

SIMPLIFIED NEURAL NETWORKS

ALGORITHMS FOR FUNCTION

APPROXIMATION AND REGRESSION

BOOSTING ON DISCRETE INPUT SPACES

A THESIS SUBMITTED TO THE UNIVERSITY OF MANCHESTER FOR

THE DEGREE OF DOCTOR OF PHILOSOPHY IN THE FACULTY OF

ENGINEERING AND PHYSICAL SCIENCES

2010

By

Syed Shabbir Haider

School of Computer Science

 2

Table of Contents

Abstract 9

Declaration 11

Copyright 12

Acknowledgements 13

1 Introduction 14

 1.1 Neural Networks-A Brief Overview 14

 1.2 Basic Terminology and Architectural Considerations 15

 1.3 Real World Applications Of Neural Networks 22

 1.4 The Problem Statement 23

 1.5 Motivations Behind Initiation Of This Research 23

 1.6 Research Objectives To Be Met 25

 1.7 Main Contributions 26

 1.8 Structure Of Thesis 27

 1.9 Summary 28

2 Learning in Feedforward Neural Networks (FNN) 29

 2.1 The Learning Process 29

 2.1.1 Supervised Learning 30

 2.1.2 Un-Supervised Learning 30

 2.2.1 Graded (Reinforcement) Learning 31

 2.2 Supervised Learning Laws for MLPs 32

 3

 2.2.1 The Perceptron Training Rule 32

 2.2.2 The Widrow-Hoff Learning (Delta) Rule 34

 2.3 Backpropagation Algorithm for MLPs 37

 2.4 Special Issues in BP Learning and MLPs 39

 2.4.1 Convergence, Stability and Plasticity 39

 2.4.2 Selection of Hidden Layer Units (Activation Function) 40

 2.4.3 When To Stop Training? 40

 2.4.4 Local Minima 41

 2.4.5 Number of Hidden Layers 41

 2.4.6 Number of Hidden Units 42

 2.4.7 Learning Rate and Momentum 43

 2.4.8 The Training Style 43

 2.4.9 Test, Training and Validation sets 44

 2.5 Variants of BP Learning 45

 2.6 Summary 47

3 Approximation Capabilities of FNNs and Related Work 48

 3.1 Function Approximation-The Problem 48

 3.2 FNN’s as Universal Function Approximators 49

 3.3 Approximation And Representation Capabilities of FNNs 53

 3.3.1 Ridge Activation Functions 54

 3.3.2 Radial-Basis Activation Functions 56

 3.3.3 Recent Advancements On Function Approximation by

 FNNs 58

 3.4 Neural Network Ensemble Methods 60

 3.4.1 Bagging 61

 3.4.2 Boosting 62

 3.4.3 Boosting for regression problems 63

 4

 3.4.4 Gradient-based boosting 64

 3.5 Common Issues In FNNs and Problem Description 66

 3.6 Special Features Of Function Defined On Discrete Input Spaces 67

 3.6.1 Flexible-Hierarchical Structure Property 67

 3.7 Summary 71

4 Simplified Neural Network (SNN) Approach And

 Algorithms 72

 4.1 The Simplified Neural Network (SNN) Approach 72

 4.1.1 Simplified Neural Networks (SNN) 73

 4.1.2 Simplified NN Algorithm-I 76

 4.1.3 Simplified NN Algorithm-II 77

 4.2 Backpropagation Algorithm For Simplified NNs 81

 4.2.1 Performance Index 82

 4.2.2 Updating Model Parameters 83

 4.2.3 Gradient Calculation 83

 4.2.4 Computing Error Signals 84

 4.2.5 Back-Propagating The Error Signal 85

 4.3 SNN Extension To Regression Boosting 87

 4.3.1 Simplified Regression Boosting (SRB) 87

 4.3.2 Simplified Regression Boosting Algorithm-III 89

 4.4 Summary 90

5 Implementation And Evaluation Of SNN Algorithms 92

 5.1 Data Collection 92

 5.2 Data Pre-processing And Partitioning 94

 5

 5.3 Simulation Results For Simplified NN Algorithm I &II 95

 5.4 Simulation Results For Simplified Regression Boosting

 Algorithm-III 107

 5.5 Summary 110

6 Conclusion 111

 6.1 Summary Of Thesis 111

 6.1.2 Some Limitations 112

 6.2 Future Work 113

 6.3 Published Work 114

 6.4 Summary 114

Bibliography 115

Appendices 124

Appendix-A Backpropagation Algorithms for standard Neural

 Network Models 124

Appendix-B Description of Data Sets 131

Appendix-C Proof of Theorem 2 133

Appendix-D Proof of Convergence Algorithm-III 135

Appendix-E Matlab Implementation for Simplified NN Algorithms 137

Total Pages: 140

Total Word Count: 27710

 6

List Of Figures

Figure 1.1 Biological Neuron Vs Artificial Neuron 15

Figure 1.2 Block Diagram Of An Artificial Neuron 16

Figure 1.3 Neural Network Topologies 19

Figure 1.4 Feedforward Neural Network Architecture 19

Figure 1.5 Recurrent Neural Networks Architecture 21

Figure 2.1 Neural Network Learning Process, Paradigms And Algorithms 30

Figure 2.2 The Widrow-Hoff Learning Algorithm 37

Figure 3.1 An Example Of A System With Two Level Of Hierarchical

 Structure 68

Figure 4.1 Architectural Representation Of Simplified NN

 Algorithm-I 76

Figure 4.2 Architectural Representation Of Simplified NN

 Algorithm-II 77

Figure 5.1 Performance of Standard NNs Vs Simplified NNs over test set

 (Dummy 1) 97

Figure 5.2 Performance of Standard NNs Vs Simplified NNs over test set

 (Dummy 2) 97

Figure 5.3 Performance of Standard NNs Vs Simplified NNs over test set

 (Dummy 3) 98

Figure 5.4 Performance of Standard NNs Vs Simplified NNs over test set

 (Pyrimidines) 98

Figure 5.5 Performance of Standard NNs Vs Simplified NNs over test set

 (Triazines) 99

Figure 5.6 Comparison Graph, Standard NN Vs Simplified NN over test

 sets for SNN-II (Dummy 4) 101

Figure 5.7 Comparison Graph, Standard NN Vs Simplified NN over test

 sets for SNN-II (Dummy 5) 101

 7

Figure 5.8 Comparison Graph, Standard NN Vs Simplified NN over test

 sets for SNN-II (Dummy 6) 102

Figure 5.9 Comparison Graph, Standard NN Vs Simplified NN Over Test

 sets for SNN-II (Pyrimidines) 102

Figure 5.10 Comparison Graph, Standard NN Vs Simplified NN Over Test

 Sets For SNN-II (Triazines) 103

Figure 5.11 Pyrimidines Data Set - Performance Comparison Over Testing

 Data For 25 Iterations 105

Figure 5.12 Triazines Data Set - Performance Comparison Over Testing

 Data For 25 Iterations 106

Figure 5.13 Performance Comparison Of Simplified Regression Boosting

