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Abstract 

  

 Function approximation capabilities of feedforward Neural Networks have 

been widely investigated over the past couple of decades. There has been quite a lot 

of work carried out in order to prove ‘Universal Approximation Property’ of these 

Networks. Most of the work in application of Neural Networks for function 

approximation has concentrated on problems where the input variables are 

continuous. However, there are many real world examples around us in which input 

variables constitute only discrete values, or a significant number of these input 

variables are discrete. Most of the learning algorithms proposed so far do not 

distinguish between different features of continuous and discrete input spaces and 

treat them in more or less the same way. Due to this reason, corresponding learning 

algorithms becomes unnecessarily complex and time consuming, especially when 

dealing with inputs mainly consisting of discrete variables.  

 

More recently, it has been shown that by focusing on special features of 

discrete input spaces, more simplified and robust algorithms can be developed. The 

main objective of this work is to address the function approximation capabilities of 

Artificial Neural Networks. There is particular emphasis on development, 

implementation, testing and analysis of new learning algorithms for the Simplified 

Neural Network approximation scheme for functions defined on discrete input spaces. 

By developing the corresponding learning algorithms, and testing with different 

benchmarking data sets, it is shown that comparing conventional multilayer neural 

networks for approximating functions on discrete input spaces, the proposed 

simplified neural network architecture and algorithms can achieve similar or better 

approximation accuracy. This is particularly the case when dealing with high 

dimensional-low sample cases1, but with a much simpler architecture and less 

parameters.  

                                                 
1. High Dimensional-Low Sample Cases refers to real world applications where the number of explanatory or independent 
variables is relatively higher in comparison to the available training examples.   
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In order to investigate wider implications of simplified Neural Networks, their  

application has been extended to the Regression Boosting frame work. By 

developing, implementing and testing with empirical data it has been shown that 

these simplified Neural Network based algorithms also performs well in other Neural 

Network based ensembles.  
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CHAPTER 1 

INTRODUCTION 

 Designing machines that can behave like humans has been amongst one of the 

most extensively explored areas of research in the field of machine learning for many 

decades. Neural Networks are one of the major milestones in achieving that goal. 

Artificial Neural Networks are considered one of the hottest topics both at present and 

in the future of computing. They are indeed self learning mechanisms which don't 

require the traditional skills of a programmer. Extensive research in this field is 

underway at the moment, and it is claimed that these neuron-inspired processors can 

do almost anything, which is attracting more research and development in this field.  

1.1 Neural Networks-A Brief Overview  

 There is no universally agreed upon definition of a Neural Network but there 

are certainly enough definitions to understand what a Neural Network is. According 

to [Hay96], “A Neural Network is a massively parallel distributed processor that has 

a natural propensity for storing experiential knowledge and making it available for 

use. It resembles the brain in two respects; knowledge is acquired by the network 

through a learning process and interneuron connection strengths known as synaptic 

weights are used to store the knowledge.”  

 

 Some other popular definitions of Neural Networks can be found in [Kas96] 

and [Rip96]. At this point we can define a Neural Network (NN) or more precisely an 

Artificial Neural Network (ANN) as “a computational or mathematical model 

composed of a large number of simple, highly interconnected processing elements 

capable of learning, information processing and problem solving based upon the 

connectionist approach to computation” [Med98], we may also refer to [RS03] and 
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[Wal90] for a detailed history of connectionism. The analogy between a biological 

neuron and an artificial neuron is depicted in the figure 1.1.  

 

 

 

Figure 1.1 Biological Neuron Vs Artificial Neuron 

 Image Source: Negishi, M. 1998. Everything that Linguists have Always Wanted to Know about Connectionism. Department of 

Cognitive and Neural Systems, Boston University. URL: http://hemming.se/gslt/LingRes/NeuralNetworks.htm 

 

 

1.2 Basic Terminology and Architectural Considerations 

  

As defined earlier, an artificial Neural Network is a mathematical model 

composed of a large number of simple, highly interconnected, processing elements 

for studying learning and intelligence. According to [KS96], artificial Neural 

Networks are parallel computation models that have several distinguishing features: 

 

1. A set of processing units. 

2. An activation state for each unit, which is equivalent to the output of the unit. 



 

 16  

3. Connections between the units. Generally each connection is defined by a 

weight ijW  that determines the effect that the signal of unit i  has on unit j .  

4. A propagation rule, which determines the effective input of the unit from its 

external inputs. 

5. An activation function, which determines the new level of activation based on 

the effective input and the current activation. 

6. An external input (bias, offset) for each unit. 

7. A method for information gathering (learning rule). 

8. An environment within which the system can operate, provide input signals and, 

if necessary, error signals. 

 

 As shown in figure 1.2, a processing unit receives a set of inputs  iX , 

( )1,2,3.....i n= ; these inputs are then multiplied with corresponding connection 

weights ijW , ( ), 1,2,3.....i j n= . The net input to a neuron is computed by summing all 

the individual products of network inputs, corresponding weight connections & bias  

i.e.  

1

n

i j i
i

w x b
=

+∑         (1.1) 

 

 

 

Figure 1.2 Block Diagram of An Artificial Neuron 
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 Each non-input unit in a Neural Network combines values that are fed into it via 

synaptic connections from other units, producing a single value called net input. The 

function that combines values is called the combination function, which is defined by a 

certain propagation rule. In most Neural Networks we assume that each unit provides 

an additive contribution to the input of the unit with which it is connected. The total 

input to unit j is simply the weighted sum of the separate outputs from the connected 

units plus a threshold or bias term mentioned in many texts as θj: 

1

n

j i j i j
i

y w x θ
=

= +∑        (1.2) 

 The contribution for positive ijW  is considered as an excitation and an inhibition 

for negative ijW . The units having the propagation rule as shown in equation (1.2) are 

called Sigma Units. In some cases more complex rules for combining inputs are used. 

One of the propagation rules known as sigma-pi has the following format [KS96]: 

1 1

mn

j i j ik j
i k

y w x θ
= =

= +∑ ∏            (1.3) 

 Lots of combination functions usually use a "bias" or "threshold" term in 

computing the net input to the unit. For a linear output unit, a bias term is equivalent to 

an intercept in a regression model. It is needed in much the same way as the constant 

polynomial ‘1’ is required for approximation by polynomials. The function ( )f n  

shown in the figure 1.2 is the unit's activation function. In the simplest case, f  is the 

identity function, and the unit's output is just its net input. This is called a linear unit. 

There are many other popular choices for activation functions summarised in the table 

1.1:  
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Activation Function Transfer Characteristics Network Type 

Hard Limiting 
S(x) = 0 if x < 0 

= 1 if x > 0 
Backpropagation 

Symmetrical Hard Limiting 
S(x) = -1 if x<0 

= 1 if x > 0 
Backpropagation 

Linear S(x) = x ADALINE  

Saturating Linear 

S(x) = 0 if x < 0 

S(x) = x if 0 < x < 1 

= 1 if x > 1 

ADALINE 

Symmetrical saturating linear 

S(x) = -1 if x < 0 

S(x) = x if -1 < x < 1 

= 1 if x > 1 

ADALINE 

Log Sigmoid S(x) = 1/1+exp-x Backpropagation 

Bipolar Sigmoid 
x

x

e

e
xS −

−

+
−=

1

1
)(   Backpropagation 

Hyperbolic Tangent 
S(x) = tanh(x) = 

ex-e-x/ex+e-x 
Backpropagation 

Sigmoid +ve Linear 
S(x) = 0 if x<0 

= x if x > 0 
Backpropagation 

Radial Basis  






 −=
b

ax
kbaxS ),,(  RBF 

Competitive 

S(x)=1; for neuron with 

maximum ‘x’ 

= 0; for all others 

LVQ 

 

Table 1.1 Activation Functions And Their Transfer Characteristics 

 The architecture or topology of a network is defined by the number of layers, the 

number of units per layer, and the interconnection patterns between layers. They are 

generally divided into two categories based on the pattern of connections i.e. 

Feedforward Neural Networks and Recurrent Neural Networks as shown in figure 1.3.  
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Figure 1.3 Neural Network Topologies 

 1) Feed-forward networks allows the data to flow from input units to output units 

in strictly one direction, this is the property that gives this architecture the name ‘feed-

forward’. The data processing can extend over multiple layers of units, but no feedback 

connections are present. That is, connections extending from outputs of units to inputs 

of units in the same layer or previous layers are not permitted as shown in the figure 

1.4. Every unit only acts as an input to the immediate next layer. Obviously, this class 

of networks is easier to analyze theoretically than other general topologies because 

their outputs can be represented with explicit functions of the inputs and the weights.  

 

Figure 1.4 Feedforward Neural Network Architecture  
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 Single Layer Perceptron, Multilayer Layer Perceptron (MLP’s) and Radial Basis 

Networks are examples of feedforward network architecture. Feedforward networks 

trained with backpropagation algorithm are the main focus of this thesis. Details will 

be described in next chapter. The feed-forward networks provide a general framework 

for representing non-linear functional mapping between a set of input variables and a 

set of output variables. The representation capability of a network can be defined as the 

range of mappings it can implement when the weights are varied. The approximation 

and representation capabilities of feedforward networks are widely publicized and one 

may refer to [Sar97][RJ99][Bis95][Hor91] for a detailed review of the issue; at the 

moment it is sufficient to recognize the following facts about the representation 

capabilities of feedforward architecture: 

• Single Layer Networks are capable of representing only linearly separable 

functions or linearly separable decision domains.  

• One hidden layered network can approximate arbitrarily well any functional 

continuous mapping from one finite-dimensional space to another, provided that the 

number of hidden units is sufficiently large. To be more precise, feed-forward 

networks with a single hidden layer and trained by least-squares are statistically 

consistent estimators of arbitrary square-integral regression functions if assumptions 

about samples, target noises, number of hidden units, and other factors are all met. 

Feed-forward networks with a single hidden layer using threshold or sigmoid 

activation functions are universally consistent estimators of binary classifications under 

similar assumptions.  

• Two hidden layered networks can represent an arbitrary decision boundary to 

arbitrary accuracy with threshold activation functions, and could approximate any 

smooth mapping to any accuracy with sigmoid activation functions. 

2) Recurrent Networks allow feedback connections. This type of network has at least 

one feedback loop which can connect a unit to it self, see figure 1.5. In comparison to 

feed-forward networks, the dynamic properties of the network are important. In some 
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cases, the activation values of the units undergo a relaxation process such that the 

network will evolve to a stable state in which activation does not change further. In 

other applications in which the dynamic behaviour constitutes the output of the 

network, the changes of the activation values of the output units are significant. 

Common examples of Recurrent Neural Networks are Competitive Networks, 

Kohonen’s Self Organizing Maps, Hopfield Network and ART Models [KS96].  

 

Figure 1.5 Recurrent Neural Networks Architecture 
 

 The issue of selecting architecture optimal for a specific problem is of prime 

importance. The representation capabilities of these networks allow us to choose the 

best architecture for a specific problem. In addition to a networks representation 

capabilities, a comprehensive problem specification also help define the network in 

many ways [HDB96]: 

 

• Number of network inputs = number of problem inputs. 

• Number of neurons in output layer = number of problem outputs. 

• Output layer transfer function choice at least partly determined by problem 

specification of the outputs. 
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 The last, but perhaps the most important consideration, is the learning process 

in Neural Networks. This is the most important feature of Neural Networks which 

allows them to learn from past experiences. The learning process is also very 

important with reference to this work and we will therefore discuss learning laws and 

corresponding algorithms in more detail in chapter 2.  

1.3      Real World Applications Of Neural Networks 

 This evolutionary technology (ANNs) has been successfully applied to many 

real world applications, and performs very well on tasks involving Classification, 

Clustering, Pattern Recognition, Function Approximation and Time Series Prediction 

problems. 

 These capabilities of (NN) make them a very popular choice for many 

application areas such as Aerospace, Electronics, Banking, Forecasting, 

Manufacturing, Medicine, Entertainment, Defence and Bioinformatics. This 

technology has been successfully used in medical diagnosis (e.g. diagnosis of heart 

infection & epilepsy), system identification and control (e.g. vehicle control, process 

control), pattern recognition (e.g. face identification, radar systems, object 

recognition, etc.), sequence recognition (e.g. speech, handwritten text recognition, 

gesture,) game-playing and decision making (e.g. racing, backgammon, chess), 

financial applications, data mining,  visualization and e-mail spam filtering. The list 

of Neural Network applications in real world is very long and the readers are referred 

to [HDB96][SS96][AB99] for more detailed review of these applications. 

 

 Most of the work in application of Neural Networks for function 

approximation has concentrated on problems where the input variables are 

continuous. However, there are many real world examples around us in which input 

variables constitute only discrete values, or a significant number of these input 

variables are discrete. For the purpose of this research we will focus on real-world 
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function approximation problems, where the independent or input variables are 

mainly discrete. We will discuss special features of such applications in Chapter 3.  

 

1.4 The Problem Statement 

 

 Approximation and representation capabilities of Artificial Neural Networks 

(ANN) are widely publicized, and to date it has been proved by many that 

Feedforward Neural Networks (FNN’s) are capable of approximating any continuous 

function to reasonable accuracy; this property is known as ‘Universal Approximation 

Property’. More recently, it has been shown that by focusing on the distinguished 

features of discrete input spaces, it is possible to have more simplified and possibly 

more accurate Neural Network architecture that can approximate functions defined on 

discrete input spaces with sufficient accuracy, and without any compromise on 

generalisation and approximation capabilities of existing NN schemes. Although 

standard NN approximation methods can be used for approximation of functions on 

discrete and mixed input spaces, when dealing with such problems these methods 

become unnecessarily complex, and less effective due to not taking into account 

special features of discrete input spaces. The main objective of this work is to address 

the function approximation capabilities of Artificial Neural Networks, with particular 

emphasis on development, implementation, testing and analysis of new learning 

algorithms for the simplified Neural Network approximation scheme for functions 

defined on discrete input spaces.  

 

1.5 Motivations Behind Initiation Of This Research 

The motivations that contributed towards initiation of this research are: 

• ‘Biological Analogy’: The fact that Neural Networks resemble the human 

brain in their architecture and have the ability to learn from experience; just 

like humans.   
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• ‘The Success of Feedforward Neural Network Architecture’: At present, only 

a few of Neural Network models, paradigms actually, are being used 

commercially. One particular model, the feedforward back-propagation 

network, is by far and away the most popular.  

• ‘Universal Approximation Property’: The ability of Feedforward Neural 

Networks to approximate any reasonable function to arbitrary accuracy is 

known as the universal approximation property.   

• ‘Nature of Input Variable Spaces’: Whilst proving the universal 

approximation property, almost all the approximation schemes have 

considered the independent variables (network inputs) to take on continuous 

values only. There are very few methodical results taking into account the true 

nature of input variable spaces, if there are any, they follow the same 

methodology as for continuous variables. A detailed review of the research 

and results obtained so far will be presented in Chapter 2, in connection with 

the review of existing techniques and methods. 

• ‘Discrete Nature of Variables’: In real world applications, many of the 

variables are discrete in nature i.e. they take on a countable number of values, 

as compared to continuous variables which can take on any number of values 

within a given interval. Categorical, nominal and binary variables are classical 

examples of discrete data. Many real world modelling problems have a large 

number of variables that just take on discrete values e.g. Location Market 

Condition Performance Modelling (LMCP) as described in [ZK08][ZGKL05]. 

• ‘Separable Hierarchical Structure’: The property of functions defined on 

discrete input spaces to have a separable hierarchical structure as discussed in 

[ZK08].  

• ‘Limited Availability Of Training Data’: In order to achieve desired accuracy, 

it is necessary for any NN model to have sufficiently large amount of data 

available for training. In practice there are many cases when the availability of 

training data is limited as indicated in [ZK08][ZGKL05].  
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• ‘Possibility Of A More Simplified Neural Network Architecture’: Keeping in 

mind the special properties of discrete variables (e.g. they take on a finite 

number of states), it is possible to have a more simplified feedforward Neural 

Network architecture; that exploits this nature of discrete variables. 

• ‘More Practical and Acceptable Architecture’: In practice, it is very hard to 

convince commercial organizations and other customers to employ NN 

technology to their specific problems because of the black-box nature of 

Neural Networks and complex computations associated with them. A more 

simplified architecture may be a better idea in filling that gap; besides the 

most apparent advantage of saving valuable resources such as processing time 

and memory while performing complex computations.  

1.6 Research Objectives To Be Met 

 

 The main objectives of this research are to investigate the function 

approximation capabilities of Feedforward Neural Network Models, keeping in mind 

the limitations of standard Feedforward Neural Network model and special features 

of discrete input spaces. The main objectives of this research will be: 

 

• To propose new simplified algorithms based on the simplified Neural 

Network approximation scheme proposed in [ZGKL05] for function 

approximation on discrete input spaces, to overcome the weakness of the 

existing NN algorithms.  

• Development of the corresponding learning algorithms for these new 

proposed schemes.  

• Implementation and analysis of the approximation capabilities of these newly 

proposed simplified Neural Network algorithms. 
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• Testing the performance of these algorithms based on empirical data such as 

in Quantitative Structural Activity Relationship Modeling (QSARs), and 

compare with the standard Neural Network model. 

• Investigate the wider implications of simplified Neural Network approach to 

regression boosting. 

• Propose new simplified regression boosting approach using simplified Neural 

Network model as base learner. 

• Development and implementation of the new simplified regression boosting 

scheme along with corresponding algorithm. 

• Analysis and performance comparison of simplified regression boosting 

algorithm, with standard regression boosting models employing Neural 

Networks as base/ weak learners. 

 

1.7 Main Contributions 
 

 The main contributions of this research are listed below: 
 

• A systematic review of function approximation capabilities of feedforward 

Neural Network model and universal approximation property. 

• Detailed analysis and evaluation of simplified Neural Network approach. 

• Simplified Neural Network based algorithms I and II for approximation of 

functions defined on discrete input spaces. By developing these learning 

algorithms, and comparing the performance of these algorithms with standard 

Neural Network model over benchmarking examples, it has been shown that 

these algorithms work in practice and achieve similar or better accuracy with 

employing relatively less parameters required for the model.   

• Derivation of simplified backpropagation algorithm for simplified Neural 

Network algorithm I and II. 

• Analysis of wider implications of simplified Neural Network approach in 

regression boosting frame work.  
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• Simplified regression boosting algorithm-III based on the simplified 

regression boosting approach. By implementing and comparing with a 

standard regression boosting model over benchmarking examples; it has been 

shown that this algorithm can be used for boosting regression estimates for 

selected domain. 

 

Although all three algorithms are domain specific, and targets the approximation 

problems in high dimension-low sample cases for functions defined on discrete input 

spaces, they are simple enough to be easily extended to target mixed variable and 

high sample cases. 

  

1.8 Structure Of Thesis 

 

 This thesis consists of six chapters, a brief outline is as follows:  

 

 Chapter one gives a brief overview and introduction of the chosen research 

area, with particular emphasis on Neural Network technology. Chapter one also 

contains a brief problem description, motivations behind this work, and a summary of 

research objectives.  

 

 Chapter two of this thesis focuses on the all important learning phase of 

Neural Network models. We presented different forms of learning, along with a 

discussion on learning in MLP models, with particular emphasis on feedforward 

Neural Network architecture, and the corresponding backpropagation learning 

algorithm.  

 

 Chapter three introduces the function approximation problem, with a detailed 

review of related work in this field, along with some recent advancement. Neural 

Network based ensemble methods have also been discussed with a particular focus on 
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application of Neural Networks in regression boosting frame work.  Chapter three 

also details the fundamentals of simplified Neural Network approach and special 

features of discrete input spaces.  

  

 Chapter four of the thesis details the proposed simplified algorithms based on 

simplified NN approach. A detailed analysis of approximation capabilities of 

simplified NN algorithms is also included in this chapter. This chapter also contains a 

discussion on the wider implications of the simplified Neural Network approach, and 

gives an overview of how simplified NN approach can be applied to regression 

boosting. We have given a brief introduction to regression boosting in this chapter, 

and discussed how a simplified regression booting scheme can be developed using 

simplified NN approach. We also propose a new algorithm for regression booting on 

functions defined on discrete input spaces in this chapter.  
 

 Chapter five of this thesis presents implementation and evaluation details.  

