
−1 ∈ Fixg. Clearly as θ(wa

−1
) = w, our lemma easily follows.

Lemma 3.2.15 shows that the dimension of the fix space is a conjugacy class

invariant and gives us an easy way to see if two elements are in different conjugacy
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classes. Assuming you are working inside a linear representation, the fixspace can

be easily computed in Magma as the eigenspace of 1. When we are dealing with

groups with very large dimension linear representations we can more often than not

tell exactly which conjugacy class an element is in by simply using the dimension of

the fixspace. For the Baby Monster, Rob Wilson [43] gave the dimension of the fixed

space for representatives for all conjugacy classes of elements of even order in the 4370

dimensional representation over the field of 2 elements. During our investigation into

the commuting involution graph for BM we will make extensive use of this.

3.2.2 Bray’s Algorithm and Generalizations

In this section we will give details of an algorithm which computes elements which

commute with a given involution. We follow the details which are given in [6].

The following elementary observation is the main justification for the algorithm.

Lemma 3.2.16 (J. Bray). For g, h ∈ G with g an involution we have

g[g, h]−n = [g, h]ng

for all n ∈ N.

Proof. Consider the following,

g[g, h]−n = g (h−1ghg) . . . (h−1ghg)︸ ︷︷ ︸
n times

= (gh−1gh) . . . (gh−1gh)︸ ︷︷ ︸
n times

g

= [g, h]ng.

Therefore if [g, h] has even order, say 2m, then g[g, h]m = g[g, h]−m = [g, h]mg and

hence [g, h]m commutes with g. On the other hand, if [g, h] has odd order, say 2m+1
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then gh[g, h]m = hg[g, h]m+1 = hg[g, h]−m = h[g, h]mg, and thus h[g, h]m commutes

with g . Therefore in both cases we have produced an element which commutes with

g. We also note that [g, h−1] = ([g, h]h
−1

)−1 and thus [g, h−1] has the same order

as [g, h] and therefore in the even case the [g, h] above can be replaced by [g, h−1]

producing two elements instead of one (in the odd case these two elements are equal).

So we propose the following algorithm to produce a set S of elements which commute

with g,

1. Initialise S to be {g}.

2. Choose a random element h, which isn’t an involution.

3. If [g, h] has even order, 2m, then add [g, h]m and [g, h−1]m to S.

4. If [g, h] has odd order, 2m+ 1 then add h[g, h]m to S.

5. Make another random element h.

6. Go to Step 3 unless you have enough elements.

Obviously if we have enough elements then CG(g) = 〈S〉, however in the case of

large groups in which calculating |〈S〉| is difficult we may not know when to stop.

However in our case we often do not require all of CG(t), just part of it, so this

algorithm will be sufficient. We will refer to this algorithm as Bray’s Algorithm.

At this point we make an important remark on how we make random elements .

We obviously want our results to be reproducible and therefore any random elements

created will need to be stored. Say our group has a large degree matrix representation

in which we work, for example in the Baby Monster. Then we will not want to store

these elements as matrices, as this will take up far too much memory. Instead, suppose

that our group G is generated by a number (normally two) of known elements, say

x and y. Then to produce a random element we produce a random string of xs and

ys and store this in an array, which will hopefully only take a few bytes of memory.

Then to produce the element we just write a procedure that goes through the array
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multiplying the required elements together - this is the approach we will usually take.

A full code listing for producing random elements and the algorithms given in this

section can be found in Appendix 4.

In [4], Rowley and Bates made the following improvement to Bray’s Algorithm so

that it will work on strongly real elements. The following elementary facts underpin

the method,

Lemma 3.2.17 (C. Bates and P. Rowley). Suppose that we have t ∈ G, z a real

elements of G which is inverted by t, and let h ∈ CG(t). Then for any i ∈ N,

z[z, h]−i = ([z, h]i)tz.

Proof. Since zt = z−1, we have

z[z, h]−1 = zh−1z−1hz = zh−1zthz.

Now since h ∈ CG(t) and zt−1 = t−1z−1, we have

zh−1zthz = zh−1t−1zthz

= zt−1h−1zhtz

= t−1z−1h−1zhtz

= [z, h]tz

and thus, z[z, h]−1 = [z, h]tz. To complete the proof of the lemma, a simple induction

argument suffices.

Lemma 3.2.18 (C. Bates and P. Rowley). Suppose that t ∈ G, z is a real element

of G inverted by t, and let h ∈ CG(t). If we let R(t) denote the set of real elements

of G inverted by t, then

〈[z, h]〉 ∩ R(t) ⊆ CG(z).

Proof. Suppose [z, h]i ∈ R(t) then ([z, h]i)t = [z, h]−i, and thus by Lemma 3.2.17 we
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have [z, h]i ∈ CG(z). Therefore 〈[z, h]〉 ∩ R(t) ⊆ CG(z) as required.

Now suppose t and x are involutions in G. Now as z = tx is a real element in G

inverted by t, Lemma 3.2.18 leads us to the following algorithm to compute elements

in CG(z).

1. Use Bray’s algorithm to produce an element h in CG(t).

2. Calculate w = [z, h] and n, the order of w.

3. Test whether wi is inverted by t, where 1 ≤ i ≤ n.

4. If so output wi and go to Step 1.

As for the previous algorithm if we produce enough elements in CG(z) we may hope

to generate the entire centralizer, however knowing when to terminate is a difficult

question. In practice this algorithm isn’t nearly as efficient as Bray’s algorithm - it

will often only compute elements in 〈z〉.

3.3 The Baby Monster

The Baby Monster, BM is the second largest of the sporadic simple groups, having

an order of

4, 154, 781, 481, 226, 426, 191, 177, 580, 544, 000, 000

with a factorisation of

241 × 313 × 56 × 72 × 11× 13× 17× 19× 23× 31× 47.

It is a so called {3, 4}-transposition group as it is generated by the class 2A of {3, 4}-

transpositions, elements which product to an element of order 1,2,3 or 4. During

Fischer’s investigations on {3, 4}-transposition groups he calculated C(BM, 2A) be-

fore the baby monster was even constructed. During this work, Fischer was led to
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predict a simple group of this order, but could not construct it. Eventually, after

extensive computation, Leon and Sims [19] gave a computational construction of a

group of the correct order, and proved it had the properties Fischer predicted and

showed it was unique. Later Griess gave a non computational construction of the

baby monster, related to the 196,884 dimensional Griess Algebra also used to con-

struct the monster. The baby monster has 184 conjugacy classes, with four involution

conjugacy classes and the maximum element order is 70. The smallest faithful linear

representation of the baby monster is 4370 dimensional over the field of two elements,

meaning that calculations inside BM are rather difficult and ingenious workarounds

need to be found for even simple calculations. This representation was originally

constructed by Rob Wilson [42] and can be found in the online Atlas [22]. We will

use standard Atlas notation for all conjugacy classes.

As has already been noted, the commuting involution graph for 2A was known

even before the construction of the baby monster. The class 2B was calculated by

Bundy, Bates, Rowley and Perkins in [12], using the point line collinearity graph for

the maximal 2-local geometry for the baby monster, computed by Rowley and Walker

in [26] and [27] . The commuting involution graphs for the classes 2C and 2D are

still open, with the class 2C being investigated in this thesis.

From now on in this chapter G will be the Baby Monster, X the class 2C and

t will be a fixed element in X. We will denote the commuting involution graph of

G with respect to X by C(G,X). As in [12], we wish to calculate the diameter of

C(G,X), calculate the sizes of each of the discs and give the conjugacy classes of

products tx for x running through each of the discs. Not all of this has been possible,

however all classes XC have been located within the disc structure of C(G,X), except

for those C of elements of 2-power order, and the classes 7A and 14D. The results

will be summarized in the following theorem.

Theorem 3.3.1 (B. Wright). The following table gives the locations of the sets XC

in the graph C(G,X), where G is the Baby Monster and X is the conjugacy class 2C,

for various conjugacy classes C.
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Table 3.1: Location of XC in C(G,X) for various classes C

∆1(t) ∆2(t) ∆3(t)
2B, 2C, 2D 3A, 5A, 6C, 6G, 6H, 6I, 6K, 9B, 3B, 5B, 10D, 10F, 11A, 12G, 12J,

10B, 10C, 12B, 12D, 12F, 12L, 12M, 19A, 20G, 22B, 24G, 33A,
12O, 12R, 13A, 15A, 17A, 20D, 35A, 48A

20F, 21A, 24A, 24C, 24H, 26A, 40D

Furthermore the sets X18C and X30D split over two discs of C(G,X), with

3311126603366400 elements from X18C contained in ∆2(t) and the other

1103708867788800 elements in ∆3(t) and 3311126603366400 elements from X30D

contained in ∆2(t) and the other 3311126603366400 elements in ∆3(t).

The rest of this chapter will be devoted to the details of the calculation of this

graph. We first give a table of the sizes of the sets XC where C runs over all conjugacy

classes of G. These were computed in Gap, using the

ClassMultiplicationCoefficient(tbl,i,j,k) command, where tbl is the char-

acter table for BM stored in the Character Table Library of Gap, i and k are equal

to 4, as 2C is the fourth conjugacy class of BM , and j runs from 1 to 184 correspond-

ing to all conjugacy classes of BM . The classes C for which XC is zero are obviously

omitted to conserve space. There are 77 non zero class structure constants.
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Table 3.2: Class Structure Constants For 2C.

C Structure Constant |XC | factors

1A 1 1

2A 4524975 32 × 52 × 7× 132 × 17

2C 184246272 213 × 33 × 72 × 17

2D 350859600 24 × 34 × 52 × 72 × 13× 17

3A 4004675584 215 × 7× 13× 17× 79

3B 141937868800 219 × 52 × 72 × 13× 17

4B 6629575680 210 × 33 × 5× 7× 13× 17× 31

4C 185253868800 28 × 35 × 52 × 72 × 11× 13× 17

4E 224550144000 211 × 34 × 53 × 72 × 13× 17

4F 235777651200 29 × 35 × 52 × 73 × 13× 17

4G 1005984645120 215 × 34 × 5× 73 × 13× 17

4H 1482030950400 211 × 35 × 52 × 72 × 11× 13× 17

4J 3233522073600 214 × 36 × 52 × 72 × 13× 17

5A 4598786949120 220 × 34 × 5× 72 × 13× 17

5B 11037088677888 222 × 35 × 72 × 13× 17

6C 6882212413440 215 × 32 × 5× 72 × 13× 17× 431

6G 22993934745600 220 × 34 × 52 × 72 × 13× 17

6H 14371209216000 217 × 34 × 53 × 72 × 13× 17

6I 11496967372800 219 × 34 × 52 × 72 × 13× 17

6K 30658579660800 222 × 33 × 52 × 72 × 13× 17

7A 110370886778880 223 × 35 × 5× 72 × 13× 17

8B 17245451059200 218 × 35 × 52 × 72 × 13× 17

8D 30179539353600 216 × 35 × 52 × 73 × 13× 17

8E 17245451059200 218 × 35 × 52 × 72 × 13× 17

8F 25868176588800 217 × 36 × 52 × 72 × 13× 17

8G 51736353177600 218 × 36 × 52 × 72 × 13× 17
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8H 103472706355200 219 × 36 × 52 × 72 × 13× 17

8I 51736353177600 218 × 36 × 52 × 72 × 13× 17

8J 155209059532800 218 × 37 × 52 × 72 × 13× 17

8K 137963608473600 221 × 35 × 52 × 72 × 13× 17

8L 248334495252480 221 × 37 × 5× 72 × 13× 17

8N 275927216947200 222 × 35 × 52 × 72 × 13× 17

9B 572293487001600 225 × 32 × 52 × 73 × 13× 17

10B 344909021184000 220 × 35 × 53 × 72 × 13× 17

10C 331112660336640 223 × 36 × 5× 72 × 13× 17

10D 331112660336640 223 × 36 × 5× 72 × 13× 17

10F 275927216947200 222 × 35 × 52 × 72 × 13× 17

11A 2207417735577600 225 × 35 × 52 × 72 × 13× 17

12B 45987869491200 221 × 34 × 52 × 72 × 13× 17

12D 99640383897600 220 × 33 × 52 × 72 × 132 × 17

12F 229939347456000 221 × 34 × 53 × 72 × 13× 17

12G 310418119065600 219 × 37 × 52 × 72 × 13× 17

12J 413890825420800 221 × 36 × 52 × 72 × 13× 17

12L 551854433894400 223 × 35 × 52 × 72 × 13× 17

12M 551854433894400 223 × 35 × 52 × 72 × 13× 17

12O 413890825420800 221 × 36 × 52 × 72 × 13× 17

12R 827781650841600 222 × 36 × 52 × 72 × 13× 17

13A 3311126603366400 224 × 36 × 52 × 72 × 13× 17

14D 1655563301683200 223 × 36 × 52 × 72 × 13× 17

15A 1765934188462080 227 × 35 × 5× 72 × 13× 17

16A 827781650841600 222 × 36 × 52 × 72 × 13× 17

16C 1655563301683200 223 × 36 × 52 × 72 × 13× 17

16D 827781650841600 222 × 36 × 52 × 72 × 13× 17

16E 827781650841600 222 × 36 × 52 × 72 × 13× 17
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16F 1655563301683200 223 × 36 × 52 × 72 × 13× 17