 Vs Standard Regression Boosting Over Test Sets

 (Pyrimidines dataset) 108

Figure 5.14 Performance Comparison Of Simplified Regression Boosting

 Vs Standard Regression Boosting Over Test Sets

 (Triazines Dataset) 108

Figure 5.15 Performance Comparison Of Simplified Regression Boosting

 Vs Standard Regression Boosting Over Test Sets (F1 Dataset) 109

 8

List Of Tables

Table 1.1 Activation Functions And Their Transfer Characteristics 18

Table 2.1 Supervised And Unsupervised Learning Laws 31

Table 2.2 Perceptron Vs Delta rule 34

Table 5.1 Performance Comparison of Standard Neural Networks

 Vs Simplified Neural Networks 97

Table 5.2 Performance Comparison of Standard Neural Networks

 Vs Simplified Neural Networks for (SNN-II) 100

Table 5.3 Pyrimidines Data set - Performance Comparison

 Over Testing Data For 25 Iterations 105

Table 5.4 Triazines Data Set - Performance Comparison

 Over Testing Data For 25 Iterations 106

Table 5.5 Performance Comparison Of Simplified Regression Boosting

 Vs Standard Regression Boosting Over Test Sets 109

 9

Abstract

 Function approximation capabilities of feedforward Neural Networks have

been widely investigated over the past couple of decades. There has been quite a lot

of work carried out in order to prove ‘Universal Approximation Property’ of these

Networks. Most of the work in application of Neural Networks for function

approximation has concentrated on problems where the input variables are

continuous. However, there are many real world examples around us in which input

variables constitute only discrete values, or a significant number of these input

variables are discrete. Most of the learning algorithms proposed so far do not

distinguish between different features of continuous and discrete input spaces and

treat them in more or less the same way. Due to this reason, corresponding learning

algorithms becomes unnecessarily complex and time consuming, especially when

dealing with inputs mainly consisting of discrete variables.

More recently, it has been shown that by focusing on special features of

discrete input spaces, more simplified and robust algorithms can be developed. The

main objective of this work is to address the function approximation capabilities of

Artificial Neural Networks. There is particular emphasis on development,

implementation, testing and analysis of new learning algorithms for the Simplified

Neural Network approximation scheme for functions defined on discrete input spaces.

By developing the corresponding learning algorithms, and testing with different

benchmarking data sets, it is shown that comparing conventional multilayer neural

networks for approximating functions on discrete input spaces, the proposed

simplified neural network architecture and algorithms can achieve similar or better

approximation accuracy. This is particularly the case when dealing with high

dimensional-low sample cases1, but with a much simpler architecture and less

parameters.

1. High Dimensional-Low Sample Cases refers to real world applications where the number of explanatory or independent
variables is relatively higher in comparison to the available training examples.

 10

In order to investigate wider implications of simplified Neural Networks, their

application has been extended to the Regression Boosting frame work. By

developing, implementing and testing with empirical data it has been shown that

these simplified Neural Network based algorithms also performs well in other Neural

Network based ensembles.

 11

Declaration

 No portion of the work referred to in this thesis has been submitted in support

of an application for another degree or qualification of this or any other university or

other institute of learning.

 12

Copyright

I. The author of this thesis (including any appendices and/or schedules to this

 thesis) owns any copyright in it (the “Copyright”) and s/he has given The

 University of Manchester the right to use such Copyright for any

 administrative, promotional, educational and/or teaching purposes.

II. Copies of this thesis, either in full or in extracts, may be made only in

 accordance with the regulations of the John Rylands University Library of

 Manchester. Details of these regulations may be obtained from the Librarian.

 This page must form part of any such copies made.

III. The ownership of any patents, designs, trade marks and any and all other

 intellectual property rights except for the Copyright (the “Intellectual Property

 Rights”) and any reproductions of copyright works, for example graphs and

 tables (“Reproductions”), which may be described in this thesis, may not be

 owned by the author and may be owned by third parties. Such intellectual

 Property Rights and Reproductions cannot and must not be made available for

 use without the prior written permission of the owner(s) of the relevant

 Intellectual Property Rights and/or Reproductions.

IV. Further information on the conditions under which disclosure, publication and

 exploitation of this thesis, the Copyright and any Intellectual Property Rights

 and/or Reproductions described in it may take place is available in the

 University IP Policy (see

 http://www.campus.manchester.ac.uk/medialibrary/policies/intellectualproper

 -ty.pdf), in any relevant Thesis restriction declarations deposited in the

 University Library, The University Library regulations (see

 http://www.manchester.ac.uk/library/aboutus/regulations) and in The

 University’s policy on presentation of Thesis.