The obtained results are summarised in form of tables and graphs. A detailed analysis 

of the performance of the simplified Neural Network based algorithms I, II and 

simplified regression boosting algorithm-III is also given in chapter five.  

 

 Chapter six concludes this research with a detailed summary of the research 

carried out, results obtained, and contributions in literature. We also discussed 

important observations and future research directions in chapter six.  

 

1.9 Summary 
  

 This chapter gives an introduction to the chosen area of research and gives a 

brief overview of the Neural Network technology and its applications. We have also 

included a summary of technological considerations and motivations behind initiation 

of this research. A summary of problem statement along with details of research 

objectives to be achieved are also presented in this chapter. This chapter concludes 

with a summary of all the six chapters of this thesis. 
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CHAPTER 2 

LEARNING IN FEEDFORWARD NEURAL NETWORKS 

 Most of the Neural Networks used in practice do one or more of the tasks such as 

pattern classification, function approximation, noise reduction, optimization, data 

clustering etc. While performing any of these tasks an Artificial Neural Network maps 

a set of inputs to a set of outputs. This non-linear mapping is generally considered in a 

multidimensional surface. The objective of learning is to mould the decision surface 

according to a desired response, either with or without the training process RS03.  

Readers of this thesis are referred to [AB99] for a comprehensive understanding of 

theoretical foundation of learning in Neural Networks.  

2.1 The Learning Process 

 Learning or training process is perhaps the back bone of Neural Network 

technology. As described earlier, functionality of a Neural Network is determined by 

the combination of the topology (number of layers, number of units per layer, and the 

interconnection paths between the layers) and the weights of the connections within the 

network. The topology is usually held fixed, and the weights are determined by a 

certain training algorithm. The process of adjusting the weights to make the network 

learn the relationship between the inputs and targets is called learning, or training.  

 Many learning algorithms have been invented to help find an optimum set of 

weights that result in a desired solution of the problems. The figure 2.1 presents 

taxonomy of learning process in a context ascribed by [Hay96]:  
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Figure 2.1 Neural Network Learning Process, Paradigms And Algorithms 
 

2.1.1        Supervised Learning Laws  
 

 Neural Network Model that uses Supervised Learning are trained by 

presenting it with examples (also called training data) of inputs, and desired outputs 

(target values). These input-output pairs are provided by an external teacher, or by the 

system containing the network. The difference between the real outputs and the 

desired outputs is used by the algorithm to adapt the weights in the network. It is 

often posed as a function approximation problem - given training data consisting of 

pairs of input patterns ‘x’, and corresponding target ‘t’, the goal is to find a function 

f(x) that matches the desired response for each training input. 

2.1.2     Unsupervised (Self Organizing) Learning  

 With unsupervised learning, there is no feedback from the environment to 

indicate if the outputs of the network are correct. The network must discover features, 

regulations, correlations, or categories in the input data automatically.  In fact, for 

most varieties of unsupervised learning, the targets are the same as inputs. In other 

words, unsupervised learning usually performs the same task as an auto-associative 

network, compressing the information from the inputs. 
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2.1.3   Graded (Reinforcement) Learning  

 Graded or reinforcement learning is quite similar to supervised learning, except 

that instead of being presented by correct examples of network response on each 

individual trial, the network receives only a sequence of multiple training trials, i.e. at 

time intervals containing multiple input-output episodes; the network is given a 

numeric score or grade that represents the value of some network performance 

measurement function over this time interval. This type of networks are particularly 

used in control and process optimization problems where there is no way to know 

what the desired outputs should be [RS03].   

 Every learning algorithm follows a learning rule that dictates the whole learning 

process, in other words the conditions that have to be met by that learning algorithm. 

Hebb’s rule and Delta rule (also called LMS i.e. least mean squared error rule) are two 

of the most basic and famous of the learning rules. The table 2.1 summarizes the 

different types of learning rules categorized under supervised and unsupervised 

learning methods. 

 

Unsupervised Learning Laws Supervised Learning Laws 

Kohonen’s self organizing maps Delta rule 

Hebb’s rule/ signal Hebb law Generalized delta rule 

Competitive learning laws Simulated Annealing 

Differential Hebbian learning laws Supervised Competitive Learning 

Differential competitive learning laws  

Table 2.1 Supervised and Unsupervised Learning Laws 
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2.2  The Supervised Learning Laws For MLPs  

 This section details various supervised learning algorithms, with particular 

emphasis on multilayer feedforward networks trained with backpropagation 

algorithm, since this is the main focus of this research. Before we move on to a 

detailed analysis of these learning algorithms, the selection of an objective or cost 

function under which these algorithms operate, is very important. To train a network 

and measure how well it performs, an objective function (or cost function) must be 

defined to provide an unambiguous numerical rating of system performance. Selection 

of an objective function is very important because the function represents the design 

goals and decides what training algorithm can be taken.  To develop an objective 

function that measures exactly what we want is not an easy task. A few basic 

functions are very commonly used. One of them is the sum of squares error function, 
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where ‘P’ indexes the patterns in the training set, N denotes the total number of 

patterns, ‘i’ indexes the output nodes, and ‘pit ’and ‘ piO ‘ are, respectively, the target 

and actual network output for the ‘ith’ output unit on the ‘pth’ pattern. In real world 

applications, it may be necessary to complicate the function with additional terms to 

control the complexity of the model. 

2.2.1   The Perceptron Learning Rule 

 The McCulloch-Pitts (1943) neuron model has severe limitations e.g. the lack of 

learning capabilities mainly due to the presence of fixed set of weights and threshold. 

To overcome these severe shortcomings, several models were proposed that have the 

ability to some how adjust the synaptic weight connections [KS04].  The perceptron 

learning rule is perhaps the first of all supervised learning rules. It was introduced by 

Frank Rosenblatt in late 1950’s. Although very basic in its computing capabilities, it 
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nevertheless influenced extensive research taken in this field of computing. In 

perceptrons, training the weights are updated by altering the network parameters by an 

amount proportional to the difference between the target output and the actual output. 

One way to learn an acceptable weight vector is to begin with random weights, then 

iteratively apply the perceptron to each training example, modifying the perceptron 

weights whenever it misclassifies an example. This process is repeated, iterating 

through the training examples as many times as needed until the perceptron classifies 

all training examples correctly. Weights are modified at each step according to the 

perceptron training rule. Following is a description of basic steps in perceptron 

training rule. 

Initialization: Set all the weights and node threshold to small random numbers. Note 

that the node threshold is the negative of the weight from the bias unit (whose 

activation level is set to one). 

Computing activation level of units: The activation level of an input unit is determined 

by the instance presented to the network. However, the activation level of an output 

unit is determined as: j ( )hO f a= , where ( )
1

n

ji i j
j

a w θ
=

= −∑ x , ( )hf a is a hard 

limiting function given by:  ( ) 1hf a = , if 0a ≥ and, ( ) 0hf a = if 0a < . 

Weight Adjustment: Adjust weights by following the rule: 

( ) ( )ji ji jiw new w old w= + ∆          (2.1) 

where as change in wji can be computed as,  

( )ji i i iw t o xη∆ = −          (2.2) 

where ‘η ’ is a time dependent learning rate (0<η <1), ti represents the target output 

where as oi represents the actual output of the unit. 
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Iterations: Repeat the process until convergence is achieved. 

 Note that output value ‘oi‘ is +1 or -1 (not a real); the perceptron rule is a 

learning rule for a threshold unit and to achieve convergence the training examples 

should be linearly separable and the learning rate should be sufficiently small. 

2.2.2   The Widrow-Hoff Learning (DELTA) Rule 

 The very first extension of perceptron training rule was proposed in early 1960’s 

by Widrow called the delta rule. His model ADALINE has the ability to adjust the 

network synaptic weights according to Widrow-Hoff learning rule famously known as 

the Least Mean Square (LMS) Algorithm. The learning rule for ADALINE is formally 

derived using the gradient descent algorithm. The LMS rule adjusts the weights of the 

network by incrementing them every iteration step by an amount proportional to the 

gradient of the cumulative error of the network. 

 The basic differences in both the rules are summarized in table 2.2.   

Perceptron rule Delta rule 

Thresholded output Unthresholded output 

Converges after a finite number of 

iterations to a hypothesis that perfectly 

classifies the training data, provided the 

training examples are linearly separable. 

Converges only asymptotically toward 

the error minimum, possibly requiring 

unbounded time, but converges 

regardless of whether the training data 

are linearly separable. 

Linearly separable data Linearly non-separable data 

Table 2.2 Perceptron Vs Delta rule 
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 The delta training rule is best understood by considering the task of training an 

unthresholded perceptron; that is, a linear unit for which the output ‘o’ is given by:  

( ) .o x w x=� � �
         (2.3) 

In order to derive a weight learning rule for linear units, let us begin by specifying a 

measure for the training error of a hypothesis (weight vector), relative to the training 

examples: 

21
( ) ( )

2 d dd D
E w t o

∈
≡ −∑

�
     (2.4) 

Where the term dt  is the target and do refers to actual output of the linear units. The 

vector derivative of equation (2.4) is called the gradient of E with respect 

to )( w written as: 

1 2

( ) . . . . . . .
o n

E E E E
E w

w w w w

 ∂ ∂ ∂ ∂∇ ≡  ∂ ∂ ∂ ∂ 

�
    (2.5) 

The gradient specifies the direction that produces the steepest increase in E. The 

negative of this vector therefore gives the direction of steepest decrease. 

As we know that the training rule for gradient descent algorithm is: 

w w w← + ∆� � �
        (2.6) 

where  

)(wEw ∇−=∆ η         (2.7) 

The negative sign is presented because we want to move the weight vector in the 

direction that decreases E. This training rule can also be written in its component form 

as shown in equation (2.8): 
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iii www ∆+←         (2.8) 

Where  
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E
w

∂
∂−=∆ η         (2.9) 

which makes it clear that steepest descent is achieved by altering each component 

iw of w  in proportion to 
iw

E

∂
∂

. 

The vector of 
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E

∂
∂

derivatives that form the gradient can be obtained by 

differentiating E 
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The weight update rule for standard gradient descent can be summarized as: 

i
i

E
w

w
η ∂∆ = −

∂
 where,  

( ) ( )i d d idd D
w t o x

∈
∆ = − −∑      (2.15) 

The major steps of this gradient descent learning algorithm are outlined in figure 2.2: 

 Recall that the training pairs are of the formtx, , where x  is the vector of 

input values and ‘ t ’ is the corresponding target values. ‘η ’ is a small value e.g 0.5, 

called the learning rate. 

 

Figure 2.2 The Widrow-Hoff Learning Algorithm 

2.3   Backpropagation Algorithm For MLPs 

 The Backpropagation algorithm was first proposed by Paul Werbos in the 

1970's. However, it was not until it was rediscovered in 1986 by Rumelhart and 

McClelland that BackPropagation became widely used.  

Step 1.  Initialization:  Initialize each iw   to small random values. 

Step 2.  Until termination condition is met, repeat:  

 - Initialize each iw∆ to zero. 

 - For each ,x t
�

 in training set, repeat 

  Input each instance x
�

 to the unit and compute the output ‘O ‘. 

  For each linear unit weight iw  , Do 

   ( )i i iw w t o xη∆ ← ∆ + −� �
 

 - For each linear unit weight iw  , Do 

  iii www ∆+←
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 As described earlier, linear approximation networks are too restrictive and 

nonlinear approximation networks offer much greater capacity. In order to enhance 

the approximation capabilities, it is critical to expand a single layer structure to a 

multilayer network. A typical multilayer Neural Network may consist of many layers 

of neurons that can be divided into three categories:  Input, Output, and a Hidden 

layer.  We have already seen how the Input and Output layers work, so now we will 

discuss the hidden layer. When it comes to using the gradient descent method for 

training a multilayer Neural Network, we run into some problems.  Recall that the 

gradient descent technique basically measures the amount of error that our present 

output differs from the actual output we want.  From the gradient descent technique 

described in simple Neural Networks, it was easy to calculate this change in 

proportional error because our weights are only found on input cells. Since our 

gradient descent really only calculate the change in weight proportion based on the 

input weights, how do we go about adjusting the hidden layer weights?  One way of 

thinking is to re-calculate each hidden-layer units' weight based on their own 

individual inputs.  While this would work, it would be quite time-consuming.  One 

method that recursively does this, is the concept of backpropagation.   

 The idea behind backpropagation is to compute the individual error functions 

for each output node in our Neural Network and then sum them up.  This summed up 

error represents the overall error function for our Neural Network.  Now, since our 

error function is a summation of a group of output nodes' errors, we can determine the 

individual negative gradients for each output as the function is a continuous and 

differentiable function over the weights that contributed to that output nodes' error.  

We apply this same process recursively for each hidden layer of the Neural Network 

and update all of the weights.  This recursive calculation of each layer's error and 

subsequent negative gradient calculation is known as backpropagation, as you are 

propagating the calculation back through the network layer by layer.   
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 This algorithm is basically a generalization of the gradient descent method 

explained above.  What we are in essence doing is treating each output as a single 

perceptron and updating the weights associated with it.  We then recursively 

backpropagate this calculation through all the layers of the network until the Neural 

Network is trained. The combination of weights which minimizes the error function is 

considered to be a solution of the learning problem.  

 This algorithm will form the basis of our work and we will frequently refer to 

different steps in this algorithm throughout this thesis. Therefore, we have included a 

detailed derivation of the standard BP algorithm as appendix-A. 

2.4    Special Issues in BP Learning and MLPs 

 The section below briefly describes some of the commonly addressed issues 

relating to backpropagation learning and Multilayer Perceptrons (MLPs). 

2.4.1  Convergence, Stability And Plasticity  

 Convergence - We can say that the network has achieved convergence when 

the examples of the tasks are continuously presented, and the corresponding weight 

changes are carried out in such a way that the changes made during one iteration does 

not affect changes made in earlier alterations [RS03]. In other words, a situation when 

the network response for two consecutive cycles is the same and therefore no further 

iterations are required.   

 Stability - If weights are altered after each iteration, then convergence of 

weights should constitute towards the stability of the network. But in most situations 

it takes many more iterations than you desire to have output in two consecutive cycles 

to have the same response. Then a tolerance level on the convergence criterion can be 

used. With a tolerance level, an early and stabilized network state can be achieved. 
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 Plasticity – Suppose a network is trained to learn some new examples, and in 

this process the weights are adjusted according to an algorithm. After learning those 

examples the network encounters a new example, the network then alters the model 

parameters again to learn that new example. But if the new weight structure is not 

responsive to the latest example; then the network does not possess plasticity. Thus 

the Plasticity is the ability to deal satisfactorily with new short -term memory (STM) 

while retaining the long-term memory (LTM) [RS03]. However, attempts to endow a 

network with plasticity may have some adverse effects on the stability of the network.          

2.4.2  Selection of Hidden Layer Units (Activation function) 

 Since this method requires computation of the gradient of the error function at 

each iteration step, we must guarantee the continuity and differentiability of the error 

function. Obviously we have to use a kind of activation function other than the step 

function used in perceptrons, because the composite function produced by 

interconnected perceptrons is discontinuous, and therefore the error function too. One 

of the more popular activation functions for backpropagation networks is the 

sigmoidal activation function.  

2.4.3    When To Stop Training? 

 Another important issue with backpropagation learning is when to stop the 

training. We know that in typical applications the weight update loop may be iterated 

thousands of times. The choice of termination condition is important because too few 

iterations can fail to reduce error sufficiently, on the other hand too much iterations 

can lead to over fitting the training data. Many researchers have suggested different 

solutions for termination criteria problem e.g. stopping the training session after a 

fixed number of iterations (epochs) have elapsed, stopping once the validation error 

meets some criterion, or once the error falls below some preset threshold value. 
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2.4.4    Local Minima 

 

 Since backpropagation uses a gradient-descent procedure, a Backpropagation 

network follows the contour of an error surface with weight updates moving it in the 

direction of steepest descent. For simple two-layer networks (without a hidden layer), 

the error surface is bowl shaped and using gradient-descent to minimize error is not a 

problem; the network will always find an errorless solution (at the bottom of the 

bowl). Such errorless solutions are called global minima. However, when an extra 

hidden layer is added to solve more difficult problems, the possibility arises for 

complex error surfaces which contain many minima. Since some minima are deeper 

than others, it is possible that gradient descent will not find global minima. Instead, 

the network may fall into local minima which represent suboptimal solutions. 

 

2.4.5   Number Of Hidden Layers 

 

 We already know that networks with two hidden layers can represent functions 

with any kind of shapes. There is no theoretical reason to use networks with more 

than two hidden layers. It has also been proved that for the vast majority of practical 

problems, there is no reason to use more than one hidden layer. Problems that require 

two hidden layers are only rarely encountered in practice. Even for problems requiring 

more than one hidden layer theoretically, most of the time, using one hidden layer 

performs much better than using two hidden layers in practice [Mas93].  Training 

often slows dramatically when more hidden layers are used. Of course, it is possible 

that for a certain problem, using more hidden layers of just a few units is better than 

using fewer hidden layers requiring too many units, especially for networks that need 

to learn a function with discontinuities. In general, it is strongly recommended that 

one hidden layer be the first choice for any practical feed-forward network design. If 

using a single hidden layer with a large number of hidden units does not perform well, 

then it may be worth trying a second hidden layer with fewer processing units.           
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2.4.6   Number of Hidden Units 

 

 Another important issue in designing a network is how many units to place in 

each layer. Using too few units can fail to detect the signals fully in a complicated 

data set, leading to under-fitting. Using too many units will increase the training time, 

perhaps so much that it becomes impossible to train it adequately in a reasonable 

period of time. A large number of hidden units might cause over-fitting, in which case 

the network has so much information processing capacity, that the limited amount of 

information contained in the training set is not enough to train the network.   

  

 The best number of hidden units depends on many factors such as the numbers 

of input and output units, the number of training cases, the amount of noise in the 

targets, the complexity of the error function, the network architecture, and the training 

algorithm [Sar97]. There are lots of “rules of thumb” for selecting the number of units 

in the hidden layers as mentioned in [Mas93] [Sar97][Ara93]  : 

 

• Somewhere between the input layer size and output layer size. 

• Two third of the input layer size plus the output layer size. 

• Less than twice the input layer size.  

• Squared input layer size multiplied by output layer size. 

 

 Those rules can only be taken as a rough reference when selecting a hidden 

layer size. They do not reflect the facts well because they only consider the factor of 

the input layer size and output layer size, but ignore other important factors that we 

have discussed earlier. In most situations, there is no easy way to determine the 

optimal number of hidden units without training, using different numbers of hidden 

units and estimating the generalization error of each.  The best approach to find the 

optimal number of hidden units is trial and error. In practice, we can use either the 

forward selection (i.e. starting with a small number of hidden units and increasing 
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gradually until convergence criteria is met) or backward selection (i.e. starting with a 

large number of hidden units and decreasing gradually until convergence criteria is 

met)  to determine the hidden layer size.  

 

2.4.7   Learning Rate and Momentum 

 

 The Backpropagation algorithm requires that the weight changes be 

proportional to the derivative of the error. The larger the learning rate, the larger the 

weight changes on each epoch, and the quicker the network learns. However, the size 

of the learning rate can also influence whether the network achieves a stable solution. 

If the learning rate gets too large, then the weight changes no longer approximate a 

gradient descent procedure. (True gradient descent requires infinitesimal steps). 

Oscillation of the weights is often the result. Ideally then, we would like to use the 

largest learning rate possible without triggering oscillation. This would offer the most 

rapid learning and the least amount of time spent waiting at the computer for the 

network to train. One method that has been proposed is a slight modification of the 

backpropagation algorithm so that it includes a momentum term. Applied to 

backpropagation, the concept of momentum is that previous changes in the weights 

should influence the current direction of movement in weight space. With momentum, 

once the weights start moving in a particular direction in weight space, they tend to 

continue moving in that direction which can help the network to "roll past" any local 

minima, as well as speed learning (especially along long flat error surfaces).  

2.4.8   The Training Style 

 Updating the weights in a backpropagation network can be achieved by either 

of two ways:  

1.  Online or Pattern By Pattern Learning, in which the network parameters are 

updated after the presentation of each pattern. This type of learning is recommended 
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for application requiring high accuracy and can compromise on other factors such as 

time etc. 

 2.  Batch or Epoch Based Training, where the network parameters are updated once 

or after all of the patterns in the training set have been presented. This method works 

out to be much faster then the online training methods.  