17A 6622253206732800 225 × 36 × 52 × 72 × 13× 17

18C 4414835471155200 226 × 35 × 52 × 72 × 13× 17

19A 13244506413465600 226 × 36 × 52 × 72 × 13× 17

20D 827781650841600 222 × 36 × 52 × 72 × 13× 17

20F 3311126603366400 224 × 36 × 52 × 72 × 13× 17

20G 3311126603366400 224 × 36 × 52 × 72 × 13× 17

21A 2207417735577600 225 × 35 × 52 × 72 × 13× 17

22B 6622253206732800 225 × 36 × 52 × 72 × 13× 17

24A 1103708867788800 224 × 35 × 52 × 72 × 13× 17

24C 1103708867788800 224 × 35 × 52 × 72 × 13× 17

24G 3311126603366400 224 × 36 × 52 × 72 × 13× 17

24H 3311126603366400 224 × 36 × 52 × 72 × 13× 17

26A 6622253206732800 225 × 36 × 52 × 72 × 13× 17

28A 3311126603366400 224 × 36 × 52 × 72 × 13× 17

28B 3311126603366400 224 × 36 × 52 × 72 × 13× 17

30D 6622253206732800 225 × 36 × 52 × 72 × 13× 17

32A 6622253206732800 225 × 36 × 52 × 72 × 13× 17

32B 6622253206732800 225 × 36 × 52 × 72 × 13× 17

33A 13244506413465600 226 × 36 × 52 × 72 × 13× 17

35A 13244506413465600 226 × 36 × 52 × 72 × 13× 17

40D 13244506413465600 226 × 36 × 52 × 72 × 13× 17

48A 13244506413465600 226 × 36 × 52 × 72 × 13× 17
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At this point we make a comment on how we differentiate between conjugacy

classes in BM . Obviously, as the order of BM is large and it has a large matrix

representation dimension, using the IsConjugate command in Magma is impossible.

Instead we use the co-dimension of the fixspace of an element to distinguish between

classes. In [43], Rob Wilson gave the co-dimensions for all the classes of even order

elements in BM . In most cases this will tell us exactly which class a particular

element is in. If we have a number of classes with the same co-dimension of fixspace,

we can load the element into the 4371 dimensional representation for BM over F3

and check the trace of the elements in question.

For elements of odd order it is fairly straight forward to calculate the dimension

of the fixspace from the character table, however in most cases (apart from elements

of order 3 and 5) the order of an element uniquely defines which class it belongs to.

From the Atlas, we glean the following information about centralizers of involu-

tions

Class Shape of Centralizer Size of Centralizer
2A 2.2E6(2) : 2 238 × 39 × 52 × 72 × 11× 13× 17× 19
2B 21+22.Co2 241 × 36 × 53 × 7× 11× 23
2C (22 × F4(2)) : 2 227 × 36 × 52 × 72 × 13× 17
2D 29.216.O+

8 (2) : 2 238 × 35 × 52 × 7

Using Lemma 3.2.2 part (i), we can quickly calculate the first disc of C(G,X).

Indeed ∆1(t) = X2B ∪ X2C ∪ X2D, and thus |∆1(t)| = 539, 630, 847. We can also

use Lemma 3.2.2 to gather some information about the other discs of C(G,X). The

Atlas[18] gives us information about which conjugacy class different powers of ele-

ments of G are contained in - for example we know that the cube of a 6A element in

G is contained in 2A, and the fourth power of a 20B element lives in 5B. We can

use this information as well as part (ii) from the lemma to determine whether certain

sets XC are contained in the second disc.

Indeed, consider the class C = 6K. From the Atlas we know the cube of an

element from 6K is contained in 2C. Hence by Lemma 3.2.2 (ii), X6K ⊆ ∆2(t). The
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same argument can be used to show X10C and X26A are both contained in the second

disc.

Now part (iv) of Lemma 3.2.2 gives us a final bit of easy information about

C(G,X). Indeed, consider x ∈ X such that z = tx ∈ 19A. Now suppose there

existed a g ∈ G such that g2 = z. From the Atlas, we know that g ∈ 38A. The

19th power of such an element lives in 2A, and hence there does not exist a g ∈ G

such that g2 = z and g19 ∈ X. Thus d(t, x) ≥ 3. Again the same argument can be

used to show for x ∈ XC with C ∈ {5B, 11A, 33A, 35A} that d(t, x) ≥ 3.

For the sets X19A, X33A and X35A we can prove something further, that they are

all in fact orbits of X as CG(t) acts by conjugation. Indeed, consider x ∈ X19A, that

is z = tx ∈ 19A. We wish to prove that X19A = xCG(t). Now by the Orbit Stabilizer

Theorem and Lemma 3.2.3

|xCG(t)| = |CG(t)|
|CCG(t)(x)|

=
|CG(t)|
|CCG(z)(t)|

.

We now note that

|CG(t)|
|X19A|

= 2.

Now as xCG(t) ⊆ X19A, if we can prove |CCG(z)(t)| = 2 then we must have XC = xCG(t)

and thusXC is a CG(t) orbit. Consulting the Atlas we see that |CG(z)| = 38 = 2×19,

so the possible orders of CCG(z)(t) are 1, 2, 19 and 38. Now CCG(z)(t) cannot have

order 38 as z ∈ CG(z) and t inverts z, so definitely doesn’t commute with it. So if

we prove CCG(z)(t) contains an involution we are done.

On the other hand t ∈ C∗G(z), and since z is real, Lemma 3.2.12 tells us that

[C∗G(z) : CG(z)] = 2, so in particular CG(z) � C∗G(z). Hence we must have CG(z)t =

CG(z). Now by Sylow’s Theorems, any Sylow 2-subgroup of CG(z) will have order 2,

that is they are just the identity and an involution, and there will be an odd number

of such subgroups. Thus, as t is an involution, there must exist a Sylow 2-subgroup

P such that P t = P . Therefore the single involution in P must commute with t and

thus we are done.
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This same method can be also used to show that X33A and X35A are both CG(t)

orbits. Now we can easily prove these elements are in the third disc of C(G,X)

by finding an element in the second disc which commutes with our x in question,

proving that d(t, x) ≤ 3, and thus must be equal to 3. For x ∈ X19A, using the 4370

dimensional representation for BM , and Bray’s Algorithm, we can find a τ ∈ X40D

such that x commutes with τ . Since X40D ⊆ ∆2(t) and d(t, x) ≥ 3, we have d(t, x) =

3. Now as X19A is a CG(t) orbit, we have X19A ⊆ ∆3(t). Similarly we can find a

τ ∈ X40D and ξ ∈ X17A such that τ commutes with an x ∈ X33A and ξ commutes

with a y ∈ X35A. Hence X33A, X35A ⊆ ∆3(t). Details of these calculations will be

given in Appendix 4.

We now change tactic slightly, and instead of fixing an element t of X and varying

x ∈ XC for a certain conjugacy class C, we will fix a z ∈ C and vary t and then

x = tz. In this case assuming z has order at least 3, we want to vary t over all 2C

elements which invert z. Hence we want to vary t over

Y = (C∗G(z) \ CG(z)) ∩ 2C.

Now as t1 runs over Y , then for each t1 as t, t1 ∈ 2C where t is our fixed element,

there exists a g ∈ BM such that tg1 = t, and hence we can also spin around z, so that

d(t, x) = d(t, t1z) where x will run over XC .

The original tactic was to let CG(t) act on XC and take a representative xi from

each orbit, and calculate d(t, xi). Letting CG(z) act on Y will do exactly the same

job for us. First note that CG(z) can act on Y , that is for t ∈ Y and g ∈ CG(z), that

tg inverts z. Indeed

zt
g

= g−1tgzg−1tg

= g−1tztg

= g−1z−1g

= z−1
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Now since tg is clearly a 2C element, tg ∈ Y and CG(z) does act on Y . Now suppose

t1, t2 ∈ Y are in the same CG(z) orbit. Then there exists g ∈ CG(z) such that tg1 = t2.

Now let x1 = t1z and x2 = t2z. Now as g ∈ CG(z), xg1 = x2 and d(t1, x1) = d(t2, x2).

So for z ∈ C with |z| ≥ 3 we carry out the following routine

1. Calculate Y = (C∗G(z)\CG(z))∩2C. If XC was empty for a class C then clearly

so will Y , so we will ignore it.

2. Let CG(z) act on Y and split Y into Orbits Y1, . . . Yn.

3. For a representative ti ∈ Yi Calculate d(ti, tiz), which will correspond to d(t, x)

for different CG(t) orbit representatives x as CG(t) acts on XC .

Step 3 above can be carried out using the following method. Calculate Ci = CCG(z)(ti)

and see if Ci ∩ 2C 6= ∅. If so then d(ti, tiz) = 2. If Ci ∩ 2C = ∅ then try and find a

path of length 3 or 4 between ti and tiz.

In practice this routine won’t always work as calculating CG(z) and C∗G(z) inside

BM is very difficult. So the general idea will be to go down to a maximal subgroup

M , or part of M which contains C∗G(z). By having a stand alone version of M with

a reasonably sized permutation representation and understanding the fusion between

classes of M and classes of BM we hope to be able to carry out this routine.

3.3.1 The Class 17A

Let z = tx ∈ 17A. From the Atlas it is easy to see that CG(z) ∼= 17 × 22 and

C∗G(z) ∼= (17 : 2)× 22. So suppose C∗G(z) = L1 × L2 where L1
∼= 17 : 2 and L2

∼= 22.

Now as t ∈ CG(z), t = t1t2 where t1 is an involution in L1 and t2 ∈ L2 and either

t2 = 1 or an involution. Now as CG(z) = 〈z〉×L2 and t inverts z we can deduce that

CCG(z)(t) = L2
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and in particular |CCG(z)(t)| = 4. Thus

|xCG(t)| = |CG(t)|
4

= |X17A|

and hence X17A is a CG(t) orbit.

Now by applying Bray’s Algorithm to an x ∈ X2D we can find a w ∈ X17A which

commutes with x. Hence d(t, w) ≤ 2, and since tw is not an involution we deduce

that X17A ⊆ ∆2(t). See Appendix 2 for calculation details.

3.3.2 The Class 3A

In this subsection we will be swopping between conjugacy classes of G and conjugacy

classes of Fi22 : 2, so to make things clear we will write CBM for conjugacy class C

in the Baby Monster and YFi22:2 for class Y in Fi22 : 2.

Now suppose z = tx ∈ 3ABM , and thus x ∈ X3A. From the Atlas we see that

CG(z) = 3× Fi22 : 2 = 〈z〉 × Fi22 : 2 and C∗G(z) = S3 × F22 : 2. For compactness we

will write C∗G(z) = S × L where S ∼= S3 and L ∼= Fi22 : 2.

We claim that 2CBM ∩ L = 2FFi22:2. Indeed, suppose that u ∈ 2CBM ∩ L, then

zu is an element of order 6. Now (zu)2 = z2 = z−1 = zt and therefore zu cubes to a

2CBM element. Similarly, zu must square to a 3ABM element. Now from the Atlas,

G has eleven classes of elements of order 6, however only the class 6FBM squares to

a 3ABM and cubes to a 2CBM . Hence zu ∈ 6FBM . Therefore

|CG(zu)| = 211 × 35 × 5× 7.

Now as z and u commute and CG(z) = 〈z〉 × L

|CL(u)| = 211 × 34 × 5× 7.

Consulting the Atlas, we see that Fi22 : 2 has 6 classes of involutions, with the

following centralizer sizes:
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Class Centralizer Size
2AFi22:2 217 × 36 × 5× 7× 11
2BFi22:2 218 × 34 × 5
2CFi22:2 217 × 33

2DFi22:2 214 × 36 × 52 × 7
2EFi22:2 214 × 34 × 5
2FFi22:2 211 × 34 × 5× 7

Therefore we must have that u ∈ 2FFi22:2. The argument in the other direction is

similar, showing that indeed, 2CBM ∩ L = 2FFi22:2.

Now using Magma and the 3510 degree permutation representation for Fi22 : 2 we

found a v ∈ 2FFi22:2. This was done by randomly searching for a involution and check-

ing whether CFi22:2(v) had the correct size. We then found a P ∈ Syl2(CFi22:2(v))

and checked whether P contained a representative for each class of involutions in

Fi22 : 2 (again done by checking whether the centralizer of each representative had

the desired size).