 13

Acknowledgements

 First of all I would like to express my sincere gratitude and deep appreciation to

my advisor, Dr. Xiao-Jun Zeng for his guidance, encouragement, and support

throughout this research. I also want to thank the other committee members specially,

Dr. Ludmil Mikhailov for their time in reviewing the initial research proposal and their

invaluable suggestions.

 I would also like to give my special gratitude to my employer (Mental Health

Research Network) especially my Managers, Carly Cooper and Jane Ramsay for

making this possible. Their continued help and support has played a very significant

part in successful completion of this work.

 My gratitude also goes to my parents specially my mother and my brother for

their devotion, support and encouragement. Above all I would like to thank my wife

for her endless patience and support throughout this research.

 14

CHAPTER 1

INTRODUCTION

 Designing machines that can behave like humans has been amongst one of the

most extensively explored areas of research in the field of machine learning for many

decades. Neural Networks are one of the major milestones in achieving that goal.

Artificial Neural Networks are considered one of the hottest topics both at present and

in the future of computing. They are indeed self learning mechanisms which don't

require the traditional skills of a programmer. Extensive research in this field is

underway at the moment, and it is claimed that these neuron-inspired processors can

do almost anything, which is attracting more research and development in this field.

1.1 Neural Networks-A Brief Overview

 There is no universally agreed upon definition of a Neural Network but there

are certainly enough definitions to understand what a Neural Network is. According

to [Hay96], “A Neural Network is a massively parallel distributed processor that has

a natural propensity for storing experiential knowledge and making it available for

use. It resembles the brain in two respects; knowledge is acquired by the network

through a learning process and interneuron connection strengths known as synaptic

weights are used to store the knowledge.”

 Some other popular definitions of Neural Networks can be found in [Kas96]

and [Rip96]. At this point we can define a Neural Network (NN) or more precisely an

Artificial Neural Network (ANN) as “a computational or mathematical model

composed of a large number of simple, highly interconnected processing elements

capable of learning, information processing and problem solving based upon the

connectionist approach to computation” [Med98], we may also refer to [RS03] and

 15

[Wal90] for a detailed history of connectionism. The analogy between a biological

neuron and an artificial neuron is depicted in the figure 1.1.

Figure 1.1 Biological Neuron Vs Artificial Neuron

 Image Source: Negishi, M. 1998. Everything that Linguists have Always Wanted to Know about Connectionism. Department of

Cognitive and Neural Systems, Boston University. URL: http://hemming.se/gslt/LingRes/NeuralNetworks.htm

1.2 Basic Terminology and Architectural Considerations

As defined earlier, an artificial Neural Network is a mathematical model

composed of a large number of simple, highly interconnected, processing elements

for studying learning and intelligence. According to [KS96], artificial Neural

Networks are parallel computation models that have several distinguishing features:

1. A set of processing units.

2. An activation state for each unit, which is equivalent to the output of the unit.

 16

3. Connections between the units. Generally each connection is defined by a

weight ijW that determines the effect that the signal of unit i has on unit j .

4. A propagation rule, which determines the effective input of the unit from its

external inputs.

5. An activation function, which determines the new level of activation based on

the effective input and the current activation.

6. An external input (bias, offset) for each unit.

7. A method for information gathering (learning rule).

8. An environment within which the system can operate, provide input signals and,

if necessary, error signals.

 As shown in figure 1.2, a processing unit receives a set of inputs iX ,

()1,2,3.....i n= ; these inputs are then multiplied with corresponding connection

weights ijW , (), 1,2,3.....i j n= . The net input to a neuron is computed by summing all

the individual products of network inputs, corresponding weight connections & bias

i.e.

1

n

i j i
i

w x b
=

+∑ (1.1)

Figure 1.2 Block Diagram of An Artificial Neuron

Inputs Weights Summation Activation Output

w

w

w

x

x

x

+

b

x

f(n) .
.

.

.

n
y

 17

 Each non-input unit in a Neural Network combines values that are fed into it via

synaptic connections from other units, producing a single value called net input. The

function that combines values is called the combination function, which is defined by a

certain propagation rule. In most Neural Networks we assume that each unit provides

an additive contribution to the input of the unit with which it is connected. The total

input to unit j is simply the weighted sum of the separate outputs from the connected

units plus a threshold or bias term mentioned in many texts as θj:

1

n

j i j i j
i

y w x θ
=

= +∑ (1.2)

 The contribution for positive ijW is considered as an excitation and an inhibition

for negative ijW . The units having the propagation rule as shown in equation (1.2) are

called Sigma Units. In some cases more complex rules for combining inputs are used.

One of the propagation rules known as sigma-pi has the following format [KS96]:

1 1

mn

j i j ik j
i k

y w x θ
= =

= +∑ ∏ (1.3)

 Lots of combination functions usually use a "bias" or "threshold" term in

computing the net input to the unit. For a linear output unit, a bias term is equivalent to

an intercept in a regression model. It is needed in much the same way as the constant

polynomial ‘1’ is required for approximation by polynomials. The function ()f n

shown in the figure 1.2 is the unit's activation function. In the simplest case, f is the

identity function, and the unit's output is just its net input. This is called a linear unit.

There are many other popular choices for activation functions summarised in the table

1.1:

 18

Activation Function Transfer Characteristics Network Type

Hard Limiting
S(x) = 0 if x < 0

= 1 if x > 0
Backpropagation

Symmetrical Hard Limiting
S(x) = -1 if x<0

= 1 if x > 0
Backpropagation

Linear S(x) = x ADALINE

Saturating Linear

S(x) = 0 if x < 0

S(x) = x if 0 < x < 1

= 1 if x > 1

ADALINE

Symmetrical saturating linear

S(x) = -1 if x < 0

S(x) = x if -1 < x < 1

= 1 if x > 1

ADALINE

Log Sigmoid S(x) = 1/1+exp-x Backpropagation

Bipolar Sigmoid
x

x

e

e
xS −

−

+
−=

1

1
)(Backpropagation

Hyperbolic Tangent
S(x) = tanh(x) =

ex-e-x/ex+e-x
Backpropagation

Sigmoid +ve Linear
S(x) = 0 if x<0

= x if x > 0
Backpropagation

Radial Basis 






 −=
b

ax
kbaxS),,(RBF

Competitive

S(x)=1; for neuron with

maximum ‘x’

= 0; for all others

LVQ

Table 1.1 Activation Functions And Their Transfer Characteristics

 The architecture or topology of a network is defined by the number of layers, the

number of units per layer, and the interconnection patterns between layers. They are

generally divided into two categories based on the pattern of connections i.e.