2.4.9  Test, Training And Validation Sets 

 

 In NN methodology, the sample is often subdivided into "training", 

"validation", and "test" sets. The distinctions among these subsets are crucial; it is 

often argued that any performance comparison among two networks should be done 

on data that is not used for training or unseen examples. Neural network models are 

trained using the training data set examples, the performance is then compared using 

validation data set examples, this approach is known as ‘hold-out’ method [Bis95]. 

However, this approach can lead to some over-fitting in validation sets, therefore a 

third data set usually called test set is used to compare the performance of selected 

networks.    

 

In [Spr97] author defines these three types of training data as:  

 

• Training set - A set of examples used for learning that is to fit the parameters 

[i.e., weights] of the classifier.  

• Validation set - A set of examples used to tune the parameters [i.e. 

architecture, not weights] of a classifier, for example to choose the number of 

hidden units in a Neural Network.  

• Test set - A set of examples used only to assess the performance or 

generalization of a fully-specified classifier.  
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 The crucial point is that a test set, by the standard definition in the NN 

literature, is never used to choose among two or more networks, so that the error on 

the test set provides an unbiased estimate of the generalization error (assuming that 

the test set is representative of the population, etc.). Any data set that is used to choose 

the best of two or more networks is, by definition, a validation set, and the error of the 

chosen network on the validation set is optimistically biased [Sar97]. 

 

 To summarize the above discussion, we should remember that BP learns the 

weights for a multilayer network, given a network with a fixed set of units and 

interconnections. It employs gradient descent to attempt to minimize the squared error 

between the network output values and the target values for these outputs. The 

learning or network training is carried out in two phases. In forward stage, we 

calculate outputs given training examples of the form [X, t], and in backward stage, 

we update weights by calculating delta for all the hidden and input layers separately. 

 

 Many researchers and mathematicians have derived the BP algorithm in 

sufficient detail. The readers of this thesis are referred to [RS03][HDB96] and 

[Hay96] for an in-depth discussion and derivation of this algorithm. A detailed 

derivation of backpropagation algorithm for Multilayer Perceptrons is also presented 

in ‘Appendix-A’ for better understanding and further reference in this thesis. 

 

2.5     Variants of the BP Learning  

 

 The gradient descent optimization method used in the standard back-

propagation learning algorithm is widely used and proven very successful in many 

applications, but it does have some disadvantages i.e. the convergence tends to be 

extremely slow and convergence to the global minimum is not guaranteed. Many 

researchers [FM98][RJ99][Bis95][SH96][KP99] have suggested improvements to the 

standard gradient descent method, such as dynamically modifying learning parameters 
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or adjusting the steepness of the sigmoid function.  In appropriate circumstances, 

other optimization methods may be better than the gradient descent.  Many converge 

much faster than gradient descent in certain situations, while others promise a higher 

probability of convergence to global minima [Wag02].  

 

 Conjugate gradient descent is one of the most often recommended 

optimization methods to replace the gradient descent [Mas93][RJ99][Bis95], this is a 

direction set minimization method. Minimization along a direction ‘d’  brings the 

function ‘E’ to a place where its gradient is perpendicular to ‘d’ .  Instead of following 

the gradient at every step, a set of ‘n’ directions is constructed which are all conjugate 

to each other, such that minimization along one of these directions does not spoil the 

minimization along one of the earlier direction.  

 

 Gradient methods using second-derivatives (Hessian matrix), such as Newton's 

method, can be very efficient under certain conditions [Wag02].  Where first-order 

methods use a local linear approximation of the error surface, second-order methods 

use a quadratic approximation. Because such methods use all the first and second 

order derivative information in exact form, local convergence properties are excellent. 

Unfortunately, they are often impractical because explicit calculations of the full 

Hessian matrix can be very expensive in large problems. Some powerful, stochastic 

optimization methods such as simulated annealing [Mas93][RJ99] and genetic 

algorithms, which can overcome the local minima, have also been used successfully 

in a number of problems.   

 

 Methods discussed above are some of many improvements that have been 

suggested over a period of 10-15 years. For a detailed overview of these 

enhancements we may refer to the resources mentioned in section 2.5. In addition to 

that, there are many learning algorithms available in Matlab for experimentation and 

evaluation purposes e.g. Gradient Descent Learning with Momentum, Gradient 
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Descent Learning with Variable Learning Rate, Conjugate Gradient Learning, 

Levenberg-Marquardt Learning etc. 

 

2.6 Summary  

 

 This chapter is a detailed overview of learning process in the Neural 

Networks. We have introduced different Learning paradigms and rules with particular 

emphasis on the Supervised Learning Laws for Multilayer Perceptions. We have also 

presented a detailed description of backpropagation algorithm used for training 

feedforward networks, and have discussed special issues relating to backpropagation 

learning process. Backpropagation algorithms remains the main focus of this work, 

therefore we have included a detailed derivation of all the steps in this algorithm as 

Appendix-A, which will be referred throughout this thesis for comparison with 

proposed simplified algorithms. 
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CHAPTER 3 

 

APPROXIMATION CAPABILITIES OF FNNs AND 

RELATED WORK 

 

 Neural Networks have become very popular in many real life applications. As 

described earlier, the range of tasks and potential application areas for Neural 

Networks are ever increasing. Along with other recent advancements in the field of 

Neural Networks, there has been much research work being carried out in exploring 

the function approximation capabilities of NN’s i.e. the problem of estimating a 

function from a set of samples [HG92]. Historically, the two main areas of research in 

this field were classified as existence/constructive proofs for the ‘Universal 

Approximation Problem’ and ‘Tight Bounds on the Size needed by the 

Approximation Problem’. However, over the past decade, this focus has shifted more 

towards development of new and perhaps more efficient learning algorithms for 

Neural Networks to approximate functions.  

 

3.1 Function Approximation-The problem 

 

 Function approximation is known to be a very common computational task in 

many science, engineering and real world applications. As a computational problem, 

Function approximation is very similar to non-liner regression, or learning a model 

depending on the disciplines and community involved. The problems may be dealt 

with differently in different communities, but the essence of the problem is the same. 

The aim of function approximation is to learn a mapping between an input and an 

output space from a set of input-output data i.e. the target function, call it f , may be 
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unknown; instead of an explicit formula, only a set of points of the form ( )( ),x f x is 

provided. Let, 

, 1,2,......,m
ix R i N∈ =  and 1, 1,2,......,id R i N∈ =     (3.1) 

be the N  input vectors with dimension mand N  real number output respectively. 

We seek an unknown function ( ) 1: mf x R R→
 
that satisfies the interpolation where  

( )i if x d= and 1,2,........,i N=       (3.2) 

The goodness of fit of id by the function f  is given by an error function. A 

commonly used error function is defined by,  

( ) ( )2

1

1

2

N

i i
i

E f d y
=

= −∑ ( )( ) 2

1

1

2

N

i i
i

d f x
=

 = − ∑     (3.3) 

Where iy is the actual response. In short, the main concern is to minimize the error 

function. In the other words, to enhance the accuracy of the estimation is the principal 

objective of function approximation.  

  

3.2 FNN’s As Universal Function Approximators 

 

 To date it has been proven by many researchers/ scientists that feedforward 

Neural Networks (FNN’s) are capable of approximating any class of generic 

functions with sufficient accuracy [ST98] (i.e. NN as mathematical models are 

generally enough for most applications). This property is known as Universal 

Approximation. A detailed review of results on ‘universal function approximation 

property’ can be seen at [TKG03][Pin99][HSW89][AP97][Bau88][Bar93][LMB03].  

 

 The roots of universal approximation dates back to 1950s. Kolmogorov was 

perhaps the first of the researchers who proved that for any continuous mapping there 

must exist a three-layered feedforward Neural Network of continuous type neurons 

(having an input layer with n neurons, a hidden layer with (2n+1) neurons, and an 
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output layer with m neurons) that implements f exactly, see [Bei98]. Cybenko 

[Cyb89] showed that any continuous function defined on a compact subset of nR can 

be approximated to any desired degree of accuracy by a feedforward Neural Network 

with one hidden layer using sigmoidal nonlinearities. Many other papers have 

investigated the approximation capability of three-layered networks in various ways. 

Following the initial advancements in this area, Chen et al. [CCL95] pointed out that 

the boundedness of the sigmoidal function plays an essential role for its being an 

activation function in the hidden layer, i.e., instead of continuity or monotony, the 

boundedness of sigmoidal functions ensures the network’s approximation capability 

of functions defined on compact sets in R .  

 

 In 1987, Hecht-Nielsen [HeN87] published a communication in which he 

turned attention to Kolmogorov's theorem. He pointed out a resemblance between the 

formal structure of Kolmogorov's expansion of continuous functions through other 

auxiliary functions with three layer feed-forward Neural Networks, condition of 

exactness of Kolmogorov formula, and there was only required that the formula only 

approximately represents continuous bounded functions. 

  

 Considerable breakthrough in this interesting field of theory of multilayer 

perceptrons was done by Hornik et al. [Hor91]. They demonstrated that an arbitrary 

continuous function can be uniformly approximated by three layer Neural Networks 

(with one layer of hidden neurons), where the hidden and output neurons are 

endowed by the so-called squashing transfer functions (sigmoid belongs between 

them).  

  

 Mhaskar & Hahm [MH97] presented generalized translation networks to 

uniformly approximate a class of nonlinear, continuous functionals defined on 

[ ]( )1,1
s

pL − for integer 1,1 1s p≥ ≤ < or [ ]( )1,1
s

C − . They obtained lower bounds on 

the possible order of approximation for such functionals in terms of any 
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approximation process, depending continuously upon a given number of parameters. 

Their networks almost achieve this order of approximation in terms of the number of 

parameters (neurons) involved in the network. The training is simple and non-

iterative. In particular, they avoided any optimization such as that involved in the 

usual back-propagation.  

  

 Stinchcombe [Sti99] proposed a characterization criteria for the set of 

activation functions, bounded or unbounded, that allow feedforward network 

approximation of the continuous functions on the classic two-point compactification 

of ( )1R . The characterization fails when the set of targets are continuous functions 

on the classic compactifications of ( ) , 2R n n≥ . Non-polynomial, analytic activation 

functions, with input-to-hidden weights in very limited sets, allow approximation of 

continuous function over compact sets in ( )R n , while even sigmoidal activation 

functions with weights in limited sets cannot approximate continuous functions on 

compactifications. The abstract structure foregrounded by compactification leads 

directly to possibility results for multi-layer networks and possibility results for 

Neural Networks in infinite dimensional settings.  

  

 Selmic & Lewis [SL02] presented a new NN structure for approximating 

piecewise continuous functions. In their method a standard NN with continuous 

activation functions is augmented with an additional set of nodes with piecewise 

continuous activation functions. They proved that such a NN can approximate 

arbitrarily well any piecewise continuous function provided that the points of 

discontinuity are known. Since this is the case in many nonlinearities in industrial 

motion systems (friction, deadzone inverse, etc.) such a NN is a powerful tool for 

compensation of systems with such nonlinearities.  

  

 Hagan et al. [HDJ02] investigated the use of Neural Networks in control 

systems.  They demonstrated the capabilities of this network for function 
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approximation, and have described how it can be trained to approximate specific 

functions. They also presented three different control architectures that use Neural 

Network function approximators as basic building blocks. The control architectures 

were demonstrated on three simple physical systems.  

  

 Magoulas et al. [MVA99] presented three new gradient-based training 

methods. They claimed that these new methods ensure global convergence, that is, 

convergence to a local minimizer of the error function from any starting point. They 

compared their proposed algorithms with several training algorithms, and proved that 

their algorithms are numerically more efficient then its counterparts.  

 

 Park & Sandberg [PS93] proved that under certain mild conditions on the 

kernel function, radial-basis-function networks having one hidden layer and the same 

smoothing factor in each kernel, are broad enough for universal approximation. This 

provides an analytical basis for the design of Neural Networks using radial basis 

functions.  

 

 Poggio and Girossi [PG90] developed a theoretical framework for 

approximation based on regularization techniques that lead to a class of three-layer 

networks that called Generalized Radial Basis Functions (GRBF). They showed that 

GRBF networks are not only equivalent to generalized splines, but are also closely 

related to several pattern recognition methods and Neural Network algorithms. They 

introduced several extensions and applications of the technique and discussed 

intriguing analogies with neurobiological data.  

  

 Rossi and Conan-Guez [RCg05] showed that fundamental results for classical 

MLP can be extended to functional MLP. They obtained universal approximation 

results that showed the expressive power of functional MLP which is comparable to 

that of numerical MLP. 
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3.3 Approximation And Representation Capabilities of FNNs 

 

 Subsequent research in this field followed the pioneering works discussed 

above; many authors studied Universal Approximation by Feedforward Neural 

Networks. It is well known that a two-layered FNN, i.e. one that does not have any 

hidden layers, is not capable of approximating generic nonlinear continuous 

functions. On the other hand, four or more layer FNNs are rarely used in practice. 

Furthermore, the proof that they are universal approximators is simple. Hence almost 

all the work deal with the most challenging issue of the approximation capability of 

three-layered FNNs [ST98]. Under very mild assumptions on the activation functions 

in the hidden layer, it has been shown that a three-layered feedforward Neural 

Network is capable of approximating a large class of functions, including the 

continuous functions and integrable functions. The class of functions realized by a 

three-layered feedforward Neural Network can be represented as 

 ( )
1

, ,
N

i i i
i

c g x bθ
=
∑         (3.4) 

where N is the number of hidden nodes, nx R∈ is a variable ic R∈ , n
i Rθ ∈ , 

ib R∈ are parameters, and ( ), ,i ig x bθ is the activation function used in the hidden 

layer.  

 

 Along with number of hidden layers another, very important consideration is 

the selection of activation function for the model. In order to explain the 

approximation capabilities of FNNs, many authors studied different types of 

activation functions. We can also classify the research in this field according to 

activation function used in the model. Radial and Ridge activation functions are two 

most commonly used activation functions in practice. We will briefly outline the 

research in both directions in the following section. 
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3.3.1 Ridge Activation Functions 

 

 As shown in [ST98], a ridge function has the following form: 

( ) ( ), ,g x a b a x bσ ′= +  where ‘‘ ’ ’’ is the transpose operator, a is a ‘ 1d × ’ vector, 

usually referred to as the direction of the ridge function, and b is a scalar called the 

threshold. ( ).σ  is a nonlinear function. The most common example is the logistic 

sigmoid function i.e.  

( ) ( ) ( )'
, , 1 1 a x blsig x a b e− −= +       (3.5) 

  

 Ridge activation functions are extensively studied by many authors mainly 

[Cyb89][Hor91][Hor93][LLPS93][Kur92][KKK97][CL92]. One of the earliest works 

was reported by Hecht-Nielson [HeN87] he used an improved version of 

Kolmogorov’s theorem which states that every continuous function 

[ ]: 0,1
n

f R→ can be written as:  

( ) ( )
2 1

1 1

,
d d

h
h k

h k

f x x h hλ ψ ε
+

= =

 = ∅ + + 
 

∑ ∑      (3.6) 

where the realλ  and the continuous monotonically increasing function ψ  are 

independent of f , the constant ε is a positive number and the continuous function 

,1 2 1h h d∅ ≤ ≤ + , depending on f .This formulation represented a three-layered 

network where the hth hidden node computes the function 

( ) ( )
1

,
d

h
k

k

z h x h hλ ψ ε
=

= + +∑  and the output nodes compute ( )
2 1

1

,
d

h h
h

z
+

=

∅∑ . 

 

 The first non-constructive proof was given by Cybenko in 1988 [Cyb89] he 

showed that if the ridge activation function σ  is a continuous sigmoid, then the set of 

( )1

N T
i i ii

c x bσ θ
=

+∑ is dense in ( )C K where ( )C K represents the set of all continuous 

functions defined onK , with respect to the uniform norm. According to [Cyb89], if 
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σ  be any continuous sigmoid-type function e.g. ( )( ) 1/ 1 e ξσ ξ −= + , then any 

continuous real-valued function f on [ ]0,1
n  (or any other compact subspace of nR ) 

and  0ξ > , there exists vectors  1 2 0, ,....... , , &n ia a a b c c  and a parameterized function  

[ ](., , , ) : 0,1
n

Y a b c R→  such that: ( ) ( ), , ,Y x a b c f x ξ− < ,  for all [ ]0,1
n

x∈ where 

( ) ( ) 0
1

, , , ( ) '
N

i i
i

Y x a b c NN X c a X b c
=

= = + +∑      (3.7) 

And 0& , &n
i ia R c c b R∈ ∈  where ( ) ( )1 2 1 2, ,....... , , ,.......,n na a a a c c c c= = and 

( )1 2, ,....... nb b b b= ”. Also note that ia  is a 1dx  vector usually referred to as the 

direction of the ridge function. More precisely, he proved that Neural Networks with 

one hidden layer of sigmoid-activation neurons and an output layer of linear neurons 

are universal function approximators i.e. they can approximate any reasonable 

function to arbitrary accuracy. Since then many enhancements have been proposed in 

order to facilitate convergence, or impose limits on the network size in the terms of 

number of layers and number of hidden units required for a particular set of problems. 

 

 Hornik [Hor91] and [Hor93] further extended these results. In particular, in 

[Hor93] some theorems are presented which encompass almost all recent results on 

FNNs with ridge functions. The theorems state that three-layered FNNs are universal 

approximators under very weak assumptions on the activation functions, and suggest 

that nonpolynomiality of the activation function is the key property. He proves also 

that the approximation can be performed by weights bounded as close to ‘0’ as 

required and that for some activation functions, a single threshold for the hidden layer 

is sufficient. 

 

 Another approach was used by Chui and Li [CL92] to prove universal 

approximation. They showed that if the ridge activation functionσ  is a continuous 

sigmoid and the direction vector θ  satisfies some interpolation conditions, then the 
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set of ( )1
TN

i i ii c x bσ θ=∑ + is dense in ( )C K with respect to uniform norm. They 

constructed their proof by showing that it is possible to realize polynomials as a sum 

of ridge activation functions. Since polynomials are dense in ( )nC R , it follows that 

the three-layered Neural Networks are dense in ( )C K  with respect to uniform norm. 

  

 One of the most elegant results on ridge activation was presented by Leshno 

et al. [LLPS93]. They relaxed the condition for the activation function to ‘locally 

bounded piecewise continuous’ (i.e., if and only if the activation function is not a 

polynomial), thus embedding as special cases almost all the activation functions that 

have been reported in the literature. 

 

3.3.2 Radial Basis Functions  

 

 Radial basis function network was first introduced by Broomhead and Lowe 

in 1988 [BL88]. A Radial basis function (RBF) can be represented as: 

( ), ,
x a

g x a b k
b

− =  
 

        (3.8) 

where g  depends on a centre aand a smoothing factor b . ( ).k  is usually assumed to 

be integrable on dR , and ( ) 0dR k x dx∫ ≠ . The radial basis functions adopted in 

applications usually depend only on the distance between its current value and the 

center, i.e. ( ) ( ), , /g x a b k x a b= − , where .  denotes the usual Euclidean norm. 

The Gaussian radial basis function ( ) ( )2 /
, ,

x a b
gauss x a b

−
= −e  is a common example 

of such functions [ST98]. 

 

 Radial basis functions received relatively less attention compared to ridge 

activation functions. However, there has been quite a few very promising results 
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found in literature. The most well-known result was presented by Park and Sandberg 

[PS93][PS91].  They showed that if the Radial basis activation function used in the 

hidden layer is continuous almost everywhere, bounded and integrable on nR , and 

the integration is not zero, then a three-layered Neural Network can approximate any 

function in ( )n
pL R  with respect to the pL  norm with 1 p≤ < ∞ . They further 

extended their initial results and showed that if ( ) ( ), , /g x a b k x a b= −  is a RBF, k  

is integrable on dR and that ( ) 0dR k x dx∫ ≠ ; then 3
g∑ is dense in 1( )dL R . Similar 

results were also reported by [PG90][GP90] they also showed that RBFs posses the 

universal approximation property.  