On the other hand, t, x ∈ C∗G(z), and hence

t = t1u1 and x = t2u2

where t1, t2 ∈ S and u1, u2 ∈ L. Now

z = tx

= t1u1t2u2

= t1t2u1u2 as we have a direct product.

However z ∈ S hence u1u2 = 1 and z = t1t2. Now 1 = t2 = t1
2u1

2, and as we have a

direct product we thus have both t1 and u1 involutions or the identity, similarly for

u2 and t2. Note that on the other hand, z must have order 3, hence neither t1 or t2

can be the identity and they cannot be equal. Also note that as u1u2 = 1 we must
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have u := u1 = u2. Therefore

t = t1u and x = t2u

where t1, t2 are distinct involutions in S and u is either the identity, or an involution

in L.

Now whichever class of involutions of Fi22 : 2 the element u belongs to, we know

that a conjugate of it (in Fi22 : 2) commutes with our element v ∈ 2FFi22:2. Hence

u must commute with a conjugate of v, say w, again a 2FFi22:2 element. Therefore

w ∈ 2CBM ∩ L. Again as we have a direct product in C∗G(z) and w ∈ L, w must

also commute with both t1 and t2 and hence with both x and t. Now as tx is not an

involution this shows that d(t, x) = 2 and thus X3A ⊆ ∆2(t).

3.3.3 The Class 5A

The case where z = tx ∈ 5A can be handled in a similar manner to 3A. From the

Atlas, we have C∗G(z) ∼= 5 : 2×HS : 2 and CG(z) ∼= 5×HS : 2. Therefore if we let

C∗G = S × L where S ∼= 5 : 2 and L ∼= HS : 2 then CG(z) = 〈z〉 × L.

Now we claim 2CBM ∩ L = 2BHS:2. Indeed, consider the element of order 10, zu.

Now (zu)5 = u and hence is an element of 2CBM . The only class of elements of order

10 in G that does this is 10CBM . So in particular |CG(zu)| = 27× 32× 52, and hence

|CL(u)| = 27 × 32 × 5. Now HS : 2 has 4 classes of involutions, with the following

centralizer sizes

Class Centralizer Size
2AHS:2 210 × 3× 5
2BHS:2 27 × 32 × 5
2CHS:2 28 × 32 × 5× 7
2DHS:2 28 × 3× 5

Hence u ∈ 2BHS:2 and 2CBM ∩ L = 2BHS:2. Now using Magma and the degree

100 permutation representation of HS : 2 we can find a v ∈ 2BHS:2 and confirm that
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CHS:2(v) contains a representative for each of the 4 classes of involutions. The same

argument as in the 3A case shows that X5A ⊆ ∆2(t).

3.3.4 The Class 10B

Let z = tx ∈ 10B and hence from the Atlas we see that z2 ∈ 5A. The Atlas also

tells us that

C∗G(z2) = S × L

where S ∼= Dih(10) and L ∼= HS : 2. Note that t, x ∈ C∗G(z2), and hence t = tStL,

x = xLxS and z = zLzS, with tL, xL, zL ∈ L and tS, xS, zS ∈ S. Both t and x are

involutions hence tS, xS must also be involutions and tL, xL are either involutions or

the identity. Also note that zS must have order 5 and zL must be an involution. Now

zS = tSxS hence tS 6= xS and zL = tLxL therefore tL and xL must commute.

Now from the Atlas we see that zL ∈ 2BBM , however we wish to know which

class of HS : 2 zL belongs to. Indeed consider the element zLz
2 = z7, a 10BBM

element. Hence

|CG(zLz
2)| = 210 × 3× 52

and thus

|CL(zL)| = 210 × 3× 5.

Looking this up in the Atlas, we see that zL ∈ 2AHS:2 and more generally, 2BBM ∩

L = 2AHS:2.

Since CG(s) ≥ L where s = tS or xS we can easily work out which class of

involutions (in the Baby Monster) tS and xS live in. Indeed, as L ∼= HS : 2 and

11 divides |HS : 2| but doesn’t divide |F4(2)| we can deduce that s 6∈ 2CBM , as the

centralizer of a 2C element in BM has shape (22 × F4(2)) : 2. Similarly, 53 divides

|HS : 2|, but not |2E6(2)| or |O+
8 (2)|, hence s 6∈ 2ABM and s 6∈ 2DBM . Therefore, we

must have s ∈ 2BBM for s = tS or xS.

We also wish to know which class of G, and thus HS : 2, tL and xL live in. Note
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that t = tStL, and that t ∈ 2CBM and tS ∈ 2BBM . We see from the table in Appendix

1 that the only way a 2BBM element and another involution can product together

to get a 2CBM element is for it to be a 2CBM element. Hence we must have that

tL, xL ∈ 2CBM , and hence in 2BHS:2.

We wish to know pull everything across to HS : 2 and use Magma to finish off

the job - working in the degree 100 permutation representation of HS : 2. We will

change tack, and instead of fixing t and looking at possible zs we will fix z and look

at the possible ts and thus xs. We will use the following algorithm, which we have

already mentioned.

1. Pick a zL ∈ 2AHS:2.

2. Calculate Y = (C∗HS:2(zL)\ (CHS:2(zL))∩2BHS:2, this will give us a possible list

of ts.

3. Let C = CHS:2(zL) act on Y and spit into orbits Ui with representatives ui.

4. For each representative calculate Ci = CC(ui), this will be equal to CCBM (z)(t)

for appropriate choices of zS and tS.

5. For each Ci, check whether it contains a 2BHS:2 and thus a 2CBM

We note that if we find an orbit representative ui such that the element uizL /∈ 2BHS:2

then we can ignore it as xi = uizL must also be a 2BHS:2 element. If we find that all

Ci contain a 2BHS:2 for all relevent ui then we may deduce that X10B ⊂ ∆2(t).

In this case we find that |Y | = 200 which splits into two orbits U1 and U2 under

action by CL(zL) of sizes 120 and 80. Let u1 ∈ U1 and u2 ∈ U2, then |CCL(zL)(u1)| =

128 and |CCL(zL)(u1)| = 192, with both of these centralizers containing a 2BHS:2

element. Hence X10B ⊆ ∆2(t). We also note that

|X10B| =
|CG(t)|

192
+
|CG(t)|

128
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and thus X10B must be the union of two CG(t) orbits.

The Classes 15A, 20D, 20F , 30D and 40D can all be dispatched in a similar way. In

these cases let z = tx be a member of the required class, in all these cases z taken

to an appropriate power is a 5A element, and hence t, x ∈ S ×L where S ∼= Dih(10)

and L ∼= HS : 2. Hence let z = zSzL, t = tStL and x = xSxL. Note that we must still

have tS, xS ∈ 2BBM and tL, xL ∈ 2CBM , and hence tL, xL ∈ 2BHS:2. In these cases

we will work in the degree 100 permutation representation of HS : 2 and calculate

Y = (C∗HS:2(zL) \ (CHS:2(zL)) ∩ 2BHS:2 where zL is the element in question.

3.3.5 The Class 15A

In this case we must have zL ∈ 3ABM and as HS : 2 only has one class of elements

of order 3, we must have zL ∈ 3AHS:2. We now have that |Y | = 48 which splits into

two orbits U1, U2 with representatives u1, u2 under action by CL(zL). Now in both

cases CCL(zL)(ui) contains a 2BHS:2 element, with these centralizers having sizes 16

and 240. Consulting our table of class structure constants we see that

|X15A| =
|CG(t)|

16
+
|CG(t)|

240

and thus X15A ⊆ ∆2(t) and splits into two orbits under the action by CG(t).

3.3.6 The Class 20D

In this case zL ∈ 4BBM . Now we have zLz
4 = z9 is a 20DBM element and hence

|CG(zLz
4)| = 29 × 5, thus |CL(zL| = 29. Looking this up in the Atlas we see that

zL ∈ 4BHS:2. Calculating as before we see that |Y | = 32 which splits into two orbits

both of size 16. However we may instantly ignore one of these as for a representative

u2, u2zL ∈ 2AHS:2. For a representative u1 of the other orbit we see that CCL(zL)(u1)
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contains a 2BHS:2 element and has size 32. Now as we expect

|X20D| =
|CG(t)|

32

and thus X20D is a single CG(t) orbit in ∆2(t).

3.3.7 The Class 20F

In this case we have zL ∈ 4GBM and again zLz
4 = z9 is a 20FBM element. Thus

|CG(zLz
4)| = 27 × 5 and hence |CL(zL)| = 27. Using our trusty companion, the

Atlas, we see that zL ∈ 4CHS:2. Now |Y | = 20 and splits into three orbits of sizes

8,8 and 4 with representatives u1, u2 and u3. Instantly we see that we can ignore u3

as u3zL ∈ 2AHS:2. For the other two, CCL(zL)(ui) contains a 2BHS:2 element in both

cases, and these centralizers both have size 16. We note that

|X20F | =
|CG(t)|

16
+
|CG(t)|

16

and thus X20F splits into two orbits under action by CG(t) and X20F ⊆ ∆2(t).

3.3.8 The Class 30D

In this case zL ∈ 6BBM . We quickly see that zLz
6 is a 30D element, and hence

|CG(zLz
6)| = 24×3×5. Therefore |CL(zL)| = 24×3 and hence zL ∈ 6BHS:2 or 6EHS:2.

Without loss of generality we pick our zL ∈ 6BHS:2 and calculate as usual. In this

case we have |Y | = 12 which splits into 3 orbits of sizes 6,3 and 3 with representatives

u1, u2 and u3. Now let Ci = CCL(zL)(ui), then |C1| = 8, |C2| = 16 and |C3| = 16 with

C2, C3 containing a 2BHS:2 element, and C1 not. We now note that

|X30D| =
|CG(t)|

8
+
|CG(t)|

16
+
|CG(t)|

16
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and thus we must have that exactly half of X30D is in ∆2(t) and the other half has

distance at least 3 from t. On the other hand, in all cases the commuting involution

graph for HS : 2 has diameter 3, hence we must have the other half of X30D in ∆3(t).

3.3.9 The Class 40D

For z ∈ 40D we must have zL ∈ 8LBM and |CG(z8zL)| = 24× 5. Hence |CL(zL)| = 24

and therefore zL ∈ 8BHS:2. So we again choose a zL ∈ 8BHS:2 and calculate as

usual. In this case |Y | = 12 which splits into three orbits of size 4. We may instantly

dismiss one of these as u1zL ∈ 2AHS:2 for a representative u1. For the other two orbits,

|CCL(zL)(ui)| = 4 for representatives ui, with both of these centralizers containing a

2BHS:2 element. Hence X40D ⊆ ∆2(t), and by considering |X40D| , we see that X40D

splits into two orbits under the action by CG(t).

3.3.10 The Class 13A

From the Atlas we see that for z = tx ∈ 13A, C∗G(z) = L× S where L ∼= 13 : 2 and

S ∼= Sym(4). Now S has two conjugacy classes of involutions, 2ASym(4) represented

by (1, 2) and 2BSym(4), represented by (1, 2)(3, 4). Clearly |CSym(4)(2ASym(4))| = 22

and |CSym(4)(2BSym(4))| = 23. Now let v ∈ 2CBM ∩ S, then vz is an element of

order 26 which to the 13th power is in 2CBM . So by consulting the Atlas we see

that vz ∈ 26ABM , and thus |CG(vz)| = 23 × 13. Hence |CS(v)| = 23 and therefore,

v ∈ 2BSym(4), giving 2CBM ∩ S = 2BSym(4). Now let t = tLtS and x = xLxS where

tL, xL ∈ L and tS, xS ∈ S. As before it is easy to see that tL and xL are distinct

involutions and tS = xS = u is either the identity or an involution.

So now consider the element v = (1, 2)(3, 4) ∈ 2BSym(4), an easy calculation

shows that CSym(4)(v) = 〈(1, 3)(2, 4), (3, 4)〉. In particular it is clear that CSym(4)(v)

contains a representative for each of the two involution conjugacy classes in Sym(4).

An argument identical to that in 3A and 5A shows that X13A ⊆ ∆2(t).
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3.3.11 The Class 6C

Let z = tx ∈ 6C. As z2 ∈ 3A we can determine which disc X6C is in by calculating

inside Fi22 : 2 using the same method as in 10C. Indeed note that z, t, x ∈ C∗G(z2) =

S × L where S ∼= Sym(3) and L ∼= Fi22 : 2. From the 3A calculation recall that

2CBM ∩ L = 2FFi22:2. Let z = zSzL, t = tStL and x = xSxL. The calculation

proceeds just as in 10C, and we see that zS ∈ 3ABM and zL ∈ 2BBM . So consider the

element z2zL, clearly a 6C element, and thus |CG(z2zL)| = 218× 35× 5 implying that

|CL(zL)| = 218×34×5. Hence zL ∈ 2BFi22:2 and more generally, 2BBM∩L = 2BFi22:2.