Feedforward Neural Networks and Recurrent Neural Networks as shown in figure 1.3.

 19

Figure 1.3 Neural Network Topologies

 1) Feed-forward networks allows the data to flow from input units to output units

in strictly one direction, this is the property that gives this architecture the name ‘feed-

forward’. The data processing can extend over multiple layers of units, but no feedback

connections are present. That is, connections extending from outputs of units to inputs

of units in the same layer or previous layers are not permitted as shown in the figure

1.4. Every unit only acts as an input to the immediate next layer. Obviously, this class

of networks is easier to analyze theoretically than other general topologies because

their outputs can be represented with explicit functions of the inputs and the weights.

Figure 1.4 Feedforward Neural Network Architecture

X1

X2

X3
.
.
.

Xn

N1

N2

N3

.

.

bias bias

.

.

.

.

.

Input Layer Hidden Layer Output Layer

Neural Networks

Feedforward
Networks

Hopfield
Network

Competitive
Networks

Radial basis
Networks

Single/
Multilayer

Perceptrons

Recurrent
Networks

Kohonen’s
SOM

ART
Models

 20

 Single Layer Perceptron, Multilayer Layer Perceptron (MLP’s) and Radial Basis

Networks are examples of feedforward network architecture. Feedforward networks

trained with backpropagation algorithm are the main focus of this thesis. Details will

be described in next chapter. The feed-forward networks provide a general framework

for representing non-linear functional mapping between a set of input variables and a

set of output variables. The representation capability of a network can be defined as the

range of mappings it can implement when the weights are varied. The approximation

and representation capabilities of feedforward networks are widely publicized and one

may refer to [Sar97][RJ99][Bis95][Hor91] for a detailed review of the issue; at the

moment it is sufficient to recognize the following facts about the representation

capabilities of feedforward architecture:

• Single Layer Networks are capable of representing only linearly separable

functions or linearly separable decision domains.

• One hidden layered network can approximate arbitrarily well any functional

continuous mapping from one finite-dimensional space to another, provided that the

number of hidden units is sufficiently large. To be more precise, feed-forward

networks with a single hidden layer and trained by least-squares are statistically

consistent estimators of arbitrary square-integral regression functions if assumptions

about samples, target noises, number of hidden units, and other factors are all met.

Feed-forward networks with a single hidden layer using threshold or sigmoid

activation functions are universally consistent estimators of binary classifications under

similar assumptions.

• Two hidden layered networks can represent an arbitrary decision boundary to

arbitrary accuracy with threshold activation functions, and could approximate any

smooth mapping to any accuracy with sigmoid activation functions.

2) Recurrent Networks allow feedback connections. This type of network has at least

one feedback loop which can connect a unit to it self, see figure 1.5. In comparison to

feed-forward networks, the dynamic properties of the network are important. In some

 21

cases, the activation values of the units undergo a relaxation process such that the

network will evolve to a stable state in which activation does not change further. In

other applications in which the dynamic behaviour constitutes the output of the

network, the changes of the activation values of the output units are significant.

Common examples of Recurrent Neural Networks are Competitive Networks,

Kohonen’s Self Organizing Maps, Hopfield Network and ART Models [KS96].

Figure 1.5 Recurrent Neural Networks Architecture

 The issue of selecting architecture optimal for a specific problem is of prime

importance. The representation capabilities of these networks allow us to choose the

best architecture for a specific problem. In addition to a networks representation

capabilities, a comprehensive problem specification also help define the network in

many ways [HDB96]:

• Number of network inputs = number of problem inputs.

• Number of neurons in output layer = number of problem outputs.

• Output layer transfer function choice at least partly determined by problem

specification of the outputs.

X1

X2

X3
.
.
.

Xn

N1

N2

N3

.

.

bias bias

.

.

.

.

.

Input Layer Hidden Layer Output Layer

 22

 The last, but perhaps the most important consideration, is the learning process

in Neural Networks. This is the most important feature of Neural Networks which

allows them to learn from past experiences. The learning process is also very

important with reference to this work and we will therefore discuss learning laws and

corresponding algorithms in more detail in chapter 2.

1.3 Real World Applications Of Neural Networks

 This evolutionary technology (ANNs) has been successfully applied to many

real world applications, and performs very well on tasks involving Classification,

Clustering, Pattern Recognition, Function Approximation and Time Series Prediction

problems.

 These capabilities of (NN) make them a very popular choice for many

application areas such as Aerospace, Electronics, Banking, Forecasting,

Manufacturing, Medicine, Entertainment, Defence and Bioinformatics. This

technology has been successfully used in medical diagnosis (e.g. diagnosis of heart

infection & epilepsy), system identification and control (e.g. vehicle control, process

control), pattern recognition (e.g. face identification, radar systems, object

recognition, etc.), sequence recognition (e.g. speech, handwritten text recognition,

gesture,) game-playing and decision making (e.g. racing, backgammon, chess),

financial applications, data mining, visualization and e-mail spam filtering. The list

of Neural Network applications in real world is very long and the readers are referred

to [HDB96][SS96][AB99] for more detailed review of these applications.