 

 Another important result on radial basis functions was given by Chen and 

Chen [CC95]. They proved that if the radial-basis activation function 

( ) ( )g C R S R′∈ ∩ (i.e., all those continuous functions such that ( ) ( )R g x s x dx∫  

makes sense for all ( )s S R∈ ) then the set of functions ( )1
N

i i ii c g a x θ=∑ − is dense in 

( )C K if and only if ‘g’ is not an even polynomial. Unlike Park and Sandbergs 

formulation this setting does not require radial-basis function to be integrable; 

however, it does require the activation function to be a continuous distribution 

function, which is a strong requirement. Furthermore, a norm was imposed on 

( )ix θ− , therefore, the network structure is not considered to be general enough. 

 

 Another simple, but effective technique for approximating a continuous 

function of variables with an RBF network was presented by Schilling et al. 

[SCAa05]. The method uses an -dimensional raised-cosine type of RBF that is 

smooth, yet has compact support. The coefficients of the RBF network are low-order 

polynomial functions of the input. More recently, [HSS05] coins the idea of a new 

sequential learning algorithm for radial basis function (RBF) networks referred to as 

generalized growing and pruning algorithm for RBF (GGAP-RBF). They first 
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introduced the concept of significance for the hidden neurons and then uses it in the 

learning algorithm to realize parsimonious networks. The growing and pruning 

strategy of GGAP-RBF is based on linking the required learning accuracy, with the 

significance of the nearest or intentionally added new neuron. Significance of a 

neuron is a measure of the average information content of that neuron. The GGAP-

RBF algorithm can be used for any arbitrary sampling density for training samples, 

and is derived from a rigorous statistical point of view. Simulation results for bench 

mark problems in the function approximation area show that the GGAP-RBF 

outperforms several other sequential learning algorithms in terms of learning speed, 

network size and generalization performance, regardless of the sampling density 

function of the training data. 

 

3.3.3 Recent Advancements on Function Approximation by Feedforward NNs 

 

 As highlighted in the introduction of this chapter, the focus of research in the 

filed of Function Approximation by Feedforward Neural Networks (FNNs) has 

shifted more towards development of new and efficient algorithms for function 

approximation problems. A lot of research has been carried out in this direction in the 

past few years. We will summarize some of the recent advancements in this section. 

 

 In [HCS06] turned their attention to the fact that in most Neural Network 

implementations, tuning all the parameters of the networks may cause learning 

complicated and inefficient, and it may be difficult to train networks with non-

differential activation functions such as threshold networks. Unlike conventional 

Neural Network theories, they proved, using an incremental constructive method, that 

in order to let Single Layer Feedforward Neural Network (SLFNN) as universal 

approximators, one may simply randomly choose hidden nodes, and then only need to 

adjust the output weights linking the hidden layer and the output layer. In such 

SLFNNs implementations, the activation functions for additive nodes can be any 
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bounded non-constant piecewise continuous functions: and the activation functions 

for RBF nodes can be any integrable piecewise continuous functions :g R R→ and 

( ) 0R g x dx∫ ≠ . The proposed incremental method is efficient not only for SLFNNs 

with continuous (including non-differentiable) activation functions but also for 

SLFNNs with piecewise continuous (such as threshold) activation functions.  

 

 In [ZP08] the authors investigated function approximation by using radial 

basis function network and Wavelet Neural Network (WNN). They used different 

types of basis functions as the activation function in the hidden nodes of the radial 

basis function network and the wavelet Neural Network. The performance is 

compared by using the normalized square root mean square error function as the 

indicator of the accuracy of these Neural Network models. They showed that WNN 

performs better in approximating a periodic function, whereas RBF Netwoks yields 

higher accuracy in estimating exponential function.  

 

 The authors of [GTMc08] presented a model with wavelet-like functions in 

the functional form of a Neural Network which is used for function approximation. 

They argued the fact that the scale parameters are mainly used, neglecting the usual 

translation parameters in the function expansion. They then investigated two training 

operations; first one consists of optimizing the output synaptic weights and the 

second one on optimizing the scale parameters hidden inside the elementary tasks. 

Building upon previously published results, it was found that if ( )1p +  scale 

parameters merge during the learning process, derivatives of order p  will emerge 

spontaneously in the functional basis. It is also found that for those tasks which 

induce such mergings, the function approximation can be improved and the training 

time reduced by directly implementing the elementary tasks and their derivatives in 

the functional basis.  
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 One of the most significant achievements in the recent past is the idea of 

‘Extreme Learning Machine (ELM)’ [HC07][HCS06][HZS06] which does not 

require any iterations in order to learn network parameters, and hence considerably 

reduces the network training time when compared to traditional BP algorithm. 

Although the testing performance of Standard NN models is better than that of the 

ELM but in terms of training time it is quite an efficient algorithm. 

  

3.4 Neural Network Ensemble Methods 

 

 Along with other advancements in Neural Networks, ANN ensemble methods 

have also become very popular amongst Neural Network researchers in a variety of 

ANN application domains. We can think of a Neural Network ensemble as a learning 

paradigm where a collection of finite number of Neural Networks is trained for the 

same task. It is well-known that the generalization ability of Neural Networks, i.e., 

training many Neural Networks and then combining their predictions are better then a 

single NN model. 

 

 In general, a Neural Networks ensemble is constructed in two steps, i.e., 

training a number of component Neural Networks, then combining the component 

predictions. Using 1.......... Mf f to denote M individual NNs, a common example of 

ensemble for regression problem is, ( ) ( )
1

,
M

reg i i
i

f x w f x
=

=∑  where 0iw > is the weight 

of the estimator if  in the ensemble. 

 

 Neural Network based ensemble methods was first proposed by Hansen and 

Salamon's  (see [HS90]). In their work they showed that the generalization ability of a 

Neural Network can be significantly improved through ensembling a number of 

Neural Networks. Since then Neural Network Ensemble methods have been widely 

used to improve the generalization performance of the single learner.  
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 Last decade has seen ever increasing interest in ensemble learning methods 

for NNs. There has been much literature published focusing on these methods, we can 

broadly classify these methods as either bagging and boosting or stacking. There are 

other popular ensemble learning techniques such as Mixtures of Experts [JJ94], 

Random Subspace [Hor98], Random Forests [Bre01] and Negative Correlation 

Learning [LY97][LY99]. However the application of Neural Networks as ensemble 

methods has been mainly studied in bagging and boosting framework. As the main 

objective of this work is to investigate approximation capabilities of Neural Networks 

therefore we will give a brief explanation of these two methods in the following 

section.  

 

3.4.1 Bagging 

  

 Bagging is the common term used for a popular ensemble learning method 

called ‘‘Bootstrap Aggregation’’. This technique was proposed by Breiman [Bre96]. 

This approach is based on the bootstrap statistical resampling technique proposed by 

Efron et al. [ET93], to generate diverse training sets that are used to train the 

members composing an ensemble. Suppose the training set T  consists of m  

instances. Each instance is assigned a probability of 1/m, and the training set of a 

member network, is generated by sampling with replacement m  times from the 

original training set T , using these probabilities. Thus many cases in T  may be 

repeated several times in a member network, while others may be left out. This 

process is repeated, and each member network is generated with a different random 

sampling of the original training set. In [Bre96] the author concluded that bagging is 

effective on ‘‘unstable’’ learning algorithms. Predictors such as ANNs and regression 

trees are suitable for bagging. There has been other work in bagging [CC99][Zha99], 

which studied bagging in the context of ANNs, and concluded that model 

generalization ability can be significantly improved.  
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3.4.2 Boosting 

  

 Boosting has now become quite a familiar term in machine learning theory. 

We can define boosting, or leveraging, in simple terms, as a general way of 

improving the accuracy of any learning algorithm [FHT00]. Historically most of the 

work in the field of boosting or leveraging methods has concentrated on classification 

problems see [FS97], and related leveraging techniques [Bre98][Bre99][Fri01]. In 

comparison to regression/function approximation problems (i.e. the output variable 

‘y’  is continuous), the application of boosting methods to classification problems 

have been well-studied, empirically tested and have good theoretical bounds and 

guarantees.  

 

 Boosting algorithms was first proposed by [Dru97]. They achieve improved 

performance by producing a series of predictors trained with a different distribution 

of the original training data. The algorithm trains the first predictor with the original 

training set, and the training set of a new predictor is assembled based on the 

performance of the previous predictors. The learning patterns whose predicted values 

obtained from the previous predictor differ significantly from their observed values 

are adjusted with higher probability of being sampled, so they will have a greater 

chance of appearing in the new training set than those correctly predicted. Thus 

different predictors are specialized in different parts of the observation space. A 

popular example is the AdaBoost algorithm [FHT00], which iteratively builds a 

classifier as a linear combination of the so-called weak classifiers. At each step, a 

new weak classifier is added optimizing the classification error rate with a new 

weighting on training samples.  
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3.4.3 Boosting for Regression Problems 

 

 Although less investigated, there have been quite a few very promising 

attempts to address the issue of boosting for regression/ approximation problems. Just 

like boosting for classification [FHT00] were the first ones to come up with boosting 

algorithms for regression problems. The much famous Adaboost.R was the first 

attempt to address this issue. The AdaBoost.R algorithm [FS97] attacks the 

regression problem by reducing it to a classification problem. To fit a set of 

( ),x y pairs with a regression function, where each [ ]1,1y∈ − , AdaBoost.R converts 

each ( ),i ix y  regression example into an infinite set of ( ),ix z y
 
 
 

∼

 pairs, where 

[ ]1,1z∈ −  and ( )iy sign y z= −
∼

. The base regressor is given a distribution D over 

( )ix z− pairs and must return a function f (x) such that its weighted “error” 

( )( )
,

i

i

f x

ii y
D x z dz∑ ∫  is less than 1/2.  

 

 Experimental results have shown that Adaboost.R and its variants, see 

[RMR99][BCP97][FS96][Sch90] are quite effective. However, performance of these 

models degrades due to the following two reasons. Firstly, the expansion of each 

instance in the regression sample into many classification instances. Although the 

integral above is piecewise linear, the number of different pieces can grow linearly in 

the number of boosting iterations. Secondly, the “error” function that the base 

regressor should be minimizing is not (except for the first iteration) a standard loss 

function. Furthermore, the loss function changes from iteration to iteration and even 

differs between examples on the same iteration. Therefore, it is difficult to determine 

if a particular base regressor is appropriate for AdaBoost.R. 
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3.4.4 Gradient-based Boosting 

 

 One of the most significant works in this area was presented in [FHT00]. 

They showed how adaptive boosting algorithms can be derived as gradient decent 

algorithms. This approach allows all model parameters to optimize one single 

common objective function, in comparison to traditional boosting methods that work 

by repeatedly calling weak  (or base) learning method on modified samples to obtain 

different base rules. These are then combined into a master rule or hypothesis. The 

algorithm proposed in [Bre99] used the master algorithm to construct  iy  values for 

each data-point ix equal to the (negative) gradient of the loss of its current master 

hypothesis on ix  . The base learner then finds a function in a class f  minimizing the 

squared error on this constructed sample. 

 

 As with traditional boosting methods, this view was well received in research 

community, and many authors’ derived algorithms targeting classification problems. 

The work in [ZP01] was one of the first attempts to take advantage of this approach 

and extended it to tackle regression problems. They proposed a novel objective 

function for regression problems which lead to a simple boosting algorithm. They 

also proved that their method reduces training error when compared with other 

regression methods.  

 

 They used ( )( ) 2

1 1

1
exp

n T
i i

T t t
i t

J c f y
n

τ
= =

  = − −    
∑ ∑ x as objective function 

in [ZP01], where parameter tC  (combination co-efficients) and tw (model weights), 

can now be derived using this objective function. They used the same objective 

function in the WeakLearn procedure, as the new hypothesis is the step in function 

space in the direction of steepest descent of this objective [ZP01]. This allows 

parameter tC  (combination co-efficients) and tw  , (model weights) to be derived using 
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this objective function. The constant τ is used to distinguish between correct and 

incorrect responses and is chosen in problem-specific manner. As highlighted in 

[ZP01], this formulation allows each hypothesis to be trained to minimize the squared 

error of a weighted distribution. This also allows the objective function to be 

determined by simply re-weighting the training distribution. Another exciting fact is 

that the new weights of a training example only depend on its old weight and error 

produced in the last iteration.  

 

 This algorithm is presented with training set examples in the form 

( ) ( )1 1, ....... ,n ny yx x wherey∈ℝ , and the initial distribution of model parameters is 

chosen according to ( )1 1 1

1i i ip p w
n

= = =x . The next step in their algorithm is the call to 

WeakLearn procedure that produces a hypothesis( )tf x whose accuracy on the training 

set is judged according to the cost function J above. The algorithm then repeatedly 

calls the WeakLearn procedure on modified distributions in order to minimize Jt  with 

distribution pt.  On every call to the WeakLearn the algorithm checks the error ‘tξ ’ and 

accepts iff ( )( )2
exp 1i

t t t i ii
p f yξ τ = − − <  ∑ x . The combination coefficient Ct is 

then set to minimize Jt  using simple line search. In order to generate next training 

distribution this algorithm modifies the model parameters according to 

( )( )2

1 * ex pi i i i
t t t tw w c f y τ+

  = − −    
x , where 1 1 1/i i j

t t t
j

p w w+ + += ∑ and 

finally estimate output ‘y’ on input x according to ( )ˆ /t t t
t t

y c f c=∑ ∑x . 

 

 Two important facts to be noted here is the way in which initial distribution is 

chosen i.e. ( )1 1 1

1i i ip p w
n

= = =x and how the model parameters are updated by the 

WeakLearn procedure. In this work they used single hidden layer Neural Network 

(NN) as hypothesis and backpropagation as the learning procedure. In fact this setting 
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has been a popular choice for regression boosting algorithms due to Neural Networks 

function approximation capabilities [FHT00][DH02].  

 

3.5    Common Issues in FNNs & Problem Description 
 

 As shown in the above section, Feedforward Neural Network (FNN) 

architecture has been successfully applied to ‘function approximation’ problems in 

many real-world application domains. However this model has certain limitations. 

The most commonly faced situation is the problem of local minima i.e. the tendency 

of the model to get trapped in undesirable local minima in order to reach the global 

minimum of a very complex search space. Secondly, training of FNN is very time 

consuming task, due to the slow convergence of FNN training algorithms. Thirdly, 

FNN also fails to converge when high nonlinearities exist.  

  

 It is also important to understand that these “universal approximation” 

proofs are commonly used to justify the notion that Neural Networks can “do 

anything” (in the domain of function approximation). What is not considered by these 

proofs is that networks are simulated on computers with finite accuracy. And the fact 

that approximation theory results cannot be used blindly without consideration of 

numerical accuracy limits, and that these limitations constrain the approximation 

ability of Neural Networks, see [WGG95].  

  

 In addition to these limitations; the most important observation with reference 

to this work is the fact that  almost all NN approximation schemes proposed so far are 

designed to approximation functions on continuous input spaces ],[ iiiU βα= , i.e. 

the input-vector ‘X ’   takes on continuous values [ZK08][PG90][ZGKL05][SM02]: 

( ) n
n RxxxX ∈= ,........, 11         (3.9) 
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 Another deficiency in these approximation schemes is that they are 

computationally very expensive, because one of the underlying assumptions is the 

availability of sufficiently large number of neurons in hidden layer(s). It is also seen 

in many practical applications that the size of the network increases very fast (some 

times exponentially) when it encounters new information in form of new examples or 

additional dimensions (inputs) or when some desired precision is to be achieved 

[Bei98]. 

   

 Although these schemes can be used for approximation of functions on 

discrete input and mixed input spaces (i.e., some input variables are discrete values 

where other take continuous values), these schemes, when applying to approximate 

functions on discrete or mixed input spaces, are less effective and more complicated 

than necessary due to not taking into account special features of discrete input spaces 

[ZK08][ZGKL05].  

 

3.6 Special Features Of Functions Defined On Discrete Input 

 Spaces 

 

 When we say special features of discrete input spaces, what exactly do we 

mean by this? This is the issue of prime importance with regards to this research. The 

most apparent of these special features is the property of discrete variables to take on 

finite number of states, or in other words the points are isolated from each other in 

some sense.  

 

3.6.1 Flexible Hierarchical Structure Property 

 

 Another very important feature of functions defined on discrete input spaces is 

their flexible (arbitrarily separable) hierarchical structure. As described in [ZK08], 

consider the following function: 
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1 2 3 4 5 1 2 3 4 5( , , , ) 10sin( ) 20( 0.5) 10 5G x x x x x x x x x xπ= + − + +           (3.10) 

Let 1g and )2,1(2 =jg j  be  

1 1 2 5 1 2 5 2,1 1 2 1 2 2,2 3 4 3 4( , , ) 5 ( , ) sin( ) ( , ) 20( 0.5) 10g y y x y y x g x x x x g x x x xπ= + + = = − +  (3.11) 

Then  

]),,(),,([),,,( 5432,2211,2154321 xxxgxxggxxxxxG =                       (3.12) 

That is, ),,,,( 54321 xxxxxG  can be represented as a function with a hierarchical 

structure given in figure 3.1.  

 

Figure 3.1  An Example Of A System With A Two Level Of Hierarchical Structure. 
 

 Figure 3.1 represents a two-level hierarchical structure. In the same paper 

[ZK08] authors also showed that, if jg ,2  is also a function with a hierarchical 

structure, then further levels of hierarchical structure are also possible. In other 

words, multi-level hierarchical structure for ),...,( 1 nxxG is possible. Further in the 

paper they proved that, for a function with hierarchical structure, its hierarchical 

structure is not unique. This is illustrated as follows: 

Consider the function ),,,,( 54321 xxxxxG  given above. If 1g and )2,1(,2 =jg j  are 

chosen to be,  

1 1 2 1 2 2,1 1 2 1 2 2,2 3 4 5 3 4 5( , ) , ( , ) sin( ), ( , , ) 20( 0.5) 10 5g y y y y g x x x x g x x x x x xπ= + = = − + +  (3.13) 

 

 

21g  
22g

1g

1x  2x 3x  4x  

5x  

y  

1y

2y
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Then,  

)],,(),,([),,,( 5432,2211,2154321 xxxgxxggxxxxxG =                                (3.14) 

That is, ),,,,( 54321 xxxxxG  can be represented as a function with a hierarchical 

structure which will be different from the hierarchical structure given in figure 3.1 

 

 The authors in [ZK08] also discussed a special case of the functions with 

hierarchical structure that is, when input variables in each sub-functions 1g  and 

jg ,2 ),...,2,1( mj =  are disjointed form each other. We can easily see that the input 

variable sets for 1g and jg ,2  )2,1( =j in equation (3.12) are disjointed, therefore the 

function ),,,( 54321 xxxxxG given in equation (3.12) is one with separable 

hierarchical structure. On the other hand, the input variable sets for 1g and jg2  

)2,1( =j  are also disjointed. That is,  ),,,( 54321 xxxxxG  has another separable 

hierarchical structure. This shows that ),,,( 54321 xxxxxG  can be represented by 

different separable hierarchical structures. All the facts discussed above are formally 

summarized in the form of a theorem as follows, please refer to [ZK08] for a detailed 

proof of this theorem.  

 

Theorem 1: Let )(XG  be a MISO (multiple input single output) function given by 

),...,,()( 21 nxxxGXGy == , where RVy ⊂∈  is the output variable and 

∈= ),...,,( 21 nxxxX n
n RUUUU ⊂×××= ...21  is the input variable vector in which  

ii Ux ∈  and },...,2,1,|{ ,, ikikii NkRuuU =∈= , in other words, input variable ix  

takes discrete values. Then, for any disjoint grouping of the input variables 

},...,,{ 21 nxxx  into 1+m  groups 1G  and jG ,2 ),...,2,1( mj = satisfying the following 

conditions: 

{ } mjxxGxxG j

jn
j

n iijii
,...,2,1,...,,..., ),2(

,2

),2(
1

)1(

1

)1(
1

,21 =






==                           (3.15) 
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Where,  

=jGG ,21  ∅, mj ,...,2,1=  and =',2,2 jj GG ∅ mjjjj ,...,2,1',,' =≠    (3.16) 

},...,,{.... 21,21,21 nm xxxGGG =       (3.17) 

then there exist functions 1g and jg ,2  ),...,2,1( mj =  [in particular, jg ,2 ),...,2,1( mj =  

can be as simple as linear functions or fuzzy systems] such that 

[ ]1,2,21,21,21 ),(),...,()( XXgXggXG mm= . That is, any MISO function on discrete 

spaces has the arbitrary separable hierarchical structure. 