Now as before, CG(tS) ≥ L and hence we must have |L| dividing |CG(tS)|. Now note

that 39 divides |Fi22 : 2| but not the sizes of the centralizers of 2BBM , 2CBM or 2DBM

elements. Thus we must have tS, xS ∈ 2ABM . Hence we have the 2CBM elements t

and x being the products of a 2ABM element and another involution. Looking at the

Class Structure Constants given in Appendix 1 we see that tL, xL ∈ 2ABM ∪ 2DBM .

Now we wish to know which classes of Fi22 : 2, 2ABM and 2DBM correspond to.

Indeed suppose v ∈ 2ABM ∩ L then z2v is an element of order 6 which squares to a

3ABM and cubes to a 2ABM . Hence z2v ∈ 6ABM ∪6BBM . First suppose z2v ∈ 6ABM

then |CG(z2v)| = 217×37×5×7×11 and thus |CL(v)| = 217×36×5×7×11 implying

that v ∈ 2AFi22:2. On the other hand if v ∈ 6BBM , then a similar argument shows

that v ∈ 2DFi22:2. Hence 2ABM ∩ L = 2AFi22:2 ∪ 2DFi22:2. Similarly, 2DBM ∩ L =

2CFi22:2 ∪ 2EFi22:2. We are now in a position to write down the total fusion for the

involution classes of Fi22 : 2 into involution classes of BM .

Involution Class in Fi22 : 2 Centralizer size (in Fi22 : 2) Class in BM
2A 36,787,322,880 2A
2B 106,168,320 2B
2C 3,538,944 2D
2D 2,090,188,800 2A
2E 6,635,520 2D
2F 5,806,080 2C

By using Magma we can say more about tL and xL. By loading the 4370 dimen-

sional representation of BM and feeding in the generators for M ∼= S3×Fi22 : 2 given



CHAPTER 3. A COMMUTING INVOLUTION GRAPH FOR BM 122

in the Atlas we can determine exactly which classes tL and xL belong to. Firstly

we produce elements in M which have orders not among the orders of elements from

Fi22 : 2. We produced two elements u1, u2 of orders 60 and 33. As neither Fi22 or

Sym(3) have elements of these orders we know that u20
1 , u

11
2 ∈ S and u3

1, u
3
2 ∈ L. In

fact we can quickly see that u20
1 , u

11
2 generate S, and by checking element orders, we

can see that u3
1, u

3
2 generate L. Now we can quickly produce the three involutions

in S and by producing elements of even order and powering down, and checking the

class structure constants given in [12] and the power maps given in the Atlas, we

can produce a representative for each of the 6 classes of involutions in L. Now we just

need to check whether an involution from S times the representative from each class

of involutions in L is a 2C involution in BM , which we can easily check using the

dimension of its fixed space. We see that only involutions from the classes 2DFi22:2

and 2EFi22:2 when multiplied by an involution from S are in 2C in BM . Hence

tL, xL ∈ 2DFi22:2 ∪ 2EFi22:2.

We will now proceed in Magma using the 3510 degree permutation representation

of Fi22 : 2. Now without loss of generality we may pick a zL ∈ 2BFi22:2 and follow

the procedure in the 10C case, however this time we have two separate cases, corre-

sponding to the two different possible classes for tL. So we calculate YC = C∗G(zL)∩C

where C is either 2D or 2E in Fi22 : 2.

In Case 1, where Y = CL(zL) ∩ 2DFi22:2 we find that |Y | = 656 and there are 2

orbits of sizes 576 and 80. In both cases CCL(zL)(yi), where yi is a representative of

each orbit, contain 2FFi22:2 elements.

In Case 2, where Y = CL(zL) ∩ 2EFi22:2 we find that |Y | = 26928 and there are

4 orbits of sizes 8640, 17280, 576 and 432. In all cases CCL(zL)(yi), where yi is a

representative of each orbit, contain 2FFi22:2 elements.

So we deduce that X6C ⊆ ∆2(t).

We can use similar arguments to deal with the classes 6H, 12D, 12G, 12J , 12L,

21A, 24A, 24C, 24G, 30D and 48A. In each case let z be in the class mentioned in
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the section heading, zS be the 3A element in S corresponding to some appropriate

power of z and let zL be the 3rd power of z living inside L ∼= Fi22 : 2. In all cases we

will use the routine used in the 6C case, with tL and xL in the classes 2DFi22:2 and

2EFi22:2.

3.3.12 The Class 6H

Elements in 6H square to 3A, so we calculate in exactly the same way as in 6C.

In this case zL ∈ 2DBM , so z2zL = z5 = z−1 = zt is a 6H element and hence

|CG(v2zL)| = 10616832. This implies that |CL(zL)| = 3538944 and thus zL ∈ 2CFi22:2.

As in 6C we pick a zL ∈ 2CFi22:2 and split our calculation into two cases.

In Case 1, we let Y = CL(zL) ∩ 2DFi22:2 and find that |Y | = 288. Under the

action by CL(z), Y splits into four orbits and CCL(zL)(yi) contains a 2FFi22:2 element

for each representative yi.

In Case 2, we let Y = CL(zL) ∩ 2EFi22:2 and Y = 4704. In this case Y splits into

4 orbits and again CCL(zL)(yi) contains a 2FFi22:2 element for each representative yi.

Hence X6H ⊆ ∆2(t).

3.3.13 The Class 12D

Elements in 12D to the fourth power are in 3A, so we calculate in the usual way. In

this case z3 ∈ 4B and clearly z4zL is again a 12D element. Hence CG(z4zL) = 663, 552

and thus CL(zL) = 221, 184 implying that zL ∈ 4AFi22:2. So using the usual routine

and splitting our calculation into two cases we get the following results.

In Case 1, Y = (C∗L(zL)\CL(zL))∩2DFi22:2 and |Y | = 40. Y splits into two orbits

of sizes 36 and 4 and in both cases CCL(zL)(yi) contains a 2FFi22:2 element for the two

orbit representatives yi.

In Case 2, Y = (C∗L(zL) \ CL(zL)) ∩ 2DFi22:2 and |Y | = 1368. In this case, Y

splits into five orbits Y1, Y2, Y3, Y4 and Y5, with sizes 576, 576, 108, 36 and 72 and

representatives y1, y2, y3, y4 and y5 respectively. We quickly see that y1zL isn’t in
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one of the required classes so will be dismissed. For i = 2, 3, 4, 5, CCL(zL)(yi) contains

a 2FFi22:2 element, however we see that CCL(zL)(y1) doesn’t, so it was important for

us to dismiss it. Hence X12D ⊆ ∆2(t).

3.3.14 12G

We can quickly see that elements in 12G to the fourth power are in 3A and cube

down to 4C. An easy calculation shows that zL ∈ 4CFi22:2 and hence we will pick a

zL ∈ 4CFi22:2 and carry out the usual routine.

In case 1, Y = (C∗L(zL) \ CL(zL)) ∩ 2DFi22:2 and we see that |Y | = 16. We find

that Y is a single orbit with representative y under action by CL(zL). However in

this case yzL ∈ 2FFi22:2 and so will be ignored.

In case 2, Y = (C∗L(zL) \ CL(zL)) ∩ 2EFi22:2 we see that |Y | = 528, which splits

into four orbits of sizes 19219248 and 48. However we may instantly dismiss two of

these orbits, one of size 192 and the other of size 48. So we are left with two orbits,

with representatives y1 and y2. We can easily calculate that |CCL(zL)(y1)| = 128 and

|CCL(zL)(y2)| = 256 and both of these centralizers do not contain a 2FFi22:2 element,

and thus for x ∈ X12G, d(t, x) ≥ 3. As the commuting involution graph in all cases

for Fi22 : 2 has diameter at most 3, we see that d(t, x) ≤ 3. Hence X12G ⊆ ∆3(t).

We also note that

|CG(t)|
128

+
|CG(t)|

256
= |X12G|

and so X12G splits into two orbits under action by CG(t).

3.3.15 The Class 12J

Elements in 12J to the fourth power are in 3A and cube to 4E. Hence zS ∈ 3A and

zL ∈ 4E and we may again calculate inside Fi22 : 2. Firstly consider the element

z4zL, a 12J element and hence |CG(v4zL)| = 210 × 33, giving us |CL(zL)| = 210 × 32.

Hence zL ∈ 4DFi22:2. Now as usual, we pick a zL ∈ 4DFi22:2 and carry out the usual

routine.
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Firstly we quickly note that (C∗L(zL) \ CL(zL)) ∩ 2DFi22:2 = ∅. Thus in this case

tL /∈ 2DFi22:2.

For Y = (C∗L(zL)\CL(zL))∩2E we see that |Y | = 144, which is itself an orbit under

the action by CL(zL) with representative y. In this case we see that yzL ∈ 2EFi22:2

and hence is a possible tL, with |CCL(zL)(y)| = 64. Now we also note that

|CG(t)|
|CCL(zL)(y)|

= |X12J |

Hence X12J is indeed a single orbit under action by CG(t). Furthermore CCL(zL)(y)

doesn’t contain a 2FFi22:2 element, hence d(t, x) ≥ 3 for x ∈ X12J . However as the

commuting involution graph for Fi22 : 2 has diameter at most 3 in all cases we deduce

that X12J ⊆ ∆3(t).

3.3.16 The Class 12L

Elements in 12L to the fourth power are in 3A and cube to 4G. By an easy calculation

we see that zL ∈ 4EFi22:2 and so we will carry out our usual routine.

In case 1, Y = (C∗L(zL) \ CL(zL)) ∩ 2DFi22:2 we see that |Y | = 12 which splits

into two orbits of sizes 8 and 4. The orbit of size 4 can be instantly dismissed as

y2zL ∈ 2FFi22:2 for a representative y2. On the other hand, for a representative y1

for the orbit of length 8, we see that y1zL ∈ 2EFi22:2 and its centralizer in CL(zL)

contains a 2FFi22:2 element.

In case 2, Y = (C∗L(zL) \ CL(zL)) ∩ 2EFi22:2 which has size 228. In this case, Y

splits into 9 orbits under action by CL(zL), four of which can be instantly dismissed.

For representatives yi for the other 5 orbits, CCL(zL)(yi) contains a 2FFi22:2 element

in each case. Hence X12L ⊆ ∆2(t).

3.3.17 The Class 21A

Elements in 21A to the seventh power are in 3A and cube to 7A. Now Fi22 : 2 only

has one class of elements of order 7, so we must have zL ∈ 7AFi22:2. We will use the
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usual routine, with the following results.

In case 1, (C∗L(zL) \ CL(zL)) ∩ 2DFi22:2 = ∅, and so this case will be ignored.

In case 2, Y = (C∗L(zL) \ CL(zL)) ∩ 2EFi22:2 with |Y | = 7. In this case, CL(zL) is

transitive on Y and CCL(zL)(y) contains a 2FFi22:2 element for the single representative

y. Hence X21A ⊆ ∆2(t) and X21A is a CG(t) orbit.

3.3.18 The Classes 24A and 24C

Let z be in one of the classes 24A or 24C, then in both cases z8 ∈ 3A and so we may

use the usual procedure with a small twist. As usual let z = zSzL, and in both cases

we see that |CL(zL)| = 768. Now Fi22 : 2 has 5 classes of elements of order 8 with

centralizer size 768, so we will have to check them all to cover both the 24A and the

24C cases. So we let zL run over the classes 8AFi22:2, 8BFi22:2, 8EFi22:2, 8FFi22:2 and

8GFi22:2 and carry out the normal routine. Obviously telling exactly which classes

correspond to 24A and which to 24C will be very difficult as we cannot distinguish

between them easily, therefore we will produce 5 non-conjugate elements in BM of

order 8 whose centralizer size in L is equal to 768, which will cover the required

classes without explicitly knowing which class each zL belongs to. We will call these

five elements z1, . . . , z5.

The results for z1 are as follows. For Y = (C∗L(z1) \ CL(z1)) ∩ 2DFi22:2, |Y | = 4,

a single orbit. In this case CCL(z1)(y) contains a 2FFi22:2 element for a representative

y. For Y = (C∗L(z1) \ CL(z1)) ∩ 2EFi22:2, |Y | = 68, which splits into six orbits of

sizes 12, 24, 12, 12, 4 and 4. Again CCL(z1)(yi) contains a 2FFi22:2 element for each

representative yi.

For z2 we get exactly the same results as in z1.