 Most of the work in application of Neural Networks for function

approximation has concentrated on problems where the input variables are

continuous. However, there are many real world examples around us in which input

variables constitute only discrete values, or a significant number of these input

variables are discrete. For the purpose of this research we will focus on real-world

 23

function approximation problems, where the independent or input variables are

mainly discrete. We will discuss special features of such applications in Chapter 3.

1.4 The Problem Statement

 Approximation and representation capabilities of Artificial Neural Networks

(ANN) are widely publicized, and to date it has been proved by many that

Feedforward Neural Networks (FNN’s) are capable of approximating any continuous

function to reasonable accuracy; this property is known as ‘Universal Approximation

Property’. More recently, it has been shown that by focusing on the distinguished

features of discrete input spaces, it is possible to have more simplified and possibly

more accurate Neural Network architecture that can approximate functions defined on

discrete input spaces with sufficient accuracy, and without any compromise on

generalisation and approximation capabilities of existing NN schemes. Although

standard NN approximation methods can be used for approximation of functions on

discrete and mixed input spaces, when dealing with such problems these methods

become unnecessarily complex, and less effective due to not taking into account

special features of discrete input spaces. The main objective of this work is to address

the function approximation capabilities of Artificial Neural Networks, with particular

emphasis on development, implementation, testing and analysis of new learning

algorithms for the simplified Neural Network approximation scheme for functions

defined on discrete input spaces.

1.5 Motivations Behind Initiation Of This Research

The motivations that contributed towards initiation of this research are:

• ‘Biological Analogy’: The fact that Neural Networks resemble the human

brain in their architecture and have the ability to learn from experience; just

like humans.

 24

• ‘The Success of Feedforward Neural Network Architecture’: At present, only

a few of Neural Network models, paradigms actually, are being used

commercially. One particular model, the feedforward back-propagation

network, is by far and away the most popular.

• ‘Universal Approximation Property’: The ability of Feedforward Neural

Networks to approximate any reasonable function to arbitrary accuracy is

known as the universal approximation property.

• ‘Nature of Input Variable Spaces’: Whilst proving the universal

approximation property, almost all the approximation schemes have

considered the independent variables (network inputs) to take on continuous

values only. There are very few methodical results taking into account the true

nature of input variable spaces, if there are any, they follow the same

methodology as for continuous variables. A detailed review of the research

and results obtained so far will be presented in Chapter 2, in connection with

the review of existing techniques and methods.

• ‘Discrete Nature of Variables’: In real world applications, many of the

variables are discrete in nature i.e. they take on a countable number of values,

as compared to continuous variables which can take on any number of values

within a given interval. Categorical, nominal and binary variables are classical

examples of discrete data. Many real world modelling problems have a large

number of variables that just take on discrete values e.g. Location Market

Condition Performance Modelling (LMCP) as described in [ZK08][ZGKL05].

• ‘Separable Hierarchical Structure’: The property of functions defined on

discrete input spaces to have a separable hierarchical structure as discussed in

[ZK08].

• ‘Limited Availability Of Training Data’: In order to achieve desired accuracy,

it is necessary for any NN model to have sufficiently large amount of data

available for training. In practice there are many cases when the availability of

training data is limited as indicated in [ZK08][ZGKL05].

 25

• ‘Possibility Of A More Simplified Neural Network Architecture’: Keeping in

mind the special properties of discrete variables (e.g. they take on a finite

number of states), it is possible to have a more simplified feedforward Neural

Network architecture; that exploits this nature of discrete variables.

• ‘More Practical and Acceptable Architecture’: In practice, it is very hard to

convince commercial organizations and other customers to employ NN

technology to their specific problems because of the black-box nature of

Neural Networks and complex computations associated with them. A more

simplified architecture may be a better idea in filling that gap; besides the

most apparent advantage of saving valuable resources such as processing time

and memory while performing complex computations.

1.6 Research Objectives To Be Met

 The main objectives of this research are to investigate the function

approximation capabilities of Feedforward Neural Network Models, keeping in mind

the limitations of standard Feedforward Neural Network model and special features

of discrete input spaces. The main objectives of this research will be:

• To propose new simplified algorithms based on the simplified Neural

Network approximation scheme proposed in [ZGKL05] for function

approximation on discrete input spaces, to overcome the weakness of the

existing NN algorithms.

• Development of the corresponding learning algorithms for these new

proposed schemes.

• Implementation and analysis of the approximation capabilities of these newly

proposed simplified Neural Network algorithms.

 26

• Testing the performance of these algorithms based on empirical data such as

in Quantitative Structural Activity Relationship Modeling (QSARs), and

compare with the standard Neural Network model.

• Investigate the wider implications of simplified Neural Network approach to

regression boosting.

• Propose new simplified regression boosting approach using simplified Neural

Network model as base learner.

• Development and implementation of the new simplified regression boosting

scheme along with corresponding algorithm.

• Analysis and performance comparison of simplified regression boosting

algorithm, with standard regression boosting models employing Neural

Networks as base/ weak learners.

1.7 Main Contributions

 The main contributions of this research are listed below:

• A systematic review of function approximation capabilities of feedforward

Neural Network model and universal approximation property.

• Detailed analysis and evaluation of simplified Neural Network approach.

• Simplified Neural Network based algorithms I and II for approximation of

functions defined on discrete input spaces. By developing these learning

algorithms, and comparing the performance of these algorithms with standard

Neural Network model over benchmarking examples, it has been shown that

these algorithms work in practice and achieve similar or better accuracy with

employing relatively less parameters required for the model.

• Derivation of simplified backpropagation algorithm for simplified Neural

Network algorithm I and II.

• Analysis of wider implications of simplified Neural Network approach in

regression boosting frame work.

 27

• Simplified regression boosting algorithm-III based on the simplified

regression boosting approach. By implementing and comparing with a

standard regression boosting model over benchmarking examples; it has been

shown that this algorithm can be used for boosting regression estimates for

selected domain.