  

 This is a very interesting theorem and the results obtained have some 

significant implications on NN approximation schemes. The most significant of them 

are: 

  

1.  If )(XG  can be represented as a function with the given 1G  and 

jG ,2 ),...,2,1( mj =  as its hierarchical structure is related to the existence of 

one-to-one mappings on discrete spaces. These one-to-one mappings not 

only exist but also can be realized by using some very simple functions. 

2.  For a discrete space U , there exist some simple functions which form one to 

one mappings  from U  to R. This is a property which holds only on 

discrete spaces but not on continuous spaces. This is because no one-to-one 

mapping from a multi-dimensional continuous space ],[
1

ii

n

i
U βα

=
×=  

)1( >n to R  can be continuous (see [ZK08] for detailed discussion). As no 

continuous function can be found to form one-to-one mapping from a multi-

dimensional continuous space toR , it is impossible to find a simple function 

which is a one to one mapping from multi-dimensional continuous space 

U to R . 
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3.7 Summary 

  

 This chapter presents a detailed literature review of our selected area of 

research. First of all it introduces the Function Approximation problem, followed by a 

detailed analysis of approximation and representation capabilities of Feedforward 

Neural Networks. A systematic review of related work on Universal Function 

Approximation Property has been presented. Recent advancement in this field has 

also been highlighted in this chapter, followed by a discussion on Neural Network 

based ensemble methods with a particular emphasis on application of Neural 

Networks in regression boosting frame work.  We have also presented common 

issues and a formal problem description in this chapter. A comprehensive analysis of 

discrete nature of input spaces and ‘Arbitrarily Separable Hierarchical Structure 

Property’ of functions defined on discrete input spaces is also presented in this 

chapter.  
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CHAPTER 4 

 

 

SIMPLIFIED NEURAL NETWORK (SNN) APPROACH 

AND ALGORITHMS 

 

 The special features of discrete input spaces discussed in the previous chapter, 

the capability of Feedforward Neural Networks to approximate any function 

arbitrarily well and the lack of systematic results focusing on discrete input spaces, 

are the main reasons behind the initiation of this research. The main objective of this 

research is to propose more simplified algorithms based on simplified NN 

approximation schemes that make use of these properties of discrete input spaces, 

without compromising on accuracy or generalization capabilities of the existing NN 

models and techniques.  

 

4.1     The Simplified Neural Network (SNN) Approach 

 

 As we already know, the multilayer feedforward networks are usually 

arranged in many layers; input, output and one or more hidden layers. We also know 

that any mapping of the form : n mf R R→  can be computed by m mappings 

: n
kf R R→ therefore it is sufficient to focus on networks with one output unit only 

[LLPS93]. This section gives a detailed analysis of simplified NN approach and 

shows how simplification is achieved with these schemes. In the following, it is 

always assumed that the input spaces are discrete ones i.e. },...,2,1|{ iiji NjU == α . 

 

 We begin our discussion with a formal definition of standard Neural Network. 

In line with the famous Cybenko theorem [Cyb89] we can define a standard NN as: 
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0
1

( ) ( )
N

i i i
i

y NN X c a X b cτσ
=
∑= = + +       (4.1) 

where ( )1 2, ,..., nX x x x= are input variable, X U∈  1 2 ... n
nU U U R= × × × ⊂  which 

are input space,  Ry ∈  is the output variable, τ is the vector transpose, (.)σ  is the 

activation function and the parameters Rc ∈0 , Rci ∈ , n
i Ra ∈ , and Rbi ∈  

( ),...,2,1 Ni = .  As described in [ZGKL05], the total number of parameters [i.e., 

Rci ∈ , n
i Ra ∈ , Rbi ∈ ( ),...,2,1 Ni =  and Rc ∈0 ] is 1)2( ++ Nn . For nonlinear 

complex function approximation, a large N is needed and very often N is subjected to 

exponential growth with the increase in dimension of n  . As a result, a large number 

of parameters are needed in order to achieve good approximation accuracy.  

 

 To overcome these computational expanses new schemes are required which 

should be able to exploit the function approximation capabilities of Neural Networks 

for discrete input spaces. 

 

4.1.1   Simplified Neural Networks (SNN) 

  

 We can define (see [ZGKL05] for a detailed discussion) a simplified Neural 

Network (SNN) as shown in equation (2.2): 

0
1

( ) [ ( ) ]
N

i i i
i

y SNN X c X cτσ α α β β
=
∑= = + + +          (4.2) 

where Rc ∈0 , Rci ∈ , Ri ∈α , Ri ∈β  ( ),...,2,1 Ni =  and nR∈α , R∈β .  

Let  βα τ +== XXLz )(           (4.3) 

and 1 0
1

( ) ( )
N

i i i
i

y NN z c z cσ α β
=
∑= = + +         (4.4) 

Then the proposed SNN given in (4.2) can be rewritten as follows: 

)]([)( 1 XLNNXSNN =         (4.5)  
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 In other words, the proposed SNN can be presented as a composition function 

of a linear function )(XL given in (4.3), and one dimensional standard NN 

)(1 zNN given in (4.4). The difference between the above simplified NN from the 

standard NN is that it uses a common linear function bXa +'  rather than 

),...,2,1(' NibXa ii =+ , which results in significant reduction of parameters required 

for the model. Such a simplified NN benefits through the following advantages: 

 

1.  A simplified NN requires approximately (3N + n + 2) parameters in most of 

the cases.  

2.  SNNs are more effective in overcoming the model over-fitting which is 

often the case with standard NN models. This is due to the fact that in the 

standard NNs, adding a new neuron [i.e., add an item )( iii bXac +τσ in (4.1)] 

means adding 2+n  parameters. As a result, it is an often faced situation in 

NN modeling, that adding one neuron causes overfitting but without adding 

results in underfitting, especially in the case where n  is large but only a 

limited training data available. However, in SNNs, adding a new dimension 

or neuron in hidden layer means adding an item )( iii zc βασ +  which only 

adds three parameters. As a result, SNNs allow finer adding model 

parameters to overcome the model overfitting and underfitting, especially in 

the high dimension (i.e. large n ) case.  

3.   More simplified learning algorithms can be developed. For example, in some 

cases, multi-dimension NN learning problem can be transformed to one 

dimensional NN learning problem and then the corresponding learning 

algorithms can be much simpler.  

 

 In the light of the above discussion, and advantages of simplified NN, we 

propose two algorithms which can be used with discrete input spaces for function 

approximation problems. As described in [ZGKL05], any algorithm developed under 
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the assumptions discussed above have the universal approximation property and are 

general enough to approximate arbitrarily well any function defined on discrete input 

spaces. These facts are formally derived from the following two theorems.  

Theorem 2: Let )(XG be a function defined on discrete space 
1

n

i
i

U U
=
∏= . Then for 

any given 0>ε ,  there exists a simplified NN o

N

i
i cbXacXNNy ++== ∑

=

)'()(
1

σ such 

that, || || max | ( ) ( ) |X UG NN G X NN X ε∈− = − < . 

 

Remark 1: The above theorem shows that SNNs can approximate any function on a 

discrete space to any degree of accuracy. In other words, SNNs, in spite of their 

simplified formula, reserve the universal approximation property of standard NNs and 

therefore are generally applicable for function approximation in discrete spaces. This 

theorem is very important with reference to this work, therefore a detailed proof of 

this theorem as appeared in [ZGKL05] is also included as appendix-C. Following the 

discussion in section 3.5 we can now introduce the following Lemma: 

Lemma 1: Given a discrete input space 
1

n

i
i

U U
=

= ∏  , there exists a linear function 

bXa +' which is one to one mapping on
1

n

i
i

U U
=

= ∏ . 

Theorem 3: Let )(XG be a function defined on discrete space 
1

n

i
i

U U
=

= ∏ and 

bXaXL += ')(  is any one to one mapping defined on 
1

n

i
i

U U
=

= ∏ . Then for any 

given 0>ε , there exists a simplified NN using bXaXL += ')( as the common linear 

function such that the simplified NN [ ]
1

( ) ' )
N

i o
i

y SNN X c a X b cσ
=

= = + +∑  satisfies, 

|| || max | ( ) ( ) |X UG NN G X NN X ε∈− = − < . 

 

Remark 2: The above theorem shows that, for any given one to one linear 

function ( )L X , simplified NN can be constructed based on ( )L X  to form universal 

approximators.  
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 What follows is a detailed description of these algorithms, whereas the 

derivation of backpropagation algorithm for these simplified algorithms is also 

presented in the following section.  

 

4.1.2    Simplified NN Algorithm-I 

 

 

c0 iβ  

 
    c1  

 

    c2  

 

    c3  

      .  

      .  

      c  n  

y(t) 

 
    α1  

 

    α2  

 

    α3  

      .  

      .  

     αn  

 
 
L(X) = a’x+b 

x1 
x2 
. 
. 
xn 
 

Z = L(X) 

Figure 4.1 Architectural representation of Simplified NN  Algorithm-I 

1. Initialisation: 

a.  Identify a one to one linear mapping bXaXLz +== ')( on the input 

space that is both one to one and onto.  

b. Training data transformation:  

Transform the training data },...,2,1)];(),({[ MttXty =  to 

},...,2,1)];(),({[ Mttzty = by using bXaXLz +== ')(* ; 

c. By using the optimisation algorithm such as gradient descent algorithm 

or other algorithms in order to identify,  

 [ ]
1

( ) )
N

i i i o
i

y NN z c z cσ α β
=

= = + +∑ .  

 Notice that this is a single variable function approximation; 

d. Form the initial simplified NN as : 

[ ]
1

( ) )
N

i i i o
i

y NN z c z cσ α β
=

= = + +∑  

2. Iterations: Using the back-propagation algorithm to update the model. 
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4.1.3  Simplified NN Algorithm-II 

 

 

Figure 4.2  Architectural Representation of Simplified NN Algorithm-II 

1. Input: ( ) ( )1 1, ....... ,n nS y y= x x wherey∈ℝ , and training iterationsT . 

2. Initialize: The initial distribution of model parameters ( )1

ip x   is chosen 

according to ( )1 1 1

1i i ip p w
n

= = =x . 

a. Compute the linear approximation . bXaXLz +== ')(* ; 

b. Training data transformation:  

Transform the training data {[ ( ), ( )]; 1,2,..., }y t X t t M=  to 

},...,2,1)];(),({[ Mttzty = by using bXaXLz +== ')(* ; 

c. By using the optimisation algorithm such as gradient descent algorithm 

in order to identify,  

 [ ]
1

( ) )
N

i ii o
i

y NN z c z cβασ
=
∑= = + + . Notice that this is a single variable 

 function approximation; 

d. Form the initial simplified NN as : 

[ ]
1

( ) ( ' )
N

i ii o
i

y NN z c a X b cβασ
=
∑= = + + +  

3. Iterations: Using the back-propagation algorithm to update the model. 
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 The basic difference in both the algorithms is their initialisation conditions. 

Algorithm-I uses a simple linear mapping to transform the input space in to a 

unidirectional one, this is a very simple method as by using the one-to-one linear 

mapping )(XL , the approximation problem is transformed to a simple learning 

problem of a single variable NN, figure 4.1 gives an architectural realisation of such a 

SNN. The first algorithm is based on the proof of Theorem 2 (See Appendix-C) 

which includes two steps; the first step is to find a one-to-one linear mapping 

)(XL from U toRand then one dimensional function )]([)( 1 zLGzg −=  or 

)()]([ XGXLg = can be defined; the second step is using the available data 

},...,2,1|),{( NtyX tt =  to get a set of training data for function )(zg  as 

},...,2,1),(|),{( NtXLzyz tttt == and then, for )(zg ,  apply the learning algorithms 

of the standard NN to find one dimensional NN approximator )(1 zNN with the 

required approximation accuracy. Finally the SNN approximator can be obtained by 

)]([)( 1 XLNNXSNN = . Theoretically, this is a very simple method as by using the 

one-to-one linear mapping )(XL , the approximation problem is transformed to a 

simple learning problem of a single variable NN.  

 

 In the case where the number of input variables and the possible values of 

each input variables are small, then this is a good algorithm in practice due to its 

simplicity. However, this method is not suitable for high dimension (i.e., many input 

variables or n is large) with each input variable having many possible values (i.e., 

jN is large). The is mainly due to the fact that; as the total number of all possible 

values of input vector ),...,,( 21 nxxxX = are 
1

n

i
i

N
=
∏ , it means that the total number of the 

possible function values of one-to-one mapping )(XLz = is 
1

n

i
i

N
=

∏ . When n  and 

iN ),...,2,1( ni = are large, this is impossible as all these possible values are beyond 

the representation accuracy of float numbers in today’s computers. Therefore, in the 
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case when  n  and ),...,2,1( niNi = are large, the implementation of this algorithm, 

requires more specialised methods e.g. use of Extended Simplified Neural Networks 

(ESNN) as described in [ZGKL05]. The use of ESNN for such modeling problems is 

not discussed any further and remains a further research objective.  

  

 The second algorithm begins with initialising model parameters to 

( )1 1 1

1i i ip p w
n

= = =x ; the training data is then transformed 

{[ ( ), ( )]; 1,2,..., }y t X t t M= to },...,2,1)];(),({[ Mttzty = into single dimension by using 

a linear approximation bXaXLz +== ')(* . However, unlike algorithm-I, two 

additional parameters (see figure 4.2) are added to the one-dimensional Neural 

Network )]([)( 1 XLNNXSNN = . The second step in the algorithm is the application 

of the gradient descent optimisation algorithms to minimise, 

[ ]2

1

1
( )

2

T

t t
t

E y SNN X
=

= −∑ , where )(XSNN is given in algorithm-II step 1.d, with the 

parameters },...,2,1|,,,,,{ 0 Nicc iii =βαβα   to be identified. In this algorithm, it is not 

required that βα τ +== XXLz )(  is a one-to-one mapping (noticing that one-to-one 

mapping is a sufficient but not the necessary condition), rather parameters α  and β  

are tuned by the learning algorithm to meet the approximation requirement. This 

algorithm is more complicated than the first one but likely it will handle high 

dimensional modeling situation [ZGKL05]. Architecture of such a SNN resembles 

the figure 4.2.  

 

 In the standard NNs we use to have weight connections i.e. ija , coming from 

each individual input to every hidden layer node. However, in the case of SNN of 

algorithm-II we transform the input vector X  into one dimension using a linear 

function ( 'a X b+ ). The result of this setup is a scalar weight matrix representing the 

hidden layer weight connections rather than a vector representing all the hidden layer 
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weights. The architecture shown in figure 4.2 also represents a one dimensional 

Neural Network because now we don’t have to update all the hidden layer weights 

associated with each neuron; instead only two parameter per neuron will be updated 

in the hidden layer i.e. the common weight connection and the bias attached to it.    

 

 An exciting fact to be noted here is the way the data is transformed into one 

dimension using the linear approximation bXaXLz +== ')(* . Such a linear 

approximation can also be found by applying multiple regression techniques. A 

multivariate or least squares fit model of the data is usually represented as 

0 0 1 1 2 2........ n nz x x x xα α α α= + + . Therefore we have to solve for unknown 

coefficients 0 2, , ........ nα α α α  , by performing a least squares fit. We can then use 

these estimates to initialize network parameters to transform the training data before 

passing it on to our one dimensional NN. However, in algorithm-II, we have not 

adopted this approach since in standard NN models we do not perform any such data 

pre-processing and therefore the comparison of both the methods may be biased. 

Instead we will look at this approach i.e. use of multiple regression methods for data 

transformation in regression boosting frame work, see section 5.  

 

 The Algorithm-II presented above can be easily extended to be viewed as a 

regression boosting method for functions defined on discrete input spaces i.e. 

1

n

i
i

X U U
=

∈ = ∏ . With similar error bounds and convergence guarantees as presented 

in [HZ09]. Based on these exciting facts we propose a new simplified approach to 

regression boosting for functions defined on discrete input spaces. We will refer to 

our approach as Simplified Regression Boosting (SRB) for discrete input spaces. 

Following is a step by step description of this approach for functions defined on 

discrete input spaces. 

 

 



 

 81  

 

4.2     Backpropagation Algorithm for Simplified NNs 

 

 In-line with the definition and architectural representations of Simplified 

Neural Network algorithms, we can now define our simplified network parameters as: 

),...,( 1 nxxX = are input variable,  ∏
=

=∈
n

i
iUUX

1

 which are input space, my R∈  is 

the output variable, ‘m’  is the layer index and denotes output layer, the index of the 

layer just below output layer  will be ‘m-1’ and ‘m-2’ and so on. iα are the 

connection weights associated with input layer to hidden layer and in the Simplified 

NN case it will be represented as, 

1

2

.

.

.

i

n

α

α
α

α

 
 
 
 

=  
 
 
 
  

    (4.6) 

 Notice the change in definition of this network parameter; in the case of 

standard NN this parameter was a 1dx vector where as in simplified case it is replaced 

by a scalar parameter. 

  

 iβ  is the bias attached to hidden layer neurons, where as ic  & 0c  are the 

connection weight and bias from hidden layer to output layer respectively. ‘σ ’ is the 

activation function and in the case of sigmoidal neurons it will be 
exp

1
( )

1 x
xσ −=

+
, 

and in the case of linear neurons it will be xx =)(σ . The output of hidden layer 

neuron j  in the layer 1m− can therefore be computed as; 

[ ]1

1
)

N
m

i ij
i

y z βασ−

=
∑= +   ,   [ ]1

1

( ' ) )
N

m
j i i

i

y a X bσ α β−

=
= + +∑    (4.7) 

The net input to our hidden layer neurons will be:  
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[ ]1

1

)
N

m
j i i

i

net zσ α β−

=

= +∑ , 
1

1

( ' )
N

m
j i i

j

net a X b  α β−

=

= + +∑     (4.8) 

The output of the last layer will be the same as its net input since the output layer uses 

the linear neurons. So the output of neuron ‘i’ in the layer ‘m’ (which is last layer) 

will be: 

( )1
0

1

n
m m m m
i i j

i

y c  y cσ −

=

= +∑        (4.9) 

where 1m
jy − can be computed as in equation (4.7)  

 

4.2.1 Performance Index: 

 

 We know that our training set is of the form:  

{ X1, t1}{ X2, t2}…………………….{ Xk, tk},      (4.10) 

where Xk  is the input vector and tk is the corresponding target value and k = 1….p 

represents the ‘kth’  iteration or pattern. Let ‘W’  denote all the network parameters i.e.       

[ ]0, , , , ,i i iW a b c cα β= . Our objective is to minimize the cost function or the error 

measure i.e. sum of squared errors over whole the training set/ patterns which can be 

defined as:  

( ) ( ) ( )( )2

1 1

1

2

pn

i i
i k

E W t k y k
= =

∇ = −∑ ∑       (4.11) 

And in the vector case we can define the above as: 

( ) ( )( )
TtE W e e t y t y∑ ∑   = = − −   

     (4.12) 

Where ‘e’ is the sum of squared errors over all the training patterns. Therefore the 

approximate mean square error over a single sample (k) would be:  

( ) ( ( ) ( )) ( ( ) ( ))( ) ( )T Tt k y k t k y kE X e k e k∧ − −= =     (4.13) 
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4.2.2 Updating Model Parameters: 

 

 We can define the approximate steepest descent or generalised delta rule for 

MLP’s as follows: 

n e w o ld

W W W= + ∆        (4.14)  

where the parameters of our SNN are, [ ]0, , , , ,i i iW a b c cα β=  and,  

^
( )WEW W

η
∂

= −
∂∆            (4.15) 

where ‘η ’ is the learning rate In the vector case we can write the equations (4.14) and 

(4.15) altogether as : 

^

( 1) ( )
E

w w
w

k k η ∂+ = −
∂

         (4.16) 

where ‘k’  represents the ‘kth’  iteration or pattern. 