For the z3 case we quickly see that (C∗L(z3) \ CL(z3)) ∩ 2DFi22:2 = ∅, so we only

have a single case to check. For Y = (C∗L(z3) \CL(z3))∩ 2EFi22:2 we get a single orbit

of size 48, whose centralizer size (in CL(z3)) is 16. Note that |CG(t)|
16

> |X24A| = |X24C |

and hence we cannot have zL in the same class as z3 so we will ignore this case.
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For z4 we get the following results. For Y = (C∗L(z4) \ CL(z4)) ∩ 2DFi22:2, Y is a

single orbit of size 4 with representative y. In this case CCL(z4)(y) contains a 2FFi22:2

element. For Y = (C∗L(z4) \ CL(z4)) ∩ 2EFi22:2, |Y | = 52, which splits into 5 orbits.

All the centralizers in CL(z4) for representatives of these five orbits contain a 2FFi22:2

element.

The results for z5 are very similar to the z4 and so will not be produced here.

Thus in all cases we see that d(t, x) = 2 for x in either X24A or X24C , and therefore

X24A, X24C ⊂ ∆2(t).

3.3.19 The Class 24G

Elements in 24G to the sixth power are in 3A and cube to 8D, so we may cal-

culate inside Fi22 : 2. Now consider the element z8zL, a 24G element, and hence

|CG(v8zL)| = 768. Therefore |CL(zL)| = 256 implying that zL ∈ 8CFi22:2. So we do

the usual job, by picking a zL ∈ 8CFi22:2 and carrying out the standard routine to get

the following results.

We quickly see that tL /∈ 2DFi22:2 as (C∗L(zL) \CL(zL))∩ 2DFi22:2 is empty. So we

only have a single case to check.

For Y = (C∗L(zL) \ CL(zL)) ∩ 2EFi22:2 we see that |Y | = 48. Y splits into 4 orbits

under the action by CL(zL), with sizes 8, 16, 16 and 8. In this case all CCL(zL)(yi) for

representatives yi, again do not contain a 2FFi22:2 element.

Therefore we can deduce that for x ∈ X24G, d(t, x) ≥ 3. However consulting [12]

we see that the diameter for the commuting involution graph for Fi22 : 2 in all cases

has diameter at most 3, thus d(t, x) ≤ 3. Hence X24G ⊆ ∆3(t).

3.3.20 The Class 48A

For z ∈ 48A we have z16 ∈ 3A so we may use the usual routine. Now |CG(z)| = 96 so

it is easy to see that CL(zL) = 32. Now Fi22 : 2 has two classes of elements of order

16, both of which have centralizer sizes of 32, so we will have to test both. As in the
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24A− 24C case, we will produce two non conjugate elements of order 16 in Fi22 : 2

and call them z1 and z2, without knowing precisely which class each one is in.

For z1 we only have a single case to check as (C∗L(z1)\CL(z1))∩2DFi22:2 is empty.

For Y = (C∗L(z1) \ CL(z1)) ∩ 2EFi22:2, we see that |Y | = 24, which splits into three

orbits under the action by CG(z1). We can discount one of these orbits straight away

as yzL ∈ 2FFi22:2 for a representative y. For the other two orbits, with representatives

y1 and y2, we see that |CCL(z1)(yi)| = 4 and both centralizers do not contain a 2FFi22:2

element.

For z2 we find that (C∗L(z2) \ CL(z2)) ∩ 2DFi22:2 is empty. In the other case we

get a single CL(zL) orbit of size 8, with centralizer of a representative y3 in CL(z2)

containing a 2FFi22:2 elements, with this centralizer having size 6, 635, 520.

We now note that

|X48A| =
|CG(t)|

2

So the only way this is possible is for y1 and y2 to be in different orbits of X48A and

y3 not being a possible tL due to zL not being in the class 16AFi22:2 or 16BFi22:2 which

corresponds to z2. Hence for x ∈ X48A, d(t, x) ≥ 3, however again as the diameter of

the commuting involution graph for Fi22 : 2 in all cases is at most 3, we deduce that

X48A ⊆ ∆3(t).

3.3.21 Classes Which Power to 5B

Classes 5B, 10D, 10F and 20G all power down to 5B, so these classes will be treated

similarly. Since H = NBM(5B) ∼= 51+4
+ : 21+4

− : Alt(5).4, calculating inside this group

directly would be difficult due to its complex structure. So we wish to compute a

permutation representation of H of a reasonable degree in which to carry out our

calculations. Our general aim is to find τ , the central involution in the extraspecial

group 21+4 such that C = CH(τ) ∼= 5 : 21+4 : Alt(5).4. We will let the generators

of H act on the cosets of C in H to produce a permutation representation of degree

54. Note that τ will commute with the central element of order 5 in 51+4, so this
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representation will not be faithful, however it will give us a faithful representation of

H/ 〈w〉 where w is this central 5 element, which will be sufficient for our purpose.

Our first job is to find the element τ . This is fairly straightforward, by taking

a random element of order 8 and powering down to an involution we have a good

chance of producing the required element, we can check by using Bray’s Algorithm

to produce elements in its centralizer and seeing if the element orders match those

which we expected. Since we are working in a large matrix representation of BM

we cannot ask directly for the coset action of H on H/CH(τ) as simply just storing

these groups would take up a huge amount of memory, so we have to be clever in our

approach.

We first note that if T is a transversal of CH(τ) in H, then T is also a transversal

for 5 in 51+4, which is much easier to produce. Indeed we can easily produce the 5

linearly independent generators for 51+4 in H by powering down from appropriately

ordered random elements in H, with w being the central element of order 5. Now

since the other 4 generators commute modulo w, a transversal for 5 in 51+4 will be

given by the 54 words in the four non-central generators in which we ignore the order

of the generators.

Now H = 〈w1, w2〉, with the generators w1 and w2 given as a straight line program

in the online Atlas. We wish to calculate the action of w1 and w2 on γ ∈ T . Indeed

we wish to write γwi as γ′h where h ∈ CH(τ) and γ′ ∈ T . Hence we run through all

δ ∈ T and determine whether δ−1wiγ ∈ CH(τ), by simply checking whether δ−1wiγ

commutes with τ . When we find such a δ, of which there will be exactly one in T , we

will let γ′ = δ. If we then order our transversal, then if γ is the mth element of of T

and γ′ is the nth, then the element of our permutation representation corresponding

to wi will send m to n.

As we have 625 of these transversal elements to work through, instead of multi-

plying together the words in the generators of 51+4 to produce a transversal, we will

store it simply as a word (that is as an array containing the names of the generators in

question) and act on a random vector v from the natural 4370 dimensional G-module
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for BM over GF (2). This will at least give us a shortlist for possible elements γ′,

which we can go through more carefully if we get more than one possibility. The

Magma code for this procedure is given in Appendix 3.

This procedure gives us a 625 degree permutation representation of the group

H ∼= 54 : 21+4
− : Alt(5).4. Note that this group is isomorphic to H/ 〈w〉, where w

is the central 5 element in 51+4 inside H. Inside H we want copies of CH(w) and

C∗H(w) modulo 〈w〉. The first is simply given by H
′
, the derived subgroup of H, and

for the second we find an involution a not in H
′

and calculate
〈
H
′
, a
〉

. We will call

these groups C and C∗ respectively. These groups have the orders we expected from

the Atlas, namely 1,200,000 and 2,400,000, the sizes of the centralizer and extended

centralizer in BM of a 5B element, divided by 5.

We now have to map the classes of involutions in H across to G. Indeed H has 4

classes of involutions. If we find words for representatives of these four classes in the

generators of H and map these over to H, sitting inside G, we can easily see which

class they belong to in G. This mapping works in the obvious way, if w1 and w2 are

the two generators for H corresponding to the generators w1 and w2 of H. then we

simply replace wi with wi in a word for a particular element. Table 3.3 gives the

mapping of the involution classes of H to the involution classes in BM .

Table 3.3: Mapping between involution classes in H and BM .

Class in H Size of Centralizer in H Class in G
2AH 19200 2BBM

2BH 9600 2CBM
2CH 7680 2DBM

2DH 1600 2DBM

Now if we want to find the distance between t and x where x ∈ X5B, we first

note that we may pick z ∈ 5B as our central element of order 5, w. We now want to

calculate CCG(z)(t) for different choices of t and see if it contains any 2CBM elements.

We first note that as t has order 2 and 〈w〉 is a 5-group,
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CCG(z)(t)/ 〈w〉 = CCG(z)/〈w〉(t) = CC(t)

where t is the image of t in H.

We now calculate the possible ts in H. These must be 2CBM elements which

invert, but don’t centralize z. Therefore the set of possible ts is given by

Y = (C∗ \ C) ∩ 2BH .

We can differentiate between the different involution classes of H by simply calcu-

lating the sizes of centralizers. We find that |Y | = 500, and C acts transitively on

Y . For y a random element from Y we see that |CC(y)| = 2400, which is what we

expect, as that would make

|X5B| =
|CG(t)|
|CCG(z)(t)|

agreeing with the fact that C acts transitively on Y . We also find that CC(y) does not

contain any 2BH and thus 2CBM elements, hence d(t, x) ≥ 3 for x ∈ X5B. If we now

return to our 4370 dimensional representation of BM , we can easily find an s ∈ BM

such that tts is a 5B element, and using Bray’s algorithm we can find a τ ∈ X26A

such that τ commutes with ts. Since X26A ⊆ ∆2(t) we deduce that X5B ⊆ ∆3(t).

Details of this calculation are given in Appendix 4.

For z = tx ∈ 20G, we can again calculate inside H as z4 ∈ 5B. Firstly we must

work in the 4370 dimensional representation of H inside of G and find a 20GBM

element inside of H which to an appropriate power is w. Once we have it, call it z

and transport it over to H to get z, by taking a word of z in the generators for H,

and replacing these for the generators of H. We now have to find images of CG(z)

and C∗G(z) inside of H, however this is easy due to the following observation.
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If z ∈ 20G then z = wf where w ∈ 5B and f has order 4. Now note that

K = CG(z) = CG(w) ∩ CG(f)

= CC(f)

where C = CG(w). We wish to pinpoint K inside of H, however

K = CC(f) = CC(f)

as the order of w and f are coprime. Also note that f is equal to z once it has been

transported over to H.

Hence inside H, let Cz = CC(z) where C = H ′ as in the 5B case. We note that

|Cz| = 96, which is equal to |CG(z)|
5

as expected. A similar technique can be used to

calculate C∗G(z), or a group close to it, however note that it is not necessary true that

C∗G(z) = C∗
C∗

(z)

however C∗G(z) will always be contained in C∗
C∗

(z). In fact in our case, |C∗
C∗

(z)| = 384,

so if we take a 2BH involution, y, from C∗
C∗

(z) such that yz is also a 2BH involution,

then C∗G(z) =
〈
Cz, y

〉
, which we will call C∗z .

Now our list of possible ts is Y = (C∗z \ Cz) ∩ 2BH . By calculating this in

Magma, we see that |Y | = 12 and Cz acts transitively on this. Again |CCz
(y)| = 8

for a representative y ∈ Y , which agrees with X20G being a single CG(t) orbit. Now

CCz
(y) does not contain any 2BH elements, and thus d(t, x) ≥ 3 for x ∈ X20G.

Exactly the same method also works for z ∈ 10D. Indeed, in this case define Cz

in exactly the same way as in 20G, and thus we have |Cz| = 4800, which is what

we expected from the Atlas. Now in this case |C∗
C∗

(z)| = 9600, twice that of |Cz|,

and thus we must have C∗G(z) = C∗
C∗

(z), and so we set C∗z = C∗
C∗

(z). Again set

Y = (C∗z \Cz)∩2BH and let Cz act on it. Again Y splits into a single orbit with y as

a representative. In this case |CCz
(y)| = 80, agreeing with X10D being a single CG(t)
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orbit. Now CCz
(y) again doesn’t contain any 2BH involutions, hence d(t, x) ≥ 3 for

x ∈ X10D.

Similarly for z ∈ 10F , we can define Cz and C∗z in exactly the same way as in

10D. In this case |Y | = 20 and Cz again acts transitively on Y and |CCz
(y)| = 96.

Now CCz
(y) again contains no 2BH involutions, hence d(t, x) ≥ 3 for x ∈ X10F .

For C one of the classes 5B, 10D, 10F and 20G we can easily prove that XC ⊆

∆3(t). Indeed we choose a x ∈ XC and calculating elements in CG(x) by using Bray’s

algorithm. Once we have a list of elements w ∈ CG(x), we just check to see whether

w ∈ 2C and tw is in a known class in the second disc. If this happens (which it does

in all cases) then d(t, w) ≤ 3 and thus XC ⊆ ∆3(t) as XC is made up of a single

CG(t) orbit in these cases. Details of these calculations are given in Appendix 4.

3.3.22 Classes Which Power to 3B

The classes 3B, 6G, 6I, 6K, 9B, 12B, 12F, 12M, 12O, 12R, 18C and 24H all power down

to a 3B element, and since H, the normalizer of a 3B element, has shape

H ∼= 31+8
+ .21+6

− .U4(2).2

it can be treated in a similar manner to 5B. Again we find the central involution in

21+6
− , which we will call τ , by finding a element of order 16 and taking it’s eighth power.