Although all three algorithms are domain specific, and targets the approximation

problems in high dimension-low sample cases for functions defined on discrete input

spaces, they are simple enough to be easily extended to target mixed variable and

high sample cases.

1.8 Structure Of Thesis

 This thesis consists of six chapters, a brief outline is as follows:

 Chapter one gives a brief overview and introduction of the chosen research

area, with particular emphasis on Neural Network technology. Chapter one also

contains a brief problem description, motivations behind this work, and a summary of

research objectives.

 Chapter two of this thesis focuses on the all important learning phase of

Neural Network models. We presented different forms of learning, along with a

discussion on learning in MLP models, with particular emphasis on feedforward

Neural Network architecture, and the corresponding backpropagation learning

algorithm.

 Chapter three introduces the function approximation problem, with a detailed

review of related work in this field, along with some recent advancement. Neural

Network based ensemble methods have also been discussed with a particular focus on

 28

application of Neural Networks in regression boosting frame work. Chapter three

also details the fundamentals of simplified Neural Network approach and special

features of discrete input spaces.

 Chapter four of the thesis details the proposed simplified algorithms based on

simplified NN approach. A detailed analysis of approximation capabilities of

simplified NN algorithms is also included in this chapter. This chapter also contains a

discussion on the wider implications of the simplified Neural Network approach, and

gives an overview of how simplified NN approach can be applied to regression

boosting. We have given a brief introduction to regression boosting in this chapter,

and discussed how a simplified regression booting scheme can be developed using

simplified NN approach. We also propose a new algorithm for regression booting on

functions defined on discrete input spaces in this chapter.

 Chapter five of this thesis presents implementation and evaluation details.

The obtained results are summarised in form of tables and graphs. A detailed analysis

of the performance of the simplified Neural Network based algorithms I, II and

simplified regression boosting algorithm-III is also given in chapter five.

 Chapter six concludes this research with a detailed summary of the research

carried out, results obtained, and contributions in literature. We also discussed

important observations and future research directions in chapter six.

1.9 Summary

 This chapter gives an introduction to the chosen area of research and gives a

brief overview of the Neural Network technology and its applications. We have also

included a summary of technological considerations and motivations behind initiation

of this research. A summary of problem statement along with details of research

objectives to be achieved are also presented in this chapter. This chapter concludes

with a summary of all the six chapters of this thesis.

 29

CHAPTER 2

LEARNING IN FEEDFORWARD NEURAL NETWORKS

 Most of the Neural Networks used in practice do one or more of the tasks such as

pattern classification, function approximation, noise reduction, optimization, data

clustering etc. While performing any of these tasks an Artificial Neural Network maps

a set of inputs to a set of outputs. This non-linear mapping is generally considered in a

multidimensional surface. The objective of learning is to mould the decision surface

according to a desired response, either with or without the training process RS03.

Readers of this thesis are referred to [AB99] for a comprehensive understanding of

theoretical foundation of learning in Neural Networks.

2.1 The Learning Process

 Learning or training process is perhaps the back bone of Neural Network

technology. As described earlier, functionality of a Neural Network is determined by

the combination of the topology (number of layers, number of units per layer, and the

interconnection paths between the layers) and the weights of the connections within the

network. The topology is usually held fixed, and the weights are determined by a

certain training algorithm. The process of adjusting the weights to make the network

learn the relationship between the inputs and targets is called learning, or training.

 Many learning algorithms have been invented to help find an optimum set of

weights that result in a desired solution of the problems. The figure 2.1 presents

taxonomy of learning process in a context ascribed by [Hay96]:

 30

Figure 2.1 Neural Network Learning Process, Paradigms And Algorithms

2.1.1 Supervised Learning Laws

 Neural Network Model that uses Supervised Learning are trained by

presenting it with examples (also called training data) of inputs, and desired outputs

(target values). These input-output pairs are provided by an external teacher, or by the

system containing the network. The difference between the real outputs and the

desired outputs is used by the algorithm to adapt the weights in the network. It is

often posed as a function approximation problem - given training data consisting of

pairs of input patterns ‘x’, and corresponding target ‘t’, the goal is to find a function

f(x) that matches the desired response for each training input.

2.1.2 Unsupervised (Self Organizing) Learning

 With unsupervised learning, there is no feedback from the environment to

indicate if the outputs of the network are correct. The network must discover features,

regulations, correlations, or categories in the input data automatically. In fact, for

most varieties of unsupervised learning, the targets are the same as inputs. In other

words, unsupervised learning usually performs the same task as an auto-associative

network, compressing the information from the inputs.

Learning process

Learning paradigms

Learning Algorithms (Rules)

Supervised Learning

Reinforcement
Learning

Unsupervised
learning

Error-correction
learning

Boltzman
Learning

Thorndikes Law
of effect

Hebbian
Learning

Competitive
Learning

 31

2.1.3 Graded (Reinforcement) Learning

 Graded or reinforcement learning is quite similar to supervised learning, except

that instead of being presented by correct examples of network response on each

individual trial, the network receives only a sequence of multiple training trials, i.e. at

time intervals containing multiple input-output episodes; the network is given a

numeric score or grade that represents the value of some network performance

measurement function over this time interval. This type of networks are particularly

used in control and process optimization problems where there is no way to know

what the desired outputs should be [RS03].

 Every learning algorithm follows a learning rule that dictates the whole learning

process, in other words the conditions that have to be met by that learning algorithm.

Hebb’s rule and Delta rule (also called LMS i.e. least mean squared error rule) are two

of the most basic and famous of the learning rules. The table 2.1 summarizes the

different types of learning rules categorized under supervised and unsupervised

learning methods.