 

4.2.3 Gradient Calculation 

Now we have to compute the gradients 
^ ^ ^ ^ ^ ^ ^

 ,  ,  , ,  ,  
oi i i

E E E E E E E

W c c a bβα

 ∂ ∂ ∂ ∂ ∂ ∂ ∂=  ∂ ∂ ∂ ∂ ∂ ∂∂ 

 , by 

using the chain rule of differentiation as follows: 

^ ^ m
i

m
i i i

netE E

C net C

∂∂ ∂= ∧
∂ ∂ ∂

          and       
^ ^

0 0

m
i

m
i

netE E

C net C

∂∂ ∂= ∧
∂ ∂ ∂

   (4.17) 

1^ ^

1

m
j

m
i j i

netE E

netα α

−

−

∂∂ ∂= ∧
∂ ∂ ∂

     and       
1^ ^

1

m
j

m
ji i

netE E

netβ β

−

−

∂∂ ∂= ∧
∂∂ ∂

   (4.18) 

1^ ^

1

m
l

m
l

netE E

a net a

−

−

∂∂ ∂= ∧
∂ ∂ ∂

      and      
1^ ^

1

m
l

m
l

netE E

b net b

−

−

∂∂ ∂= ∧
∂ ∂ ∂

  (4.19)  

 

Note that our initial simplified networks are of the form: 

i. [ ]
1

( ) )
N

i i i o
i

y NN z c z cσ α β
=

= = + +∑  
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ii.  [ ]
1

( ) ( ' ) )
N

i i i o
i

y NN z c a X b cσ α β
=

= = + + +∑  

 This gives rise to two different scenarios as depicted above. We can proceed 

in two ways: 

a. Following NN definition in (algorithm-I) compute the gradients 
^ ^
 ,

i i

E E

βα

∂ ∂
∂ ∂

  

b. Following NN definition in (algorithm-II) also compute the gradients 

^ ^
 ,E E

a b

∂ ∂
∂ ∂

.  

The effect of computations in step ‘b’ will be the provision of two extra parameters 

for network tuning. 

 

4.2.4 Computing Error Signals 

 

 Let 
^

, 1
,

m m
i j

E

net
−

∂
∂

 , 1
,

m m
i js

−= , be the sensitivity or error signal for the output and 

hidden layers respectively.  From the network definition above we can see that we 

have to compute the following gradients inline with the eqns. (4.17) (4.18) & (4.19) 

1
0

1

m ni m
i j

ii i

net
yc c

C C
  −

=
∑

∂ ∂  = +
  ∂ ∂

   and 1
0

10 0

m ni m
i j

i

net
yc c

C C
  −

=
∑

∂ ∂  = +
  ∂ ∂

 therefore, 

1
m
i m

j
i

net
y

C

−∂ =
∂

 and  
0

1
m
inet

C

∂ =
∂

       (4.20)  

Similarly,  

1

1

m Nj
i i

ji i

net
z  βα

α α

−

=
∑

∂ ∂  = + ∂ ∂  
    and  

1

1

m Nj
i i

ji i

net
z  βα

β β

−

=
∑

∂ ∂  = + ∂ ∂  
 

1m
j

j

net
Z

α

−∂
=

∂
   and 

1

1
m
j

i

net

β

−∂
=

∂
      (4.21) 

And  
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1

1
( ' )

m Nj
i i

j

net

a a
a X b  βα

−

=
∑

∂ ∂  = + + ∂ ∂  
  and       (4.22)  

1

1
( ' )

m Nj
i i

li

net

b
a X b  βα

β

−

=
∑

∂ ∂  = + +
  ∂ ∂

       (4.23) 

Therefore, 

1m
j

i

net

a
x

−∂
=

∂
 and 

1

1
m
jnet

b

−∂
=

∂
       (4.24)  

  

Now we can re-write our steepest descent rule as follows: 

1. For output layer weight and bias values: 

1( 1) ( ) mm
i i i jyc c sk k η −+ = −    ,   0 0( 1) ( ) m

ic c sk k η+ = −    (4.25)  

2. For hidden layer weight and bias values: 

1( 1) ( ) m
i i js zk kα α η −+ = −    ,   1( 1) ( ) m

i i jsk kβ β η −+ = −    (4.26) 

and:  

2( 1) ( ) m
ija a s xk k η −+ = −    ,   2( 1) ( ) m

i jb b sk k η −+ = −    (4.27) 

 

4.2.5 Back-Propagating The Error Signal 

 The only thing left to be computed are the sensitivities i.e. 
^

, 1
,, 1

,

m m
i jm m

i j

E
s

net

−
−

∂ =
∂

. 

This is the process which gives the name of back propagation to this algorithm.  Note 

that the sensitivities are computed by starting at the last layer, and then propagating 

backwards through the network to the first layer.   

i.e. 1 2 2 1.....m m mS S S S S− −→ → → . For the last or output layer this sensitivity or 

error signal (i.e. how the error at the output is affected by the net input ‘i’ ) can be 

easily computed as follows: 

^ 2

1 1
( ( ) ( ))

1

2

pn
m
i m m i ki i

E mm k kys t i inet net = =
∑ ∑ −

∂ ∂  = =  ∂ ∂  
    (4.28) 
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( ( ) ( ))
( )i

m
i

y
k kyt ii net

k
−

∂= −
∂

, where the term
( )i

m
i

y

net

k∂
∂

is actually the derivative of our 

activation function i.e. 
( )

'( )i m
im m

i i

mnety i
net

net net
f

σ∂∂ = =
∂ ∂

              (4.29) 

Note that in the case of Sigmoidal neurons it will be: 

( )2

exp

exp exp exp(1 )exp

1 1 1
1 1

( ) 1 1 1

x

i ix x xx
x x

x

−

− − −−+

     ∂ = = − = −     ∂ + + +     
, 

and in the case of linear neurons it will  be ( )
( )

x x
x

∂ =
∂

.     (4.30) 

Therefore we can see that the sensitivity/ error signal for output layer will be, 

( ) '( )m m
i i

mm ys nett i i f−= −        (4.31) 

From here we can now compute the sensitivity of the hidden layer. Note that the error 

at hidden layer is not a direct function of its weight and bias; instead it is an 

accumulation of error from the layer just after this. So, we need another application of 

chain rule of differentiation to compute this error signal. 

^ ^
1

1 1

m
im

j m m m
j i j

netE E
s

net net net

−
− −

∂∂ ∂= =
∂ ∂ ∂

                                                           (4.32) 

Note that we have already computed the first term 
^

m
im

i

E
s

net

∂ =
∂

 in equation (4.28). 

Therefore, we are left with,     

1
1

01 1 11

mm n ji m
i j im m mij j j

ynet
yc c

net net net
c

−
−

− − −=
∑

∂∂ ∂  = + =
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    (4.33) 

1 1
1

1 1

( )
'( )

m m
j j m

jm m
j j

y net
net

net net
f

σ− −
−

− −

∂ ∂
= =

∂ ∂
       (4.34) 

‘ 1'( )m
jnetf − ’ is the derivative of activation function and can be computed following 

the derivation depicted in eqns. above (4.29) and (4.30).  

By combining (4.32) and (4.33) we get, 

1 1'( )m m m
j i i js s c netf− −=          (4.35) 
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We can now obtain the updated weight and bias values for our network by 

substituting the sensitivities/ error signal obtained in equation (4.31) and (4.35) into 

(4.17) (4.18) & (4.19) respectively. 

 

4.3 SNN Extension To Regression Boosting 

  

 As discussed above we can see that Simplified NN approach has its distinct 

advantages over traditional NN approximation schemes. Especially when it comes to 

dealing with function defined on discrete input spaces. In order to investigate wider 

implications of SNN approach we will extend our approach to regression boosting, 

which will target the regression problems for our selected domain i.e. function 

approximation problems in high dimension-low sample cases where the model inputs 

constitutes of a significant number of discrete variables.   

 

 The algorithm-II presented above can be easily extended to be viewed as a 

regression boosting method for functions defined on discrete input spaces i.e. 

1

n

i
i

X U U
=

∈ = ∏ . With similar error bounds and convergence guarantees as presented in 

[HZ09]. Based on these exciting facts we propose a new simplified approach to 

regression boosting for functions defined on discrete input spaces. We will refer to 

our approach as Simplified Regression Boosting (SRB) for discrete input spaces. 

Following is a step by step description of this approach for functions defined on 

discrete input spaces.  

 

4.3.1 Simplified Regression Boosting (SRB): 

  

 Let G(x) be an objective function we wish to minimize this cost function, this 

could be any objective function such as one presented in [ZP01] or e.g.  

( ) ( ) ( )( )
1 1

21

2

pn

i k
h k y kii

G x
= =

−= ∑ ∑ . In traditional regression boosting settings ( )kih  
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is referred to as the hypothesis generated by the WeakLearn Procedure. The accuracy 

of this hypothesis on the training set is then measured according to cost function 

G(x).  As highlighted before many regression boosting methods used Neural 

Networks as base regressor or WeakLearn procedure to generate a hypothesis ( )kih  at 

every iteration. In such situations the output or hypothesis generated by a standard 

Neural Network can be represented as 0
1

( ) ( ) ( )
N

i i i i
i

h k NN X c X b cτσ
=

= = + +∑ a , where 

1 2( , , ..., )nX x x x= are input variable, X U∈ 1 2 ... n
nU U U R= × × × ⊂  which are 

input space,  y R∈  is the output variable, τ  is the vector transpose, (.)σ  is the 

activation function and the parameters 0c R∈ , ic R∈ , n
ia R∈ , and ib R∈  

( 1, 2, ..., )i N= . In the following section we propose a new simplified version of the 

WeakLearn procedure to boost functions defined on discrete input spaces; we will 

refer to this simplified version as ‘Simplified WeakLearn’.  

 

 Based on this approach we can derive algorithms for boosting regression 

problems for function defined on discrete input spaces. These will be a lot faster and 

simpler in architecture when compared to existing regression boosting models using 

Neural Networks as WeakLearn procedure.  In fact, this approach can be used with 

any existing regression boosting algorithms using Neural Networks as WeakLearn 

procedure by simply replacing the Standard WeakLearn with the ‘Simplified 

WeakLearn’ discussed above.  We can prove the convergence for this algorithm by 

following the approach used in [ZP01] and is included at the end of this thesis as 

appendix-D.  
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4.3.2 Simplified Regression Boosting Algorithm-III 

 

 

 In line with definition of a simplified NN presented in [HZ09] we define our 

‘Simplified WeakLearn’ as [ ]*

1

( ) ( ' )
N

i i i i o
i

h x c a X b cσ α β
=

= + + +∑ , where ic R∈ , n
ia R∈ , 

ib R∈ ( ( 1,2,..., )i N=  and 0c R∈ .  This Simplified WeakLearn approach will differ 

1. Input: 

• Training set examples ( ) ( )1 1, ....... ,n nS y y= x x wherey∈ℝ , training 

iterationsT  . 

• Simplified WeakLearn: A learning procedure that produces a 

hypothesis *( )xih   

2. Identify a best linear approximation bXaXLz +== ')(* which can be found 

by the least square algorithm;  

(Note that we can represent a multivariate or least squares fit model of the data 
as: 0 0 1 1 2 2........ n nz x x x xα α α α= + + . Therefore we have to solve for unknown 

coefficients 0 2, , ........ nα α α α  , by performing a least squares fit i.e. multivariable 

regression) 
3.  Initialize: Initialize the model parameters using 0 2, , ........ nα α α α  

4. Iterate: 

• Call Simplified WeakLearn-minimize cost function G(x) with initial 

model parameters. (accept iff tξ = ( )( )2
*

1
1i

i i

p

k
h k y τ∑

=
− − <  

• Set combination co-efficient tc to minimize G(x) 

• Modify model parameters using gradient descent algorithm in order to 

identify, [ ]*

1

( ) ( ' )
N

i i i i o
i

h x c a X b cσ α β
=

= + + +∑  

5. Estimate Output: ( )* /t i t
t t

c h x cy =∑ ∑
∼
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on two main aspects: the initialisation criteria and the total number of model 

parameters for the WeakLearn procedure. This algorithm will first identify a best 

linear approximation, then use these initial estimates to initialize the network weights, 

combining at a summing junction before the hidden layer neurons; then Call the 

Simplified WeakLearn procedure in order to minimize cost function G(x). This 

approach has many distinct advantages. Firstly, a single common objective function 

is both used by the weak learning procedure to produce hypotheses and determines 

the other parameters in the algorithm. Secondly, the distribution of examples is used 

to control the generation of hypotheses and each hypothesis is trained to learn the 

same underlying function. Since the Simplified WeakLearn use simplified NN as the 

base learner, it also reduces the model parameters and enhances the performance. As 

highlighted section 4.1.1 the result of such a setup benefits in two ways; firstly in 

forward pass we have a good initial estimate as compared to individual inputs only 

and in backward pass we have two additional parameters associated with each input 

for further fine tuning of the initial estimates of the best linear approximation 

coefficients. This approach results in significant reduction of model parameters. As 

described in [HZ09], the total number of parameters required is 3N+n+2 as compared 

to a standard NN where the total number of parameters required for function 

approximation problems is (n+2)N+1, (n = number of network inputs, N= number of 

hidden layer neurons). Another distinct advantage of this approach is that when we 

add neurons in the hidden layer, we only add three parameters per neuron; this 

gradual increase in parameter helps in avoiding model over-fitting, a commonly faced 

situation in standard NN models.   

 

4.4    Summary 

  

 The first part of this chapter is the introduction of simplified NN schemes and 

corresponding learning algorithms. A derivation of Backpropagation algorithm for 

these simplified NN algorithm is also outlined in detail. The simplified NN schemes 
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and algorithms are mathematically analysed and an architectural representation of 

these algorithm is also presented in this chapter. A detailed analysis of approximation 

capabilities of simplified NN algorithms is also included in this chapter. This chapter 

also contains a discussion on the wider implications of the simplified Neural Network 

approach, and gives an overview of how simplified NN approach can be applied to 

regression boosting. We have given a brief introduction to regression boosting in this 

chapter, and discussed how a simplified regression booting scheme can be developed 

using simplified NN approach. We also propose a new algorithm for regression 

booting on functions defined on discrete input spaces in this chapter.  
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CHAPTER 5 

 

 

IMPLEMENTATION AND EVALUATION  

OF THE SNN ALGORITHMS 

 

 

 There are many tools and applications available to simulate Neural Network 

based models for evaluating their performance. In order to assess the performance of 

our proposed simplified NN algorithms, and to compare the results with standard NN 

models, we have implemented these algorithms in Matlab 7.0. The reasons for 

choosing Matlab are: its familiarity in research community, success in recent years 

and availability of a range of learning and optimisation algorithms for NNs.  

 

5.1    Data Collection  

 

 One of the most significant aspects in the success of any Neural Network 

application is the quality and availability of data. The availability of sufficient 

training data plays a very important role in success of a NN based model. As 

highlighted before unavailability of sufficient training data in certain application 

domains makes it difficult for standard NN models to achieve the desired results.  

 

 In order to analyse the performance of simplified Neural Networks (SNN) 

we first produced some dummy data sets and trained our SNN on these datasets. The 

dummy data sets are functions of varied complexity with two or three input variables 

as shown in table 5.1 and 5.2. For the dummy examples 25 (see table 5.1) and 40 (see 

table 5.2) cases of discrete values have been generated, independently each of which 
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uniformly distributed over [0,1]. The values of the target variable Y was then 

computed using the equations shown in tables 5.1 and 5.2. 

 

The obvious advantage of using dummy data sets is that we have prior 

knowledge of underlying function and we can easily monitor the performance of our 

proposed algorithms, as both the dependent and independent variables are under 

experimental control. 

 

 Once the performance of our network is verified on these dummy data sets, 

we identified some benchmarking examples to show that the proposed algorithms are 

general enough for any kind of approximation problems taking on discrete values.  

Selection of benchmarking data was a tedious task since our algorithms represent a 

special case of standard NN, therefore we need datasets that can meet the following 

criteria: 

 

• All or at least a significant number of independent variables should be 

discrete. (Any continuous variables remaining in the data sets can be later 

rounded off to make it a discrete variable i.e. for experimentation purpose 

only). 

• The number of independent variables should be large. 

• The variables should be independent of each other. 

• Availability of data is limited i.e. there are not enough examples for training a 

standard NN.   

 

 As argued earlier, most of the NN approximation schemes proposed so far 

consider the NNs to take on continuous inputs only. Therefore most of the 

benchmarking datasets have continuous values only. Alternatively, if there are any 

datasets available that has discrete values, they were used for classification problems 

instead.   
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 There are many well known resources of experimental data available for use 

with NNs e.g. UCI Machine Learning Repository, Bilkent University function 

approximation repository, statlib data archives and Delve data sets etc. We have 

selected three different benchmarking examples from ‘Bilkent University Function 

Approximation Repository’. For the Pyrimidines data set, the task consists of 

Learning Quantitative Structure Activity Relationships (QSARs) i.e. The Inhibition 

of Dihydrofolate Reductase by Pyrimidines. For the Triazines Dataset, the problem is 

to learn a regression equation, rule or tree to predict the activity from the descriptive 

structural attributes.  A detailed description of the selected data sets and their past 

usage is given in Appendix-B. 

 

5.2       Data Pre-Processing And Partitioning 

  

 Once the data is selected the next step is perform some data pre-processing. In 

practice, it is nearly always beneficial, sometimes critical, to apply pre-processing to 

the input data before they are fed to a network. There are many techniques and 

considerations relevant to data pre-processing e.g. simple filtering, principle 

component analysis and many others , please see [Sar97][Bis95][Mas93]. However, 

the aim of these pre-processing techniques is roughly the same i.e. transformation of 

the data into a form suited to the network inputs, selection of the most relevant data 

and reducing the number of inputs to the network.  

 

 In order to compare the performance of these simplified algorithms with 

standard NN models, we have used the method of three way splits, and partition the 

data into training sets, validation sets, and test sets. As defined earlier, validation sets 

are used to decide the architecture of the network, training sets are used to actually 

update the weights in a network and test sets are used to examine the final 

performance of the network. The crucial point is that a test set, by the standard 
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definition in the NN literature, is never used to choose among two or more networks, 

so that the error on the test set provides an unbiased estimate of the generalization 

error (assuming that the test set is representative of the population, etc. Any data set 

that is used to choose the best of two or more networks is, by definition, a validation 

set, and the error of the chosen network on the validation set is optimistically biased 

[Sar97].  

 

5.3     Simulation Results for SNN Algorithms I &II 

 

 Once the data pre-processing tasks are performed, the networks are ready for 

training. The selected data sets (i.e. dummy and real-world examples) are first used 

for training of a standard Neural Network. The objective is to set a standard for 

evaluation against our simplified algorithms. These standard NNs are actually 

feedforward Neural Networks of three layers i.e. input, hidden and output layer. 

According to the conventional setup, the hidden layer activation function is chosen to 

be sigmoid, whereas the output layer activation function is pure linear. With these 

initial parameters in place, we can now train the standard NN for approximation on 

the selected data sets. The same data sets are then used for training of proposed 

simplified NN models. The results obtained are summarized in (see tables 5.1-5.4), 

followed by comparative graphs (see figures 5.1-5.12) showing performance of these 

simplified NNs against standard NNs over testing data sets; where total number of 

training iterations or epochs are recorded on x-axis and mean squared error on y-axis. 
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Table: 5.1 Performance Comparison of Standard NNs Vs Simplified NNs 

 

 

 

Data Set 

ANN SNN-I SNN-II 

MSE No. of 

iterations 

No. of 

parameters 

(n+2)N+1 

MSE No. of 

iterations 

No. of 

parameters 

3N+n+2 

MSE No. of 

iterations 

No. of 

parameters 

3N+n+2 

Dummy 1 

(2X1+X2
2 ) 

0.080659 100 (2-4-1) 

17 

0.494222 100 (1-4-1) 

15 

0.465661 100 (1-4-1) 

15 

Dummy 2 

(2X1+2X2) 

0.360283 100 (2-4-1) 

17 

0.313595 100 (1-4-1) 

15 

0.4626 100 (1-4-1) 

15 

Dummy 3 

(Sin(X1+X2)) 

0.42679 100 (2-4-1) 

17 

0.0709674 100 (1-4-1) 

15 

0.0686217 100 (1-4-1) 

15 

Pyrimidines 0.0919559 300 (14-6-1) 

97 

0.0119983 300 (1-10-1) 

33 

0.0236143 300 (1-8-1) 

27 

Triazines 0.436261 300 (18-8-1) 

161 

0.0159458 300 (1-10-1) 

33 

0.0428223 300 (1-12-1) 

39 
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Figure 5.1  Performance of Standard NNs Vs Simplified NNs over Test Set 

(Dummy 1) 
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Figure 5.2 Performance Of Standard NNs Vs Simplified NNs over Test Set 

(Dummy 2) 
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Figure 5.3 Performance of Standard NNs Vs Simplified NNs over Test Set 

(Dummy 3) 
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Figure 5.4 Performance of Standard NNs Vs Simplified NNs over Test Set 

(Pyrimidines) 
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Figure 5.5 Performance of Standard NNs Vs Simplified NNs over Test Set 

(Triazines) 

 

 The initial experimental results obtained with dummy data sets do not 

reflect any significant improvement in terms of total number of parameters. The 

reason for that is we are only using two independent variables, and therefore the 

effect of simplification is not apparent. However, the results of benchmarking 

datasets show a significant reduction in the total number of parameters. These 

results supports our claim that  simplified NNs are universal approximators for 

functions defined on discrete input spaces; since we have achieved approximately 

the same or in some cases even better accuracy,  with significantly less 

parameters. Although the performance of the simplified algorithms was quite 

promising on the selected datasets, one may argue the simplicity of dummy 

datasets mainly consisting of two variables. We therefore extended our 

experiments to use more complicated dummy data sets with varying complexity 

and number of variables. We then used these datasets to experiment with 

simplified algorithm-II which yielded even better performance then before; please 

refer to table 5.2 and comparison graphs (figure 5.6-5.10). The experiments were 
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initially performed with 100 training iterations for dummy datasets and 300 

iterations for real world examples; in order to verify whether the performance of 

these models degrade upon increasing training iterations. Hence, increasing the 

number of iterations actually does not affect or add any value to the initial 

performance of our simplified NNs, we re-evaluated the performance of our 

algorithms against standard NN with no data pre-processing for both the models, 

we also reduced the number of training iterations significantly (i.e. 25) for 

Pyrimidines and Triazines datasets, see table 5.3 and 5.4 with corresponding 

comparison graphs as shown in figures 5.11 and 5.12.  