By doing this we give ourselves a good chance of finding the required involution, and

then using Bray’s Algorithm we check to see if elements in the centralizer of τ , which

has shape 3.21+6
− .U4(2).2, have the required orders. As in the 5B case we compute

a transversal for 3 in 31+8, which will also be a transversal for CH(τ) in H. As in

5B, H acting on these cosets will give us a faithful permutation representation for

H/ 〈w〉 of degree 6561 where w is the central 3 element in 31+8
+ . As this degree is

much larger than the representation in the 5B case obviously this calculation was

much more time consuming. To combat this problem the program was run on ten

machines each doing part of the transversal. Even so this still took seven days to
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calculate the coset action for the two generators for H, considerably longer than the

two hours it took to calculate the representation in the 5B case. It is easy to see that

H = H/ 〈z〉 has shape 38.21+6
− .U4(2).2.

As in the 5B, case C = CH(w)/ 〈w〉 = CH(w) ∼= 38.21+6
− .U4(2), is calculated by

taking the derived subgroup of H, and C∗ = C∗H(w)/ 〈w〉 is just H itself. Now by

taking representatives for the 7 classes of involutions in H and transporting them

over to BM , can can calculate the mapping of the involution classes of H into BM ,

which is given in Table 3.4.

Table 3.4: Mapping of involution classes of H into BM .

Class in H Size of Centralizer in H Class in BM
2AH 26,873,856 2ABM
2BH 9,953,280 2BBM

2CH 6,635,520 2DBM

2DH 373,248 2CBM
2EH 331,776 2DBM

2FH 248,832 2CBM
2GH 62,208 2DBM

We now calculate in the same way as in 5B, and as 2 is coprime to 3, we see that

CCG(z)(t)/ 〈w〉 = CCG(z)/〈w〉(t) = CC(t)

where t is an involution in H and t is its image in H.

Now as 2CBM corresponds to 2DH ∪ 2FH , we calculate

Y = (C∗ \ C) ∩ (2DH ∪ 2FH).

However as |C∗| = 43, 535, 646, 720 we have to be clever about this, as if we calculate

it naively we will quickly run out of memory. Since C∗ = H, we can simply calculate

the two classes 2DH and 2FH on two different machines, and compute the elements

not in C. Once this is complete we will have two much smaller sets, which we can

combine on a single machine to get Y . In fact our job is made easier as (C∗\C)∩2FH
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is empty, hence

Y = (C∗ \ C) ∩ 2DH

However again our job is made easy as if we pick a random 2D element y1 ∈ C∗\C

and calculate

|C|
|CC(y1)|

which is equal to the size of of the orbit Y1 of Y containing y1, as C acts on Y , we find

that |Y1| = 116, 640, the size of the conjugacy class 2D of H. Therefore we must have

had that Y = 2DH with C acting transitively on it. Now we can easily calculate that

|CC(y1)| = 186, 624, and this centralizer contains either a 2DH or a 2FH involution.

Since

|X3B| =
|CG(t)|
186624

we deduce that X3B ⊆ ∆2(t) and is a single CG(t) orbit of X.

Now suppose z ∈ 6GBM , such that z2 = w. We then transport z over to H to get

an involution, which we will call z. We now calculate

Cz = CG(z) = CC(z)

and note that |Cz| = 4, 976, 640 as expected. We now wish to calculate C∗z = C∗H(z),

however in general

C∗H(z) 6= C∗
H

(z)

though as said before, C∗H(z) ⊆ C∗
H

(z). Hence we find an involution ξ ∈ C∗ which

inverts z, then together with Cz, will generate C∗z . If we carry this out, we find

that C∗z has the required size, twice that of |Cz|. We follow the usual routine, by

calculating Y = (C∗z \ Cz) ∩ (2DH ∪ 2FH), and we find that |Y | = 4320 and Cz acts

transitively on this. We can also easily calculate that |CCz(y)| = 1152, where y is a

random element from Y and CCz(y) contains either a 2DH or a 2FH element. Thus
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as

|X6G| =
|CG(t)|
1152

we see that X6G ⊆ ∆2(t) and consists of a single CG(t) orbit.

For z ∈ 6I, we find that |Y | = 1440 and again Cz acts transitively on Y . In this

case |CCz(y)| = 2304, where y is a random element from Y and CCz
(y) contains either

a 2DH or a 2FH element. Thus as

|X6I | =
|CG(t)|
2304

we see that X6I ⊆ ∆2(t) and consists of a single CG(t) orbit.

For z ∈ 6K we have |Y | = 576, which splits into two orbits, Y1, Y2 as Cz acts on

it. In this case, |Y1| = 432 and |Y2| = 144, however for y1 ∈ Y1, y1z ∈ 2GH , and thus

is not a 2CBM element, so can be ignored. For y2 in the other orbit, we have y2z a

2DH element. For this element, |CCz(y2)| = 864, and contains either a 2DH or a 2FH

element. Hence as

|X6K | =
|CG(t)|

864

we see that X6K ⊆ ∆2(t) and consists of a single CG(t) orbit.

For z ∈ 12B we find that |Y | = 1296 which splits into two orbits of sizes 864 and

432. For a representative y1 from the first orbit, we find that y1z is a 2GH element,

and so can be ignored. For y2 in the other orbit, we have y2z is a 2DH element and

|CCz(y2)| = 576, with this centralizer containing either a 2DH or 2FH element. Hence

as

|X12B| =
|CG(t)|

576

we see that X12B ⊆ ∆2(t) and consists of a single CG(t) orbit.

For z ∈ 12F , we see that |Y | = 400 we find that Y splits into two orbits as Cz acts

upon it, of sizes 360 and 40. We can easily see that both these orbits are legitimate,

with centralizer sizes, in Cz, of representatives from the orbits of 128 and 1152. Both

these centralizers contain either a 2DH or 2FH element, and hence X12F ⊆ ∆2(t).
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We also see that

|X12F | =
|CG(t)|

128
+
|CG(t)|
1152

and hence X12F consists of two CG(t) orbits.

For z ∈ 12M , |Y | = 192 which splits into 3 orbits of sizes 96, 48 and 48. The two

orbits of size 48 can instantly be discounted as yiz ∈ 2GH for representatives yi of the

two orbits. For a representative y for the orbit of size 96 we see that yz ∈ 2DH and

that |CCz(y)| = 48 with this centralizer not containing either a 2D or 2FH involution.

We also note that

|X12M | =
|CG(t)|

48

so X12M is a single CG(t) orbit, with d(t, x) ≥ 3 for x ∈ X12M . Now by using Bray’s

Algorithm on an element x ∈ X12M in BM , we can find an element τ ∈ X20D which

commutes with x. Since we know X20D ⊆ ∆2(t) and X12M consists of a single CG(t)

orbit, we have d(t, x) ≤ 3 for all x ∈ X12M , and thus X12M ⊆ ∆3(t). Details of this

calculation are given in Appendix 4.

For z ∈ 12O, we have |Y | = 144 splitting into two orbits of sizes 48 and 96. The

orbit of size 96 can be ignored as y2z ∈ 2GH for a representative y2, however the

other must be considered as y1z ∈ 2DH . For this orbit we have |CCz(y1)| = 64 with

this centralizer containing either a 2DH or a 2FH involution. We note that

|X12O| =
|CG(t)|

64

hence X12O is a single CG(t) orbit contained in ∆2(t).

For z ∈ 12R, we find that |Y | = 32, which splits into two orbits, both of size 16,

when acted on by Cz. One of these orbits can be instantly ignored, however for the

other |CCz(y)| = 32, for a representative y. This centralizer contains either a 2D or

a 2F involution, and since

|X12R| =
|CG(t)|

32

we see that X12R ⊆ ∆2(t) and is a single CG(t) orbit.
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For z ∈ 24H we see that |Y | = 48, which splits into three orbits Y1, Y2 and Y3

when acted upon by Cz. For y1 a representative of Y1 we see that y1z ∈ 2G, and

hence Y1 can be ignored. For the other two orbits, yiz ∈ 2D for representatives yi,

and in both cases |CCz(yi)| = 16 and both centralizers either contain a 2D or a 2F

involution. We now note that

|X24H | =
|CG(t)|

16
+
|CG(t)|

16

and hence X24H splits into two orbits of equal size when acted upon by CG(t), both

of which are contained in ∆2(t).

The classes 9B and 18C are a little more involved as the factorization of the order

of the element in question consists of multiple powers of 3. Hence it is not necessarily

true that

CC(z) = CH(z),

however it is true that

CH(z) ≤ CH(z).

Suppose z ∈ 9B such that z3 = w. Then in this case, |CH(z)| = 11, 664, the same

size as CG(z). Also |C∗
C∗(z)| = 23, 328, twice the size of CH(z). We will proceed as

normal with Y = (C∗
C∗(z) \ CH(z) ∩ (2DH ∪ 2FH), with CH(z) acting upon this. We

find that |Y | = 84, splitting into two orbits Y1 and Y2, with representatives y1 and

y2, of sizes 81 and 3. In both cases yiz ∈ 2DH , and hence are legitimate orbits. We

can also easily calculate that |CCH(z)(y1)| = 144 and |CCH(z)(y2)| = 3888, with both

centralizers containing either a 2D of 2F involution in H. We also note that

|X9B| = 3×
(
|CG(t)|

114
+
|CG(t)|
3888

)
Hence the orbits of X9B with CG(t) acting upon it are 3 times larger than the

orbits of Y with CH(z) acting upon it. Thus X9B breaks into two orbits, both of

which belong to ∆2(t).
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Now suppose that z ∈ 18C with z6 = w. In this case, again |CH(z)| = 432, the

same size as CG(z), so we need to be careful. As in the 9B case |C∗
C∗(z)| = 864,

twice the size of CH(z). Calculating Y as usual, we find that |Y | = 24, which splits

into three orbits when CH(z) acts upon it. These orbits, with representatives y1, y2

and y3 have sizes 18, 3 and 3, all of which are 2DH elements when multiplied by z,

and hence are legitimate orbits. The centralizer sizes of these three representatives

in CH(z) are 24, 144 and 144 respectively, with the second two containing either a

2DH or a 2FH involution and the first not. Again we note that

|X9B| = 3×
(
|CG(t)|

24
+
|CG(t)|

144
+
|CG(t)|

144

)
and thus the orbits of X18C with CG(t) acting upon it are 3 times larger than the

orbits of Y with CH(z) acting upon it. Therefore X18C breaks into 3 orbits, with

3,311,126,603,366,400 elements of distance at least 3 from t, and 1,103,708,867,788,800

in ∆2(t).

For the elements which are a distance at least 3 from t, we can say more. Indeed, if

we take the element y1 and map it over to BM then the elements of y1 〈w〉 will map to

y1 in H. In this coset only the element y1w
2 is an element of X18C , and hence this must

be a representative of the orbit contained in X18C not in the second disc. Now by using

Bray’s Algorithm we can find an element of X26A, which we know to be in the second

disc, which commutes with y1 and thus d(t, y1) ≤ 3. Therefore 3,311,126,603,366,400

elements of X18C are contained in ∆3(t), and 1,103,708,867,788,800 elements in ∆2(t).

Details of this calculation are given in Appendix 4.

3.3.23 Classes Which Power to 11A

The classes 11A and 22B both power down to an 11A element, so will be treated

similarly. After consulting the Atlas, we see that for z ∈ 11A, C∗G(z) ∼= 11 :

2× Sym(5) and CG(z) ∼= 11× Sym(5). Now as the 2 on the bottom inverts the 11,

11 : 2 ∼= Dih(11), and hence C∗G(z) ∼= Dih(11)×Sym(5), which is easily produced in
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Magma, using the command

H := DirectProduct(DihedralGroup(11),SymmetricGroup(5));.

Now H has 5 classes of involutions with the following centralizer sizes

Class in H Size of Centralizer in H

2A 264

2B 240

2C 176

2D 24

2E 16

Now by studying the orders of products of pairs of element from each class in H we

can determine that 2DH corresponds to 2CBM . Now as the Baby Monster has only

one class of elements of order 11, we may pick any element of order 11 to be our

representative z ∈ 11ABM . In Magma we can easily calculate C = CH(z), and check

to see that |C| = 1320 which is what we expect from the Atlas, as |CG(z)| = 1320

and CG(z) ≤ H. We also note that because of the way we have set things up,

EC = C∗G(z) = H.