Unsupervised Learning Laws Supervised Learning Laws

Kohonen’s self organizing maps Delta rule

Hebb’s rule/ signal Hebb law Generalized delta rule

Competitive learning laws Simulated Annealing

Differential Hebbian learning laws Supervised Competitive Learning

Differential competitive learning laws

Table 2.1 Supervised and Unsupervised Learning Laws

 32

2.2 The Supervised Learning Laws For MLPs

 This section details various supervised learning algorithms, with particular

emphasis on multilayer feedforward networks trained with backpropagation

algorithm, since this is the main focus of this research. Before we move on to a

detailed analysis of these learning algorithms, the selection of an objective or cost

function under which these algorithms operate, is very important. To train a network

and measure how well it performs, an objective function (or cost function) must be

defined to provide an unambiguous numerical rating of system performance. Selection

of an objective function is very important because the function represents the design

goals and decides what training algorithm can be taken. To develop an objective

function that measures exactly what we want is not an easy task. A few basic

functions are very commonly used. One of them is the sum of squares error function,

2

1 1

1
()

P N

pi pi
p i

E t o
NP = =

= −∑ ∑ (2.0)

where ‘P’ indexes the patterns in the training set, N denotes the total number of

patterns, ‘i’ indexes the output nodes, and ‘pit ’and ‘ piO ‘ are, respectively, the target

and actual network output for the ‘ith’ output unit on the ‘pth’ pattern. In real world

applications, it may be necessary to complicate the function with additional terms to

control the complexity of the model.

2.2.1 The Perceptron Learning Rule

 The McCulloch-Pitts (1943) neuron model has severe limitations e.g. the lack of

learning capabilities mainly due to the presence of fixed set of weights and threshold.

To overcome these severe shortcomings, several models were proposed that have the

ability to some how adjust the synaptic weight connections [KS04]. The perceptron

learning rule is perhaps the first of all supervised learning rules. It was introduced by

Frank Rosenblatt in late 1950’s. Although very basic in its computing capabilities, it

 33

nevertheless influenced extensive research taken in this field of computing. In

perceptrons, training the weights are updated by altering the network parameters by an

amount proportional to the difference between the target output and the actual output.

One way to learn an acceptable weight vector is to begin with random weights, then

iteratively apply the perceptron to each training example, modifying the perceptron

weights whenever it misclassifies an example. This process is repeated, iterating

through the training examples as many times as needed until the perceptron classifies

all training examples correctly. Weights are modified at each step according to the

perceptron training rule. Following is a description of basic steps in perceptron

training rule.

Initialization: Set all the weights and node threshold to small random numbers. Note

that the node threshold is the negative of the weight from the bias unit (whose

activation level is set to one).

Computing activation level of units: The activation level of an input unit is determined

by the instance presented to the network. However, the activation level of an output

unit is determined as: j ()hO f a= , where ()
1

n

ji i j
j

a w θ
=

= −∑ x , ()hf a is a hard

limiting function given by: () 1hf a = , if 0a ≥ and, () 0hf a = if 0a < .

Weight Adjustment: Adjust weights by following the rule:

() ()ji ji jiw new w old w= + ∆ (2.1)

where as change in wji can be computed as,

()ji i i iw t o xη∆ = − (2.2)

where ‘η ’ is a time dependent learning rate (0<η <1), ti represents the target output

where as oi represents the actual output of the unit.

 34

Iterations: Repeat the process until convergence is achieved.

 Note that output value ‘oi‘ is +1 or -1 (not a real); the perceptron rule is a

learning rule for a threshold unit and to achieve convergence the training examples

should be linearly separable and the learning rate should be sufficiently small.

2.2.2 The Widrow-Hoff Learning (DELTA) Rule

 The very first extension of perceptron training rule was proposed in early 1960’s

by Widrow called the delta rule. His model ADALINE has the ability to adjust the

network synaptic weights according to Widrow-Hoff learning rule famously known as

the Least Mean Square (LMS) Algorithm. The learning rule for ADALINE is formally

derived using the gradient descent algorithm. The LMS rule adjusts the weights of the

network by incrementing them every iteration step by an amount proportional to the

gradient of the cumulative error of the network.

 The basic differences in both the rules are summarized in table 2.2.

Perceptron rule Delta rule

Thresholded output Unthresholded output

Converges after a finite number of

iterations to a hypothesis that perfectly

classifies the training data, provided the

training examples are linearly separable.

Converges only asymptotically toward

the error minimum, possibly requiring

unbounded time, but converges

regardless of whether the training data

are linearly separable.

Linearly separable data Linearly non-separable data

Table 2.2 Perceptron Vs Delta rule

 35

 The delta training rule is best understood by considering the task of training an

unthresholded perceptron; that is, a linear unit for which the output ‘o’ is given by:

() .o x w x=� � �
 (2.3)

In order to derive a weight learning rule for linear units, let us begin by specifying a

measure for the training error of a hypothesis (weight vector), relative to the training

examples:

21
() ()

2 d dd D
E w t o

∈
≡ −∑

�
 (2.4)

Where the term dt is the target and do refers to actual output of the linear units. The

vector derivative of equation (2.4) is called the gradient of E with respect

to)(w written as:

1 2

()
o n

E E E E
E w

w w w w

 ∂ ∂ ∂ ∂∇ ≡  ∂ ∂ ∂ ∂ 

�
 (2.5)

The gradient specifies the direction that produces the steepest increase in E. The

negative of this vector therefore gives the direction of steepest decrease.

As we know that the training rule for gradient descent algorithm is:

w w w← + ∆� � �
 (2.6)

where

)(wEw ∇−=∆ η (2.7)

The negative sign is presented because we want to move the weight vector in the

direction that decreases E. This training rule can also be written in its component form

as shown in equation (2.8):

 36

iii www ∆+← (2.8)

Where

iw

E
w

∂
∂−=∆ η (2.9)

which makes it clear that steepest descent is achieved by altering each component

iw of w in proportion to
iw

E

∂
∂

.