 

Data Set 

Standard NN Simplified NN-II 

MSE No. of 
iterations 

No. of 
parameters 
(n+2)N+1 

MSE No. of 
iterations 

No. of 
parameters 

3N+n+2 

Dummy 4 
SIN(2X1+4X2

2) 
 

0.146185 100 17 0.074572 100 16 

Dummy 5     
2X3

2+X1
3+LOG(X2) 

0.126166 100 21 0.011201 100 16 

Dummy 6 

2

321 5.0
4

6 xxxSin +






 π

 

 
0.210441 

 
100 

 
31 

 
0.058809 

 
100 

 
28 

Pyrimidines 0.079212 100 88 0.0035615 100 47 

Triazines 0.035513 100 187 0.011004 100 74 

 

Table: 5.2 Performance Comparison of Standard NNs Vs Simplified NNs for 

(SNN-II) 
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Figure 5.6 Comparison Graph, Standard NN Vs Simplified NN over Test Sets for 

SNN-II (Dummy 4) 

Legend:  

Standard NN: - - - - - - - - - ----- 

Simplified NN: __ __ __ __ __ 
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Figure 5.7 Comparison Graph, Standard NN Vs Simplified NN over Test Sets for 

SNN-II (Dummy5) 
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Figure 5.8 Comparison Graph, Standard NN Vs Simplified NN over Test Sets for 

SNN-II (Dummy 6) 

Legend:  

Standard NN: - - - - - - - - - ----- 

Simplified NN: __ __ __ __ __ 
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Figure 5.9  Comparison Graph, Standard NN Vs Simplified NN over Test Sets for 

SNN-II (Pyrimidines) 
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Figure 5.10  Comparison Graph, Standard NN Vs Simplified NN over Test Sets 

for SNN-II (Triazines) 

 Legend:  

Standard NN: - - - - - - - - - ----- 

Simplified NN: __ __ __ __ __ 

  

The experimental results show that these simplified networks have the 

ability to approximate functions defined on discrete input spaces to arbitrary 

accuracy by employing less number of parameters as compared to standard NN 

approximation schemes. The simplified algorithms have shown to be 

computationally inexpensive and simpler in architecture. Based on theses findings 

we decided to proceed with formal publication of our work.  

 

 One crucial point to be noted here is the fact that when comparing our 

results with standard NN models, we have not used any data pre-processing with 

standard NN models. For this particular reason, we either have to omit the data 

pre-processing stage from the simplified NNs and initialise the network 

parameters with random weights as in standard NN model, or do similar data pre-

processing for standard NN model for a fair comparison.  We have adopted the 
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first approach and eliminated the data pre-processing stage from simplified NNs. 

With this setup in place, we re-evaluated the performance of our proposed 

simplified algorithms against standard NN model. Upon analysis of results 

presented above we can also see that the difference in performance of standard 

and simplified NNs is more apparent during initial training iterations. Hence, 

increasing the number of iterations actually does not add any value to the initial 

performance of our simplified NNs. For these reasons we re-evaluated the 

performance of our algorithms against standard NN with no data pre-processing 

for both the models, we also reduced the number of training iterations 

significantly (i.e. 25) for Pyrimidines and Triazines datasets.  

 

 For illustration, consider the example of Pyrimidines data set, which 

consists of 74 instances, 27 explanatory variables and 1 response variable. With 

five hidden layer neurons and over a set of 25 iterations, the performance of a 

standard NN in terms of mean squared error was recorded to be 0.2764 by 

employing a total of 146 parameters according to (n+2)N+1 (i.e. n = number of 

network inputs, N = number of hidden layer neurons). The same data are then 

used for training of our simplified NN. We obtained an accuracy of 0.0292 over 

25 iterations by employing 47 parameters in total according to 3N+n+2. We have 

also achieved better accuracy in terms of means squared error. Also note that SNN 

has not only achieved similar accuracy but it has achieved that in relatively fewer 

training iterations or cycles, e.g. see the comparison graph for Triazines dataset, 

where similar accuracy is achieved in very fewer training cycles. These results 

support our claim that simplified NNs are universal approximators for functions 

defined on discrete input spaces, since we have achieved approximately the same 

or in some cases even better accuracy with significantly less parameters. 



 

 105  

 
 

 

 

Pyrimidines 

 MSE 
No. of 
iterations 

 
No. of 
parameters 
 

Standard 
NN 

0.2764 25 146 

Simplified 
NN 

0.0292 25 47 

 
Table 5.3  Pyrimidines Data set - Performance Comparison Over Testing Data 

for 25 Iterations 

 

 

 

 
 
 
 
 
 
 
 
 

 

 

Figure 5.11 Pyrimidines Data set - Performance Comparison over Testing Data 

for 25 Iterations 
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Triazines 

 MSE 
No. of 
iterations 

 
No. of 
parameters 
 

Standard 

NN 
0.1032 25 311 

Simplified 

NN 
0.0225 25 77 

 
Table 5.4: Triazines Data set - Performance Comparison over Testing Data for 

25 Iterations 
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Figure 5.12 Triazines Data set - Performance Comparison over Testing Data for 

25 Iterations 
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5.4 Simulation Results For Simplified Regression Boosting 

 Algorithm-III 

 

 In order to evaluate the performance of the SRB Algorithm-III we have 

chosen three different benchmarking datasets: Pyrimidines and Triazines which 

are already used for evaluating simplified NN performance and a third example 

named F1 dataset, ( ) ( )2
1 2 3 4 510sin 20 .5 10 5y x x x x xπ= + − + + . This first 

appeared in [Fri91] and then in [ZP01]. Since our focus is on function 

approximation problems for functions defined discrete input spaces, therefore we 

have not used standard data for this problem, this is because their input variables 

are continuous. Instead we have generated dummy samples for all the five 

explanatory variables which constitute discrete values. A total of 100 instances is 

produced and then partitioned into training, validation and test sets as per standard 

practice. For a fair comparison with [ZP01] we have used Neural Networks as the 

hypotheses and backpropagation as the learning procedure to train them. However 

our algorithm uses a simplified WeakLearn instead of a standard WeakLearn as 

used in [ZP01]. Each network had a layer of three ‘tansig’ activation functions 

between the input units and a single linear output. We used early stopping with a 

validation set in order to reduce over fitting in the hypotheses. 

 

 Performance of this algorithm is compared with a slightly modified 

version of the algorithm presented by Zimmel & Pittasi which appeared in 

[ZP01]. The first step in the simplified regression boosting algorithms is 

identifying a best linear approximation from the available data. The aim is to 

provide our Simplfied WeakLearn procedure. This can be achieved easily by 

applying multiple regression.  In Matlab this can be done by using back-slash 

operator (“/”). We may refer to Matlab Neural Network toolbox help section for 

further details on specific implementation related issues.  
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 The results were consistent for all the three examples and the training error 

was reduced steadily. Please refer to the comparison graphs (see figure 5.13-5.15) 

which show the performance of these examples over the test sets.  

0 10 20 30 40 50 60 70 80 90 100
0

0.5

1

1.5

2

2.5

3

3.5

Epoch

S
qu

ar
ed

 E
rr

or

 

Figure 5.13  Performance Comparison of Simplified Regression Boosting Vs 

Standard Regression Boosting over Test Sets (Pyrimidines dataset) 
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Figure 5.14   Performance comparison of Simplified Regression Boosting Vs 

Standard Regression Boosting over Test Sets (Triazines dataset) 

Legend:  

Standard Regression boosting: - - - - - - - - - ----- 

Simplified Regression boosting: __ __ __ __ __ 
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Figure: 5.15 Performance comparison of Simplified Regression Boosting Vs 

Standard Regression Boosting over Test Sets (F1 dataset) 

 

Legend:  

Standard Regression boosting: - - - - - - - - - ----- 

Simplified Regression boosting: __ __ __ __ __ 

 

Data Set Standard Regression Boosting using 
Z&P Algorithm 

Simplified Regression Boosting 

MSE No. of 
iterations 

No. of 
parameters 
(n+2)N+1 

MSE No. of 
iterations 

No. of 
parameters 

3N+n+2 

Pyrimidines 0.079212 100 88 0.0035615 100 38 

Triazines 0.035513 100 187 0.011004 100 71 

F1 
 

0.310441 100 22 0.208809 100 16 

 

Table 5.5:  Performance comparison of Simplified Regression Boosting Vs 

Standard Regression Boosting over Test Sets 
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 Performance comparison of simplified and standard regression boosting is 

summarized in table 5.5. On comparison of the obtained results we can see that 

the Simplified Regression boosting algorithm has achieved lower or 

approximately similar MSE on all the three examples. For instance, see the results 

obtained for F1 data set. We can see that we have achieved almost similar 

accuracy in terms of MSE. However, the number of parameters required for the 

model has been reduced to 16 from 22 in standard regression boosting algorithm. 

For F1, dataset reduction in parameters is not so significant due to the fact that F1 

data set has only five inputs but if we compare the parameters required for both 

algorithms over Traizines and Pyrimidines datasets, we can see the effect of 

significant reduction in model parameters. For example in Traizines dataset we 

have achieved much better MSE by employing only 71 parameters as compared to 

187 required for standard regression boosting model. 

  

5.5 Summary 

 

 This chapter of the thesis discusses the implementation details of the 

simplified NNs. As illustrated earlier, these algorithms are implemented in Matlab 

7.0 using Neural Network tool box functions.  The algorithms are first 

implemented and then their performance is evaluated against standard NN 

approximation schemes.  The data collection and pre-processing tasks are also 

discussed briefly. The proposed algorithms are initially tested on three dummy 

data sets, in order to understand the effects and these algorithms in detail, and then 

on two real world examples from Bilkent University Function Approximation 

repository. The experimental results are shown in the form of tables and graphs. A 

comparison of training, validation and test sets for all data sets are presented. 

Separate graphs showing the approximation and forecasting performance of these 

simplified NNs against standard NN scheme, on test sets, are also presented. 

Similarly, the implementation and evaluation details of simplified regression 

boosting algorithm are also given in this chapter. The performance evaluation and 

results for simplified regression boosting algorithm have been reported on three 

benchmarking datasets. 
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CHAPTER 6 

 

 

CONCLUSION 

 
 
 

 Function approximation capabilities of feedforward Neural Networks have 

been widely investigated over the past couple of decades. However, use of these 

NN models is restricted due to complex computations attached with them. Over 

the years many improvements have been suggested but no particular attention has 

been paid to the nature of input spaces, the majority of the research undertaken 

ignores the fact the by focusing on distinguished features of discrete input spaces 

more simplified and robust algorithms can be developed. The main focus of this 

thesis is a special case of function approximation problems that take on discrete 

variables only.   

 

6.1 Summary of Thesis 

 

 A survey of results on universal approximations properties followed, by a 

detailed analysis of simplified NN approach, along with a discussion on special 

features of discrete input spaces, provides us theoretical basis for further work. 

We then proposed simplified Neural Network algorithm I and II for function 

approximation in our selected domain i.e. functions defined on discrete input 

spaces with high dimensional-low sample case.  

 

 Experimental analysis, evaluation and comparison of these simplified 

Neural Network based algorithms have shown that these algorithms work well in 

the following situations: 

 

• Limited availability of training data is the main reason for choosing SNN 

over standard NNs because any networks performance mainly depends on 
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the number of training examples. Therefore, in the absence of adequate 

training data, it is hard for standard Neural Network to show high level of 

accuracy, which ultimately justifies the use of these simplified methods. 

• When the input variables are independent of each other, it is easier to use 

aggregation methods, described in simplified algorithms. This will result 

in good initial starting solution which is the main objective behind using 

aggregation methods.   

 

 In order to investigate wider implications of the simplified Neural 

Network approach, we extended our approach to regression boosting problems. 

After a detailed analysis of existing regression boosting schemes, a simplified 

regression boosting approach was introduced. Based on the simplified regression 

boosting approach, we proposed algorithm-III, which is used for boosting 

regression problems in our selected domain. 

 

6.1.2 Some Limitations  

 

 Like any other algorithms, these simplified algorithms have some 

limitations as well. Application of these algorithms to benchmarking data and 

examples have shown that it is hard to achieve desired results if the independent 

variables have too much variation, there are variables which take on continuous 

values, the number of values a discrete variable can take on is very large, and the 

input variables are not independent of each other.  

 

 The transformation phase of these algorithms may cause independent 

discrete variables to be continuous; thus requiring more parameters to achieve the 

desired approximation accuracy. Therefore special care is required while selecting 

a linear map that transforms multiple inputs to unidirectional data. Selection of an 

appropriate mapping, which can achieve desired accuracy, is a trivial task and 

hence proves the fact that functions defined on discrete input spaces have 

arbitrarily separable hierarchical structure which is not unique.  Algorithm-II is 

not prone to this phenomenon, since each input is dealt separately.  
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 The algorithms were implemented and their performance was compared 

with standard Neural Network models. Experimental results obtained so far, show 

that these schemes work in practice and have shown to achieve sufficient 

approximation accuracy. In most of the cases we have achieved approximately the 

same accuracy or even better by employing much less parameters as compared to 

standard NN models.   

 

6.2 Future work 

 
 The results obtained in this research have many extensions which can be 

explored in order to carry out future research. One of the most obvious extensions 

is to extend our selected application domain to include mix input variables i.e. 

some inputs are discrete and some inputs are continuous. This extended simplified 

approach has already been discussed in [ZGKL05]. The idea is to use certain 

inputs as groups, and rather than having a single input Neural Network model, use 

more inputs, each representing separate groups. We can further extend this 

simplified approach to replace the lower level system with fuzzy systems or rule 

based system i.e. simplified neural fuzzy systems, see [ZK08][ZGKL05].   

  

 As highlighted in chapter 4, the simplified Neural Network approach uses 

ridge activation functions in the hidden layer. There are many other types of 

activation functions available for use in hidden layer, especially radial-basis 

activation functions, which have recently become very popular. The simplified 

Neural Network approach can therefore be investigated with other activation 

functions. Neural Network based ensemble methods have also become very 

popular mainly due to the fact many Neural Network models can generally 

produce better results than a single model. As shown in our simplified regression 

boosting scheme this approach can be applied to Neural Network based ensembles 

models. There are many other ensembles that can be investigated for application 

of these simplified methods.     
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 Success of any Neural Network based model largely depends on the 

availability and reliability of training data. However, availability of data for 

certain application domains is always limited for different reasons e.g. LMCP 

modeling, QSAR modeling and many other. These schemes can be applied to 

many other application domains, where we are limited by the availability of data 

due to different reasons. One such example is the health care data, especially in 

United Kingdom, where access to patient related information is very restricted due 

to strict data protection rules. Health informatics itself, is a vast field and the 

opportunities for inter-disciplinary research employing these simplified methods 

for developing decision support systems, are immense. 

 

6.3 Published Work 

 

 The outcomes of this research work have been formalized and have 

appeared in following paper: 

 

• Syed Shabbir Haider, Xiao-Jun Zeng, Simplified Neural Networks 

algorithm for function approximation on discrete input spaces in high 

dimension-limited sample applications, Neurocomputing, Volume 72, 

Issues 4-6,January 2009, Pages 1078-1083. 

 

6.4 Summary 

 

 This chapter is a brief summary of the research work undertaken. It 

includes a detailed discussion on advantages and limitations of these simplified 

Neural Networks. We have also highlighted future research directions in this field, 

followed by enlisting our published work.   
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Appendix-A:  Backpropagation Algorithms for Standard 

Neural Network Models. 

 

We can define a standard Neural Network for function approximation problems as 

shown in equation (1.1). Note that it has been proved and widely accepted that 

Neural Networks with one hidden layer of sigmoid-activation neurons and an 

output layer of linear neurons are universal function Approximators i.e. they can 

approximate any reasonable function to arbitrary accuracy. More precisely, 

according to the definition of famous (Cybenko, 1989) theorem as:  

 

“let σ be any continuous sigmoid-type function (e.g. σ(ξ) = 1/ (1+e-ξ)). Then any 

continuous real-valued function ‘f’ on [0,1]n  (or any other compact subspace of 

Rn) and ξ >0, there exists vectors  a1, a2……….an  , b , ci  & co and a parameterized 

function  Y( . , a, b, c) : [0,1]n� R such that: 

 

|Y( x , a, b , c) – f (x)| < ξ      for all x ∈  [0,1]n 

Where, 

  ( ) ( ) ( ) 0
1

, , , '
N

i i
i

Y x a b c NN X c  a X b  cσ
=

= = = + +∑         ( 1.1) 

And ai ∈ Rn & ci , co & b ∈ R, where a = (a1,a2……, an), c = (c1,c2……, cn) and b 

= (b1,b2…, bn)”. Also note that ‘ai’  is ‘d x 1’ vector usually referred to as the 

direction of the ridge function.  

 

Deriving The BP Algorithm For MLPs 

 

Let,  

• ( )1,..., nX x x= are input variable.   

• my R∈  is the output variable, ‘m’ is the layer index and denotes output 

layer, the index of the layer just below output layer  will be ‘m-1’ and ‘m-

2’ and so on.  
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• jia is the connection weight going from input ‘i’   to hidden layer neuron 

‘j’ . And can be represented in matrix form as shown below: 

11 12 1

21 22 2

1 2

...

...

. . . .

. . . .

...

i

i

ji

j j ji

a a a
a a a

a

a a a

 
 
 
 =
 
 
 
 

 

• jb  is the bias attached to hidden layer neuron ‘j’,  

• Where as ic  & 0c  are the connection weight and bias from hidden layer to 

output layer respectively.  

• σ  is the activation function and in the case of sigmoidal neurons, 

1
( )

1 exp x
xσ −=

+
, and in the case of linear neurons it will be xx =)(σ . 

Since  

• The output of  hidden layer neuron ‘j’  in the layer ‘m-1’  will be; 

1m
jy − = '

1

( )
N

ji i j
j

a x   b   σ
=

+∑                                           (1.2) 

Where the subscript ‘i’ represents the ith input variable ‘x’.  

In vector/ matrix form this can be seen as: 

 

• The net input to our hidden layer neurons will be:  

1m
jnet −  = '

1

( )
N

ji i j
j

a x   b   σ
=

+∑                                        (1.3) 

• The output of the last layer will be the same as its net input since the 

output layer uses the linear neurons. So the output of neuron ‘i’  in the 

layer ‘m’  (which is last layer) will be: 

m
iy = 1

0
1

n
m m m
i j

i

c  y  c−

=
+∑                                              (1.4) 

where 1m
jy − can be computed as shown in equation (1.2). 
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Performance Index: 

 

We know that our training set is of the form:  

 

{ X1, t1}{ X2, t2}…………………….{ Xk, tk}                              (1.5) 

 

Where Xk is the input vector and tk is the corresponding target value and k = 1….p 

represents the ‘kth’  iteration or pattern. 