Now let Y = (EC \ C) ∩ 2DH . This is easy to calculate using the size of the

centralizer as a conjugacy class invariant. We find that |Y | = 110, which is a single

C orbit as C acts on Y by conjugation. We also note that for a representative y ∈ Y ,

yz ∈ 2DH as expected. Now |CC(y)| = 12 and CC(y) only contains 2AH and 2CH

involutions, which do not correspond to 2CBM involutions. Hence X11A is a single

CG(t) orbit and for x ∈ X11A, d(t, x) ≥ 3, which agrees with the information already

gained from the power maps of G.

We also note that |X11A| = |CG(t)|
12

which agrees with the fact that X11A is a single

CG(t) orbit, by using the orbit stabilizer theorem. Now for x ∈ X11A there exists a

τ ∈ X40D such that τ commutes with x. Since τ ∈ ∆2(t), we see that d(t, x) ≤ 3

and thus d(t, x) = 3. As X11A is a single CG(t) orbit we deduce that X11A ⊆ ∆3(t).

Details of this calculation will be given in Appendix 4.
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Now suppose z ∈ 22BBM . Now H contains ten classes of elements of order 22,

five with centralizer size 120 in H, which fuse to the class 22A in BM and the other

five of centralizer size 88 in H, which fuse to the class 22B in BM . Thus we pick

a z in H with a centralizer size in H of 88. We now let C = CH(z) and find an

involution in H which inverts z, with together with C will generate EC = C∗H(z).

As per usual, we now let Y = (EC \ C) ∩ 2DH , and find that |Y | = 22. Now C acts

transitively on Y , and |CC(y)| = 4 for a representative y ∈ Y , with this centralizer

again only containing either 2AH or 2CH involutions. Hence X22B consists of a single

CG(t) orbit and for x ∈ X22B, d(t, x) ≥ 3.

Again we also note that |X22B| = |CG(t)|
4

confirming that X22B is a single CG(t)

orbit. Now for x ∈ X22B there exists a τ ∈ X17A such that τ commutes with x.

Since τ ∈ ∆2(t), we see that d(t, x) ≤ 3 and thus d(t, x) = 3. As X22B is a single

CG(t) orbit we deduce that X22B ⊆ ∆3(t). Details of this calculation will be given in

Appendix 4.
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Appendices

4.1 Appendix 1

The following table gives the possible involution classes produced when you multiply

two involutions together in the Baby Monster. This table was computed in Gap

using the ClassMultipicationCoeffient command.

Class of involution u Class of involution v Possible involution classes of product uv
2ABM 2ABM 2BBM , 2CBM
2ABM 2BBM 2ABM , 2DBM

2ABM 2CBM 2ABM , 2DBM

2ABM 2DBM 2BBM , 2CBM , 2DBM

2BBM 2BBM 2BBM , 2DBM

2BBM 2CBM 2CBM
2BBM 2DBM 2ABM , 2BBM , 2DBM

2CBM 2CBM 2BBM , 2CBM , 2DBM

2CBM 2DBM 2ABM , 2CBM , 2DBM

2DBM 2DBM 2ABM , 2BBM , 2CBM , 2DBM

4.2 Appendix 2

Details of the 17A calculations. Using our standard generators for BM and our

standard representative t for a 2C element we carry out the following calculation.

Note that a and b in the following calculation correspond to the two generators of

142
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(22 × F4(2)) : 2 given in the online Atlas.

t := (a*a*b*a*b*b*a*a*b*a*b*b*b*b*a*a*a*b*b*b*a*b*a*b*a*b)^17;

w1 := y*x*y*x*y*y*x*y*y*x*y*x*y*y*x*y*x*y*y*x*y*x;

w2 := t^w1*t*t^w1;

x2d := t^w2;

rand := y*x*y*x*y*y*x*y*x*y*y*x*y*x*y*x*y*y*x*y*x*y*y*x*y*x*y*y*x*y*

x*y*y*x*y*x*y*x*y*y*x*y*y*x*y*y*x*y*y*x*y*x*y*x*y*x*y*y*x*y*y*x*y*x*

y*y*x*y*x*y*y*x*y*y*x*y*x*y*x*y*x*y*x*y*y;

BrayLoop2(~S,rand,G,x2d);

First note that x2d ∈ X such that t∗x2d ∈ 2D, and thus x2d ∈ X2D. Now S contains

a single element, we’ll call it s

s := Random(S);

s is an element of order 12 which powers down to a 2C element, which we’ll create.

s := s^6;

We see that the order of ts is 17, and thus s ∈ X17A, and by the way we have created

it x2d and s will commute.

Order(t*s);

Hence d(t, s) = 2.

4.3 Appendix 3

Details of calculating a permutation representation for H ∼= 51+4
+ : 21+4

− : Alt(5).4.

All calculations will be carried out in the 4370 dimensional representation of BM

with the generators w1 and w2 for H given in the online Atlas.

The first job is to find the appropriate element τ , we find that

t := (w2*w2*w2*w2*w1*w2*w2*w1*w1*w1*w1)^4;
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should do the job for us. Indeed, if we use Bray’s algorithm on the element t we see

that possible element orders agree with our known shape of CH(t).

The five generators for 51+4
+ are given by

x1 := (w2*w1*w2*w1*w1*w2*w1*w2*w1*w2*w2*w1*w2*w2*w1*w2*w1*w1*w2*w1*w2*w2)^6;

x2 := (w1*w1*w1*w1*w2*w1*w1*w1*w1*w1*w1*w1*w2*w1*w1*w1*w1*w2*w1*w2*w2)^8;

x3 := x2^w1;

x4 := x2^w2;

x5 := x4^(w1*w2);

with x1 being the central generator. We can check in Magma that the group gener-

ated by these five elements is indeed an extraspecial group of the required order.

We then create the transversal for 5 in 51+4
+

Trans := [];

for i1 in [0 .. 4] do

for i2 in [0 .. 4] do

for i3 in [0 .. 4] do

for i4 in [0 .. 4] do

z := [];

if i4 ne 0 then

for j in [1 .. i4] do

z := Append(z,"x2");

end for;

end if;

if i3 ne 0 then

for j in [1 .. i3] do

z := Append(z,"x3");

end for;

end if;

if i2 ne 0 then

for j in [1 .. i2] do
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z := Append(z,"x4");

end for;

end if;

if i1 ne 0 then

for j in [1 .. i1] do

z := Append(z,"x5");

end for;

end if;

Trans := Append(Trans,z);

end for;end for;end for;end for;

Note that this will only give us words for each element in the transversal, if we want

to use the element we must multiply the word together first. Next we define two

functions which allow us to let a word z act on a vector v in the 4370 dimensional

G-module.

WordAct := function(z,v);

w := v;

for i in [1 .. #z] do

if z[i] eq "w1" then

w := w^w1;

end if;

if z[i] eq "w2" then

w := w^w2;

end if;

if z[i] eq "x1" then

w := w^x1;

end if;

if z[i] eq "x2" then

w := w^x2;

end if;

if z[i] eq "x3" then
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w := w^x3;

end if;

if z[i] eq "x4" then

w := w^x4;

end if;

if z[i] eq "x5" then

w := w^x5;

end if;

if z[i] notin {"w1","w2","x1","x2","x3","x4","x5"} then

print "ERROR!";

return 0;

end if;

end for;

return w;

end function;

w1inv := w1^-1;

w2inv := w2^-1;

x1inv := x1^-1;

x2inv := x2^-1;

x3inv := x3^-1;

x4inv := x4^-1;

x5inv := x5^-1;

WordActInv := function(z,v);

w := v;

for i in [0 .. (#z-1)] do

if z[#z-i] eq "w1" then

w := w^w1inv;

end if;

if z[#z-i] eq "w2" then
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w := w^w2inv;

end if;

if z[#z-i] eq "x1" then

w := w^x1inv;

end if;

if z[#z-i] eq "x2" then

w := w^x2inv;

end if;

if z[#z-i] eq "x3" then

w := w^x3inv;

end if;

if z[#z-i] eq "x4" then

w := w^x4inv;

end if;

if z[#z-i] eq "x5" then

w := w^x5inv;

end if;

if z[#z-i] notin {"w1","w2","x1","x2","x3","x4","x5"} then

print "ERROR!";

return 0;

end if;

end for;

return w;

end function;

WordAct produces the vector vz and WordActInv produces the vector vz
−1

. We will

then run the following code to create the permutation representation of w1.

V := GModule(G);

perm_w1 := [];

for i in [1 .. #Trans] do

poss := {};
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v := Random(V);

for j in [1 .. #Trans] do

w := WordActInv(Trans[j],v);

w := w^w1;

w := WordAct(Trans[i],w);

w := w^t;

s := v^t;

s := WordActInv(Trans[j],s);

s := s^w1;

s := WordAct(Trans[i],s);

if s eq w then

poss := poss join {j};

end if;

end for;

if #poss ge 2 then

poss2 := {};

v := Random(V);

for j in poss do

w := WordActInv(Trans[j],v);

w := w^w1;

w := WordAct(Trans[i],w);

w := w^t;

s := v^t;

s := WordActInv(Trans[j],s);

s := s^w1;

s := WordAct(Trans[i],s);

if s eq w then

poss2 := poss2 join {j};

end if;

end for;

poss := poss meet poss2;
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end if;

if #poss ge 2 then

poss2 := {};

v := Random(V);

for j in poss do

w := WordActInv(Trans[j],v);

w := w^w1;

w := WordAct(Trans[i],w);

w := w^t;

s := v^t;

s := WordActInv(Trans[j],s);

s := s^w1;

s := WordAct(Trans[i],s);

if s eq w then

poss2 := poss2 join {j};

end if;

end for;

poss := poss meet poss2;

end if;

if #poss ge 2 then

perm_w1 eq Append(perm_w1,0);

print "SORT OUT ENTRY ",i;

else

perm_w1 := Append(perm_w1,Random(poss));

end if;

if i mod 50 eq 0 then

print i;

end if;

end for;

Note that this code runs through the full transversal to find possible γs by acting on
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a random vector v, the one we want being in this set. If the set of possibilities has

size one, then we know that this must be the real one however if there is more than

one we run the procedure on another random vector and take the intersection of the

possible γs. If there is still more than one possibility after a third attempt we put a

zero in and deal with it manually. When we ran this code in all cases we never had

to do this.

We then repeat this code with w1 replaced with w2 in all cases. This code was

tested on smaller groups with similar maximal subgroups, in which the CosetAction

command in Magma could be used. Exactly the same group was calculated in both

cases.

The code used to produce the 3B representation is very similar, but involves a

great deal more computational time.

4.4 Appendix 4

Details for showingXC ⊆ ∆3(t) for C ∈ {5B, 10D, 10F, 11A, 12M, 18C, 19A, 20G, 22B,

33A, 35A}. We have already proved that XC is a single CG(t) orbit, and that

d(t, x) ≥ 3 for x ∈ XC . So all we need to do is find a w ∈ 2C which commutes

with x and which we know to be in the second disc. Now the centralizer of a 2C

involution in BM has shape (22 × F4(2)) : 2, and we can get a straight line program

from the online Atlas which gives generators a and b for a subgroup H of BM of

this shape. Now by taking an involution in the central 22 part of H, we can find a t

such that CBM(t) = H. We will take this t to be the origin of C(G,X) from which

we measure our discs. Thus we set t to be the following element

t := (a*a*b*a*b*b*a*a*b*a*b*b*b*b*a*a*a*b*b*b*a*b*a*b*a*b)^17;

For 5B, if we let

g := t^(y*y*x*y*x*y*x*y*y*x*y)*t*t^(y*y*x*y*x*y*x*y*y*x*y);

a := y*x*y*x*y*y*x*y*x*y*y*x*y*x*y;
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where x and y are our generators for G, then tg ∈ X5B and if we use Bray’s algorithm

on tg with a being our random element we get a 2C element in X26A, which we know

to be in the second disc.

For 10D, if we let

g := y*y*x*y*x*y*x*y*x*y*y*x*y*x*y*y*x*y*y*x*y*x*y*x*y;

a := y*y*x*y*y*x*y*x*y*x*y*y;

then tg ∈ X10D and again using Bray’s algorithm on tg with a as the random element

we get a 2C element in X26A.

For 10F , if we let

g := t^(y*x*y*y*x*y*x*y*y*x*y*x*y*x*y);

a := y*y*x*y*y*x*y*x*y*x*y*y;

then tg ∈ X10D, and using Bray’s algorithm on tg with a as the random element we

get a 2C element in X17A, which we know to be in the second disc.

For 11A is we let

g := y*y*x*y*y*x*y*x*y*x*y;

a := x*y*x*y*x*y*x*y*x*y*y*x*y*y*x*y*y;

then tg ∈ X11A and using Bray’s algorithm on tg with a as the random element we

get a 2C element in X40D, which is in the 2nd disc.