Let ‘W’  denote all the network parameters i.e. 0, , ,ji i iW a b c c =    . Our objective 

is to minimize the cost function or the error measure i.e. sum of squared errors 

over whole the training set/ patterns which can be defined as:  

( ) ( ) ( )( )2

1 1

1

2

pn

i k

E W i it k y k
= =

∇ = −∑ ∑                                                 (1.6) 

And in the vector case we can define the above as: 

( )E W =   ∑ te e  = ( ) ( )T
t y t y − −

 ∑                                  (1.7) 

Where ‘e’ is the sum of squared errors over all the training patterns. Therefore the 

approximate mean square error over a single sample (k) would be:  

 ( ) ( ) ( ) ( ) ( )( ) ( ) ( )( )T T
E X k k t k y k t k y k∧ = = − −e e         (1.8) 

 

The Generalised Delta Rule/ Approximate Steepest Descent For Weight/ Bias 

Update: 

 

We can define the approximate steepest descent or generalised delta rule for 

MLP’s as follows: 

new oldW W W= + ∆  ,   where 0, , ,ji i iW a b c c =       (1.9) 

And,  

W
EW

W

∂
∂

−=∆
)(

^

η ,   where ‘η ’ is the learning rate    (2.0) 

In the vector case we can write the equations (1.9) and (2.0) altogether as: 
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( 1) ( )
E

w k w k
w

η
∧∂+ = −

∂
                                                    (2.1) 

where ‘k’ represents the ‘kth’ iteration or pattern. 
 

Gradient Calculation 

Now we have to compute the gradients , ,  ,  
i i ji i

E E E E E

w c c a b

∧ ∧ ∧ ∧ ∧ ∂ ∂ ∂ ∂ ∂=  ∂ ∂ ∂ ∂ ∂  
 , by 

using the chain rule of differentiation as follows: 

and  
0 0

m
i

m
i

netE E

C net C

∧ ∧ ∂∂ ∂= ∧
∂ ∂ ∂

           (2.2) 

1

1

m
j

m
ji j ji

netE E

a net a

−∧ ∧

−

∂∂ ∂= ∧
∂ ∂ ∂

  and 
1

1

m
j

m
i j i

netE E

b net b

−∧ ∧

−

∂∂ ∂= ∧
∂ ∂ ∂

   (2.3) 

Let , 1
,, 1

,

m m
i jm m

i j

E
s

net

∧
−

−

∂ =
∂

, be the sensitivity/ error signal for the output and hidden 

layers respectively.  From the network definition above we can see that we have 

to compute the following gradients inline with the eqns. (2.2) and (2.3) above : 

 

1
0

1

m n
mi

i j
ii i

net
c y c

C C
−

=

∂ ∂  = + ∂ ∂  
∑  and 1

0
10 0

m n
mi

i j
i

net
c y c

C C
−

=

∂ ∂  = + ∂ ∂  
∑  

1
m

mi
j

i

net
y

C
−∂ =

∂
 and 

0

1
m
inet

C

∂ =
∂

                                               (2.4) 

 

Similarly,  

 

1
'

1

m N
j

ji i i
jji ji

net
a x b

a a

−

=

∂  ∂= + ∂ ∂  
∑  and 

1
'

1

m N
j

ji i i
ji i

net
a x b

b b

−

=

∂  ∂= + ∂ ∂  
∑  

1m
j

i

ji

net
x

a

−∂
=

∂
and 

1

1
m
j

i

net

b

−∂
=

∂
                   (2.5) 

Now we can re-write our steepest descent rule in equation (2.3) as follows: 

 

 

m
i

m
i i i

netE E

C net C

∧ ∧ ∂∂ ∂= ∧
∂ ∂ ∂
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1. For output layer weight and bias values: 

yscc
m

j

m

iii
kk

1
)()1(

−
−=+ η    ,   scc

m

i
kk η−=+ )()1(

00
   (2.6) 

2. For hidden layer weight and bias values: 

xsaa i

m

jjiji
kk

1
)()1(

−−=+ η    ,   sbb
m

jii
kk

1
)()1(

−−=+ η    (2.7) 

 

Computing The Sensitivities (Back Propagation Of Error) 

The only thing to left to be computed is the sensitivities i.e. , 1
,, 1

,

m m
i jm m

i j

E
S

net

∧
−

−

∂ =
∂

. 

This is the process which gives the name of back propagation to this algorithm.  

Note that the sensitivities are computed by starting at the last layer, and then 

propagating backwards through the network to the first layer.   i.e. SM �  SM-1 
�  

….. �  S2  �  S1. 

For the last/ output layer this sensitivity or error signal (i.e. how the error at the 

output is affected by the net input ‘i’) can be easily computed as follows: 

( ) ( )( )2

1 1

1

2

pn
m m m
i i im m

i ki i

E
S t k y k

net net

∧

= =

 ∂ ∂= = − ∂ ∂  
∑∑      

( ) ( )( ) ( )i
i i m

i

y k
t k y k

net

∂
= − −

∂
        (2.8) 

Where the term
( )i

m
i

y k

net

∂
∂

is actually the derivative of our activation function 

i.e.
net
y

m

i

i

∂

∂ = 
net
net

m

i

m
i

∂

∂ )(σ  = )(' net
m

i
f       (2.9) 

Note that in the case of sigmoidal neurons it will be 

( )2

1 exp 1 1
1

( ) 1 exp 1 exp 1 exp1 exp

x

x x xxx

−

− − −−

      ∂  = = −      ∂ + + +     + 

 

( )1 i ix x= −  and in the case of linear neurons it will be:  

 ( ) ( )x x
x

∂ =
∂

                                                                      (3.0) 
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Therefore, we can see that the sensitivity or error signal for output layer will be, 

( ) ( )
'

m m
i i

m m
S neti it y f= − −                                                  (3.1) 

From here we can now compute the sensitivity of the hidden layer. Note that the 

error at hidden layer is not a direct function of its weight and bias. It is an 

accumulation of error from the layer just after this. So, we need another 

Application of chain rule of differentiation to compute this error signal. 

1
1 1

m
m i
j m m m

j i j

netE E
S

net net net

∧ ∧
−

− −

∂∂ ∂= =
∂ ∂ ∂

                                             (3.2) 

Note that we have already computed the first term m
im

i

E
S

net

∧∂ =
∂

 in equation (3.1). 

Therefore, we are left with,     

1
1

01 1 1
1

mm n
jmi

i j im m m
ij j j

ynet
c y c c

net net net

−
−

− − −
=

∂∂ ∂  = + = ∂ ∂ ∂ 
∑                       (3.3) 

( ) ( )
11

' 1
1 1

mm
jj m

jm m
j j

nety
f net

net net

σ −−
−

− −

∂∂
= =

∂ ∂
                                 (3.4) 

( )' 1m
jf net − ’ is the derivative of activation function and can be computed 

following the derivation depicted in equations (2.9) and (3.0).  

By combining (3.3) and (3.4) we get, 

( )1 ' 1m m m
j i i jS S c f net− −=                                                           (3.5) 

We can now obtain the updated weight and bias values for our network by 

substituting the sensitivities or error signal obtained in equation (3.1) and (3.5) 

into (2.6) and (2.7) respectively. 

 
 
Jacobian Matrix 
 

Note that the vector/ matrix representation of the term 
1

m
i

m
j

net

net −

∂
∂

 computed in 

equation (3.3) is of the form: 
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Where as  ( )
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i jm

j

net
c f net

net
−

−

∂ = =
∂

.
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Appendix-B: Description of Data Sets 

 

The Pyrimidines and Triazines data sets are taken from UCI Machine Learning 

Repository. A brief description of their past usage and original sources is given 

below. 

 

A. Title of Database: Pyrimidines 

1. Sources: Luis Torgo 

   http://www.ncc.up.pt/~ltorgo/Regression/DataSets.html 

2. Relevant Information: The task consists of Learning Quantitative Structure 

Activity Relationships (QSARs). The Inhibition of Dihydrofolate Reductase by 

Pyrimidines. The data and methodology are described in: 

- R. D. King, S. Muggleton, R. A. Lewis, M. J. Sternberg, Drug Design by 

machine learning: the use of inductive logic programming to model the structure-

activity relationships of trimethoprim analogues binding to dihydrofolate 

reductase. Proceedings of The National Academy of Sciences , Vol. 89, Issue 23, 

Pages 11322-11326, 1992. 

5. Number of Instances: 74 

6. Number of Attributes: 27 + 1 Response variable i.e. activity 

7. Missing Attribute Values: None 

 

B. Title of Database: Triazines 

1. Sources: Luis Torgo 

   http://www.ncc.up.pt/~ltorgo/Regression/DataSets.html 

2. Relevant Information: The problem is to learn a regression equation, rule or 

tree to predict the activity from the descriptive structural attributes. The data and 

methodology is described in detail in: 

- Ross D. King, Jonathan D. Hirst and Michael J.E. Sternberg, A comparison of 

artificial intelligence methods for modelling QSARs, Applied Artificial 

Intelligence, Vol. 9, Issue 2, Pages 213-233, 1995. 

- Jonathan D. Hirst, Ross D. King and Michael J.E. Sternberg, Quantitative 

Structure-Activity Relationships by Neural Networks and inductive logic 
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programming. I.  The inhibition of dihydrofolate reductase by triazines. Journal of 

Computer Aided Molecular Design, Vol. 8, Issue 4, Pages 405-420, 1994. 

3. Number of Instances: 186 

4. Number of Attributes: 60 + 1 Response variable i.e. activity 

5. Missing Attribute Values: None 

 

C. Title of Database: F1 
 
1. Sources: 
 
 (a) Original owners of database: 
 
 This is an artificial data set used by J.H. Friedman (1991) for MARS. 
 
 -BREIMAN, L. (1996): Bagging Predictors. Machine Learning, Vol. 24, Issue 3, 

Pages 123-140. Kluwer Academic Publishers. 

 -FRIEDMAN, J. (1991): Multivariate Adaptive Regression Splines. Annals of 

Statistics, Vol. 19, Issue 1, Pages 1-82. 

2. Relevant Information: The cases are generated using the following method: 

Generate discrete values of 5 attributes, X1, ..., X5 independently each of which 

uniformly distributed over [0,1]. Obtain the value of the target variable Y using 

the equation below: 

( ) ( )2
1 2 3 4 510sin 20 .5 10 5y x x x x xπ= + − + +  

 
3. Number of Instances: 100 
 
4. Number of Attributes: 5 
 
5. Missing Attribute Values: None 
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Appendix-C: Proof of Theorem 2 

 

For the given input space U , based on Theorem 1 in [ZGKL05], there exists a 

linear function: ∑
=

+==
n

i
ii xwwXLz

1
0)(      (C.1) 

which is one to mapping from U to R .  For every  

( ) i

n

i
knkkkkk UUuuuX

nn 1
,,2,1... ,...,,

2121 =
×=∈= where nlNk ii ,...,2,1,...,2,1 ==  (C.2) 

Define: 

( )
nn kkkkkk XLz ...... 2121

=        (C.3) 

That is, 
nkkkz ...21
is the function value of )(XL at 

nkkkX ...21
and the set of all such 

values is denoted as : 

{ }niNkyV ilkkk n
,...,2,1,,...,2,1...21

=== ,     (C.4) 

which is the output variable space of function )(XL . As )(XL is one-to-one 

mapping, then all elements of V are different to each other. Therefore, for 

every Vz∈ , there exists only one element X  in U such that )(XLz = . Further, 

as U is a discrete space with finite elements, then V  is a discrete space with finite 

elements.   

  

Now define function )(zg on V  as follows: For every Uz∈ , let X  be the unique 

element in U such that )(XLz = . Then define the value of g at zas follows: 

)()( XGzg =          (C.5) 

For the function g defined in the above, it can be proved by the reverse process 

that for all UX ∈ . 

[ ])()( XLgXG =         (C.6) 

 

 As )(zg is a function on finite discrete space V which is bounded, based 

on [Wat80] it can extended to be a continuous function )(ˆ Xg  on ],[ˆ zzV =  

(where min , maxz V z Vz z z z∈ ∈= = )  in the sense that:  
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)()(ˆ XgXg =   andz V∈ .       (C.7) 

As )(ˆ Xg is a continuous function on V̂ , then it is implied immediately from the 

universal approximation property of standard NNs on continuous spaces  that 

there exists a NN )(1 zNN  on  Û such that  

ε<−=− ∈∞ |)()(ˆ|max||ˆ|| 1ˆ1 zNNzgNNg
Vz

     (C.8) 

Now define a SNN as )]([)( 1 XLNNXSNN = , then (C.6), (C.7) and  (C.8) imply 

that,  for any UX ∈ ,  

ε<−≤
−≤

−=−

∈

∈

|)()(ˆ|max

)()(max

|)]([)]([||)()(|

1ˆ

1

1

zNNzg

zNNzg

XLNNXLgXSNNXG

Vz

Vz  

which leads to ε<−=− ∈ |)()(|max|||| XNNXGNNG UX  and hence complete the 

proof.  
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Appendix-D: Proof of Convergence Algorithm-III 

 

By following the same approach as in [ZP01] we can prove the standard boosting 

property for our simplified regression boosting algorithm in the case where all 

combination coefficients 1tc = . Let 
1

/
ni i j

t t tj
p w w

=
= ∑ and tξ denote the error that 

hypothesis t  makes on its distribution, ( )( )2*

1

n
i i

t t t i
i

p h yξ τ
=

 = − −  ∑ x . 

Theorem: Assume that for all t T≤  hypothesis t  makes error tξ  on its 

distribution. If the combined output y
∼

is considered to be in error iff  

2

yy τ
 

− > 
 

∼

 then the output of the boosting algorithm  (after T stages) will have 

error at most ξ where, 
2

1

Ti
t

t
P y yξ τ ξ

=
∏

  = − > ≤  
   

∼

. 

Proof: The proof presented below is based on the approach first appeared in [78] 

and then followed by [ZP01]. It is shown that the sum of weights at stage T is 

bounded above by the product of the tξ ’s , while at the same time, for each input i 

that is incorrect, its corresponding weight i
Tw at stage T is significant. 

( )( )2*
1

1 1

Tn
i i i i
T T t i t T t

i i i t

w w h y wτ ξ ξ+
= =

 = − − = =  ∑ ∑ ∑ ∏x  

The second equality holds because, ( )( )2* /i i i
t t t i t

i i

w h y wξ τ  = − −    
∑ ∑x . 

Now 

let ( )*. /i i
T ty h T

−
∑= x , then the weight of example i at time t is: 

( )( ) ( )
2

2* * . .i i i i i
t t i t i

t t

w h y h y y yτ τ
− −        = − − = − + − −                  

∑ ∑x x  

( )( )
2 2

* . .i i i i iT h y y T y yτ τ
− −      = + − − ≥ − −      

         
Var x  
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The last in equality holds because ( )( ) ( )
2

* *1 .i i i
tt

h T h y
− = = − 

 
∑Var x x . Now 

consider an example input i that produce an error, then we have 

2

. 1i i i
ty y wτ

− − > ⇒ ≥ 
 

, if ξ  is the total error rate of the combination output, 

then i
ti

w ξ≥∑ . Thus we have, 1
1

T
i
T t

i t

wξ ξ+
=

≤ =∑ ∏ . 

One important fact to be noticed that there are no assumption about error rate tξ of 

individual hypothesis. Also if all 1 ,tξ < = ∆ where 1,∆ < then Tξ < ∆ . 
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Appendix-E: Matlab Implementation for Simplified NN  

Algorithms 

 

 

1.  Importing data into Matlab: 

 

The first step in experiments is to import the data sets in Matlab Work Area; 

Matlab does support many formats; we have got the data in Excel format with all 

the independent and dependent variables in one file with the last column having 

target values.  

 

1.1 Initialisation:   

 

Note: Matlab provides inbuilt functions to find the best linear approximation i.e. 

the task of finding a line or tangent plane that best fits the given data (Simple or 

Multiple Regression). Matlab represents a multivariate or least squares fit model 

of the data as:  

 

y = a0 + a1 x1 + a2 x2+…….….+ an xn 

 

We have to solves for unknown coefficients a0, a1, a2,  and an  , by performing a 

least squares fit. For this we have to construct and solve the set of simultaneous 

equations by forming the regression matrix, X, and solving for the coefficients 

using the backslash operator.  

 

 

Step 1:   Input Independent and dependent variables 

 

a) Set xi  = [observations for all the independent variables xi , i = 1….n]’  

// a transpose operator is used to later set the problem in matrix 

form // 
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b) Set y  = [target values for each input pattern]’  

// a transpose operator is used to later set the problem in matrix 

form // 

 

Step 2:  Solve for the least square fit model of the data (i.e. to Find the best      

Linear approximation z = L*(X) = a’X + b using Least squares algorithm) 

 

c) Construct the regression matrix ‘X’ by using Matlab command 

 

X = [ones(size(x1))  x1  x2…….xn]; 

 

// This will generate the matrix ‘X’ with all the independent 

variables appearing as columns with an extra column of ones in the 

beginning so that we can have the constant value ‘ao’ in the 

equation above.// 

 

d)   Using backslash i.e. ‘A = X\y’ to solve for unknown coefficients;  

 

// X = A\B Denotes the solution to the matrix equation AX = B // 

 

Step 3:  Training data transformation: Transform the training data 

},...,2,1)];(),({[ MttXty =  to },...,2,1)];(),({[ Mttzty = by using 

bXaXLz +== ')(* ; 

 

e.1)  In the case of algorithm 1 Set P = [X] * [A]  

 

// multiplying the Input variables matrix ‘X’ with the regression 

equation calculated in step 2(d) // 
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e.2)  In the case of algorithm 2 Set net.iw {1,1} = A (i.e. a1, a2, a3…)& 

net.b{1} = a0 

// this will set the weights & bias for the additional layer before the 

one dimensional NN to be the same as the coefficients of the 

regression equation computed in step 2.d.// 

Step 4:  Forming the initial simplified NN as [ ] o

N

i
i czczNy ++== ∑

=1

))( βασ  

f)    Set P = P’  

   

// Setting the resultant ‘P’ from step 3(e) as new independent 

variable // 

 

 g)   Set T = [target values for each input Pi]  

 

h) Now creating the feedforward network with one hidden layer of 

sigmoid activation units and linear activation neuron at the output (i.e 

to be consistent with the conventional FF NNs used for function 

approximation). [ ] o

N

i
i cbXaczNNy +++== ∑

=1

))'()( βασ . 

The matlab command below will be used to create the architecture as 

above  

 

net=newff(minmax(P),[Hid_N, Out_N],{'tansig','purelin'},'traingd');  

 

// Hid_N = number of neurons in hidden layer & Out_N = 

number of neurons in output layer; always one in our case. The 

function minmax is used to determine the range of the inputs to 

be used in creating the network.//  

1.2 Iterations: 

Step 5:   The network will be trained using traditional back-propagation 

(gradient descent) algorithm to identify and update the weight and bias 

values for our network as depicted in Matlab command in step 4(h),  



 

 140  

 

a) Use the Matlab command as below to train the network,  

 

[net,tr]=train(net,P,T) 

 

Note: To allow for more flexibility with experimentation we may wish to 

change some of the default parameters associated with network training 

prior to training i.e. training progress record (net.trainParam.show), 

choice of number of training iterations (net.trainParam.lr), learning rate 

(net.trainParam.epochs) & training goal i.e. desired accuracy 

(net.trainParam.goal). 

 

Step 6: The network can now be simulated to check its response for the input 

patterns.  

 

a) By using following command    

 

a = sim(net,p) 

 

1.3 Forecasting: 

 

Step 7:     Once the network has been fully trained and performance goal for the 

training session has been achieved, we can predict the outputs for any 

new input pattern as below. 

 

a) Set fi = [input pattern to be forecasted, fi , i = 1….n]’  

b) F = [ones(size(f1))  f1  f2…….fn]; 

c) Set P = [F] * [A]  

// multiplying the Input variables matrix ‘f’ with the regression 

equation calculated in step 2(d) // 

d) Repeat step 6 (a) to obtain your forecast.  