For 12M , if we let

g := y*y*x*y*y*x*y*y*x*y*x*y*x*y*x*y*y*x*y*x*y*y*x*y*x*y*y*x*y*y*x*y*y;

a := x*y*y*x*y*x*y*y*x*y*x*y*y*x*y*x*y;

then tg ∈ X12M , and using Bray’s algorithm on tg with a as the random element we

get a 2C element in X20D, which is in the 2nd disc.
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For 18C, if we let

y1 := (w2*w1*w2*w2*w2*w1*w2*w1*w2*w2*w2*w1*w2*w2*w2*w1*w2*w2*w2*w2*w2*w2*w2*w1*w2*w1*w1*w1*w2*w1*w1*w2*w2*w2*w2*w2*w1)^3;

w := (w1*w1*w1*w2*w2*w2*w2*w1*w2*w2*w2*w2*w2*w2*w2*w2*w2*w2*w2*w2*w1*w2)^10;

a := x*y*x*y*x*y*x*y*x*y*x*y*x*y*x*y*y*x*y;

Then y1 ∗ w2 is a member of the orbit contained in X18C , which is not in ∆2(t). By

using Bray’s Algorithm on y1∗w2 with a as the random element we get a 2C element

in X26A which commutes with y1 ∗ w2. As we know that X26A is contained in ∆2(t)

we deduce that d(t, y1 ∗ w2) ≤ 3.

For 19A is we let

g := x*y*y*x*y*y*x*y*x*y*x;

a := x*y*y*x*y*x*y*x*y*y*x*y*x*y*y;

Then tg ∈ X19A and using Bray’s algorithm on tg with a as the random element we

get a 2C element in X40D, which is in the 2nd disc.

For 20G, if we let

g := y*x*y*y*x*y*x*y*y*x*y*x*y*x*y;

a := x*y*x*y*y*x*y*x*y*y*x*y*y*x*y;

then tg ∈ X20G, and using Bray’s algorithm on tg with a as the random element we

get a 2C element in X26A, known to be in ∆2(t).

For 22B is we let

g :=y*y*x*y*x*y*y*x*y*x*y*x*y*x*y*x*y*y*x*y*y*x*y*y*x*y*x*y*y*x*y*x*y*y*x;

a := x*y*y*x*y*y*x*y*x*y*x*y;

Then tg ∈ X22B and using Bray’s algorithm on tg with a as the random element we

get a 2C element in X17A, which is in the 2nd disc.
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For 33A is we let

g := x*y*x*y*y*x*y*x*y*y*x*y*x*y;

a := y*x*y*y*x*y*x*y*x*y*y*x*y*y*x*y;

Then tg ∈ X33A and using Bray’s algorithm on tg with a as the random element we

get a 2C element in X40D, which is in the 2nd disc.

For 35A is we let

g := y*y*x*y*y*x*y*y*x*y*x;

a := y*y*x*y*x*y*y*x*y*y*x*y*y*x*y*x;

Then tg ∈ X35A and using Bray’s algorithm on tg with a as the random element we

get a 2C element in X17A, which is in the 2nd disc.

4.5 Appendix 5

We will now give code listings for the programs used while studying the commuting

involution graph for the Baby Monster.

4.5.1 BrayLoop

The is procedure carries out a single loop of Bray’s algorthithm. Used as

BrayLoop(~S,h,G,g), where S is the set where the output is to be saved, h is the

random element to be used, G is the group that is being calculated inside (simply

used to get ahold of the identity) and g is the element you want to find commuting

elements for.

BrayLoop:= procedure(~S,h,G,g)

Z:=IntegerRing();

S:={};

c:=1;
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c:=c+1;

com := (g^-1)*(h^-1)*g*h;

order_com := Order(com);

if (order_com mod 2) eq 0 then

p := order_com/2;

p := Z!p;

w1 := com^p;

w2 := ((g^-1)*h*g*(h^-1))^p;

S := S join {w1,w2};

else

p := (order_com - 1)/2;

p := Z!p;

w1 := h*(com^p);

S := S join {w1};

end if;

end procedure;

4.5.2 RandomWord

RandomWord(n) is a function which produces a word of length n in the generators

x and y of BM and saves it as an array. Note that as x has order 2 and y order 3,

the function is carefulto make sure the word is in as compact a form as possible -

that is there are no consecutive xs, and no strings of consecutive y’s of length 3 or

more. Note that this function simply creates a array where the entries are the names

“x”and “y” , and not the actual elements, to conserve space. To convert such an

array into a usable element use the function MultiplyRandomWord.

RandomWord := function(n)

if n le 2 then

print "Don’t be lazy, do it yourself!";
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return 0;

else

i:=1;

z:=[];

while i le n do

if i eq 1 then

a:=Random(1);

if a eq 0 then

z[1] := "x";

z[2] := "y";

i:=3;

else

z[1]:= "y";

b:=Random(1);

if b eq 0 then

z[2] := "x";

i:=3;

else

z[2] := "y";

i:=3;

end if;

end if;

else

z1 := z[i-2];

z2 := z[i-1];

if z1 eq "x" then

a:=Random(1);

if a eq 0 then

z[i] := "x";

i:=i+1;

else
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z[i] := "y";

i:=i+1;

end if;

else

if z2 eq "y" then

z[i] := "x";

i:=i+1;

else

z[i] := "y";

i:=i+1;

end if;

end if;

end if;

end while;

return z;

end if;

end function;

4.5.3 MultiplyRandomWord

Used to convert an array produced using RandomWord into a using element. Used as

MultiplyRandomWord(~g,z,G) where g is where you want to store the element, z is

the word you want to convert, and G is a group you want to do it in.

MultiplyRandomWord := procedure(~a,z,G)

n:=#z;

a:=Identity(G);

for i in [1 .. n] do

if z[i] eq "x" then

a:=a*x;
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end if;

if z[i] eq "y" then

a:=a*y;

end if;

end for;

end procedure;

4.6 Appendix 6

Table which gives correspondence between orbit names in Theorem 2.3.2 and orbit

names in [34] and [35].

Name in [34] Name here Name in [34] Name here Name in [34] Name here

∆1
1(a) ∆1

1(a) ∆4
3(a) ∆1

3(a) ∆1
4(a) ∆16

4 (a)

∆1
2(a) ∆2

2(a) ∆5
3(a) ∆9

3(a) ∆2
4(a) ∆3

4(a)

∆2
2(a) ∆3

2(a) ∆6
3(a) ∆8

3(a) ∆3
4(a) ∆18

4 (a)

∆3
2(a) ∆1

2(a) ∆7
3(a) ∆6

3(a) ∆4
4(a) ∆17

4 (a)

∆1
3(a) ∆3

3(a) ∆8
3(a) ∆2

3(a) ∆5
4(a) ∆7

4(a)

∆2
3(a) ∆4

3(a) ∆9
3(a) ∆10

3 (a) ∆6
4(a) ∆21

4 (a)

∆3
3(a) ∆5

3(a) ∆10
3 (a) ∆7

3(a)



Bibliography

[1] Gap - Groups, Algorithms, Programming, http://www.gap-system.org.

[2] Y. Segev A. Rapinchuk and G. Seitz, Finite quotients of the multiplicative group

of finite-dimensional division algebra are sovable, Journal of AMS 15 (2002), 929

– 978.

[3] M. Aschbacher, 3-transposition groups, Cambridge Tracts in Math., 1997.

[4] C. Bates and P. Rowley, Centralizers of real elements in finite groups, Arch.

Math. 85 (2005), 485 – 489.

[5] R. Brauer and K. A. Fowler, On groups of even order, Annals of Mathematics

62 (1955), 565 – 583.

[6] J. Bray, An improved method for generating the centralizer of an involution,

Arch. Math 74 (2000), 241 – 245.

[7] F. Buekenhout, Diagrams for geometries and groups, J. Comb. Theor. 27 (1979),

121 – 151.

[8] , Finite groups and geometries: a view on the present state and on the

future. groups of lie type and their geometries, London Math. Soc. Lecture Note

Ser. 207 (1993), 35 – 42.

[9] S. Perkins C. Bates, D. Bundy and P. Rowley, Commuting involution graphs for

finite Coxeter groups, Journal of Algebra 6 (2003), 461 – 476.

158



BIBLIOGRAPHY 159

[10] , Commuting involution graphs for symmetric groups, Journal of Algebra

266 (2003), 133 – 153.

[11] , Commuting involution graphs in special linear groups, Journal of Alge-

bra 85 (2004), 4179 – 4196.

[12] , Commuting involution graphs for sporadic simple groups, Journal of

Algebra 316 (2007), 849 – 868.

[13] J.J. Cannon and C. Playoust, An introduction to algebraic programming with

Magma, Springer-Verlag, 1997.

[14] R. T. Curtis, A new combinatorial approach to M24, Math. Proc. Cambridge

Philos. Soc. 79 (1976), 25 – 42.

[15] J. Saxl G. Malle and T. Weigel, Generation of classical groups, Geom. Dedicata

49 (1994), 85 – 116.

[16] D. Gorenstein, Finite Groups - second edition, Chelsea Publishing Company,

1980.

[17] A. Ivanov, A geometric characterization of Fischer’s baby monster, Journal of

Algebraic Combinatorics 1 (1992), 45–69.

[18] S.P. Norton R.A. Parker J.H. Conway, R.T. Curtis and R.A. Wilson, Atlas of

finite groups. maximal subgroups and ordinary characters for simple groups, Ox-

ford University Press, Eynsham, 1985.

[19] J.S. Leon and C.C Sims, The existence and uniqueness of a simple group gener-

ated by 3,4-transpositions., Bull. Am. Math. Soc. 83 (1977), 1039 – 1040.

[20] S. Linton, Private communication.

[21] J. Maginnis and S. Onofrei, On a homotopy relation between the 2-local geometry

and the bouc complex for the sporadic group co3, Journal of Algebra 315 (2007),

1 – 17.



BIBLIOGRAPHY 160

[22] J. Tripp I. Suleiman S. Rogers R. Parker S. Norton S. Nickerson S. Linton

J. Bray R.A. Wilson, P. Walsh, A world wide web atlas of group representa-

tions, http://brauer.maths.qmul.ac.uk/Atlas/v3/.

[23] A. Rapinchuk and Y. Segev, Valuation-like maps and the congruence subgroup

property, Invent. Math. 144 (2001), 571 – 607.

[24] M.A. Ronan and S.D. Smith, 2-local geometries for some sporadic groups, Proc.

A.M.S. 37 (1980), 283 – 289.

[25] P. Rowley, A Monster graph I, Proc. London Math. Soc. 90:1 (2005), 42 – 60.

[26] P. Rowley and L. Walker, A 11,707,448,673,375 vertex graph related to the baby

monster i, J. Combin. Theory Ser. A 2 (2004), 181 – 213.

[27] , A 11,707,448,673,375 vertex graph related to the baby monster II, J.

Combin. Theory Ser. A 2 (2004), 215 – 261.

[28] , The maximal 2-local geometry for J4. I., JP Journal of Algebra, Number

Theory and Applications 9:2 (2007), 145 – 213.

[29] , The maximal 2-local geometry for J4. II., JP Journal of Algebra, Num-

ber Theory and Applications 10:1 (2008), 9 – 49.

[30] , The maximal 2-local geometry for J4. III., JP Journal of Algebra, Num-

ber Theory and Applications 10:2 (2008), 129 – 167.

[31] , A 195,747,435 vertex graph related to the Fischer group Fi23, part I,

Preprint (2009).

[32] , A 195,747,435 vertex graph related to the Fischer group Fi23, part II,

Preprint (2009).

[33] , A 195,747,435 vertex graph related to the Fischer group Fi23, part III,

Preprint (2009).



BIBLIOGRAPHY 161

[34] P.J. Rowley and L.A. Walker, Octad orbits for certain subgroups of M24, Preprint

(2010).

[35] , The point-line collinearity graph of the Fi24 maximal 2-local geometry,

the first 3 discs, Preprint (2010).

[36] P. Walsh S. Linton, R. Parker and R. Wilson, Computer construction of the

monster, Journal of Group Theory 1 (1998), 307 – 337.

[37] Y. Segev, On the uniqueness of the Co1 2-local geometry, Geom. Dedicata 25

(1988), 159219.

[38] , The commuting graph of minimal nonsolvable groups, Geometriae Ded-

icata 88 (2001), 55 – 66.

[39] P. Taylor and P. Rowley, Involutions in Janko’s simple group J4, Preprint (2010).

[40] , Point-line collinearity graphs of two sporadic minimal parabolic geome-

tries, Preprint (2010).

[41] J. Tits, Buildings of spherical type and finite BN-pairs, Springer-Verlag 386

(1974).

[42] R. Wilson, A new construction of the Baby Monster and its applications, Bull.

London Math. Soc 25 (1993), 431 – 437.

[43] R. A. Wilson, Conjugacy class representatives in Fischer’s baby monster, LMS

J. Comput. Math. 5 (2002), 175 – 180.