The vector of
iw

E

∂
∂

derivatives that form the gradient can be obtained by

differentiating E

21
()

2 d dd D
i i

E
t o

w w ∈

∂ ∂= −
∂ ∂ ∑ (2.10)

21
()

2 d dd D
i i

E
t o

w w∈

∂ ∂= −
∂ ∂∑ (2.11)

1
2 () ()

2 d d d dd D
i i

E
t o t o

w w∈

∂ ∂= − −
∂ ∂∑ (2.12)

() (.)d d d dd D
i i

E
t o t w x

w w∈

∂ ∂= − −
∂ ∂∑

� �
 (2.13)

() ()d d idd D
i

E
t o x

w ∈

∂ = − −
∂ ∑ (2.14)

 37

The weight update rule for standard gradient descent can be summarized as:

i
i

E
w

w
η ∂∆ = −

∂
 where,

() ()i d d idd D
w t o x

∈
∆ = − −∑ (2.15)

The major steps of this gradient descent learning algorithm are outlined in figure 2.2:

 Recall that the training pairs are of the formtx, , where x is the vector of

input values and ‘ t ’ is the corresponding target values. ‘η ’ is a small value e.g 0.5,

called the learning rate.

Figure 2.2 The Widrow-Hoff Learning Algorithm

2.3 Backpropagation Algorithm For MLPs

 The Backpropagation algorithm was first proposed by Paul Werbos in the

1970's. However, it was not until it was rediscovered in 1986 by Rumelhart and

McClelland that BackPropagation became widely used.

Step 1. Initialization: Initialize each iw to small random values.

Step 2. Until termination condition is met, repeat:

 - Initialize each iw∆ to zero.

 - For each ,x t
�

 in training set, repeat

 Input each instance x
�

 to the unit and compute the output ‘O ‘.

 For each linear unit weight iw , Do

 ()i i iw w t o xη∆ ← ∆ + −� �

 - For each linear unit weight iw , Do

 iii www ∆+←

 38

 As described earlier, linear approximation networks are too restrictive and

nonlinear approximation networks offer much greater capacity. In order to enhance

the approximation capabilities, it is critical to expand a single layer structure to a

multilayer network. A typical multilayer Neural Network may consist of many layers

of neurons that can be divided into three categories: Input, Output, and a Hidden

layer. We have already seen how the Input and Output layers work, so now we will

discuss the hidden layer. When it comes to using the gradient descent method for

training a multilayer Neural Network, we run into some problems. Recall that the

gradient descent technique basically measures the amount of error that our present

output differs from the actual output we want. From the gradient descent technique

described in simple Neural Networks, it was easy to calculate this change in

proportional error because our weights are only found on input cells. Since our

gradient descent really only calculate the change in weight proportion based on the

input weights, how do we go about adjusting the hidden layer weights? One way of

thinking is to re-calculate each hidden-layer units' weight based on their own

individual inputs. While this would work, it would be quite time-consuming. One

method that recursively does this, is the concept of backpropagation.

 The idea behind backpropagation is to compute the individual error functions

for each output node in our Neural Network and then sum them up. This summed up

error represents the overall error function for our Neural Network. Now, since our

error function is a summation of a group of output nodes' errors, we can determine the

individual negative gradients for each output as the function is a continuous and

differentiable function over the weights that contributed to that output nodes' error.

We apply this same process recursively for each hidden layer of the Neural Network

and update all of the weights. This recursive calculation of each layer's error and

subsequent negative gradient calculation is known as backpropagation, as you are

propagating the calculation back through the network layer by layer.

 39

 This algorithm is basically a generalization of the gradient descent method

explained above. What we are in essence doing is treating each output as a single

perceptron and updating the weights associated with it. We then recursively

backpropagate this calculation through all the layers of the network until the Neural

Network is trained. The combination of weights which minimizes the error function is

considered to be a solution of the learning problem.

 This algorithm will form the basis of our work and we will frequently refer to

different steps in this algorithm throughout this thesis. Therefore, we have included a

detailed derivation of the standard BP algorithm as appendix-A.

2.4 Special Issues in BP Learning and MLPs

 The section below briefly describes some of the commonly addressed issues

relating to backpropagation learning and Multilayer Perceptrons (MLPs).

2.4.1 Convergence, Stability And Plasticity

 Convergence - We can say that the network has achieved convergence when

the examples of the tasks are continuously presented, and the corresponding weight

changes are carried out in such a way that the changes made during one iteration does

not affect changes made in earlier alterations [RS03]. In other words, a situation when

the network response for two consecutive cycles is the same and therefore no further

iterations are required.

 Stability - If weights are altered after each iteration, then convergence of

weights should constitute towards the stability of the network. But in most situations

it takes many more iterations than you desire to have output in two consecutive cycles

to have the same response. Then a tolerance level on the convergence criterion can be

used. With a tolerance level, an early and stabilized network state can be achieved.

 40

 Plasticity – Suppose a network is trained to learn some new examples, and in

this process the weights are adjusted according to an algorithm. After learning those

examples the network encounters a new example, the network then alters the model

parameters again to learn that new example. But if the new weight structure is not

responsive to the latest example; then the network does not possess plasticity. Thus

the Plasticity is the ability to deal satisfactorily with new short -term memory (STM)

while retaining the long-term memory (LTM) [RS03]. However, attempts to endow a

network with plasticity may have some adverse effects on the stability of the network.

2.4.2 Selection of Hidden Layer Units (Activation function)

 Since this method requires computation of the gradient of the error function at

each iteration step, we must guarantee the continuity and differentiability of the error

function. Obviously we have to use a kind of activation function other than the step

function used in perceptrons, because the composite function produced by

interconnected perceptrons is discontinuous, and therefore the error function too. One

of the more popular activation functions for backpropagation networks is the

sigmoidal activation function.

2.4.3 When To Stop Training?

 Another important issue with backpropagation learning is when to stop the

training. We know that in typical applications the weight update loop may be iterated

thousands of times. The choice of termination condition is important because too few

iterations can fail to reduce error sufficiently, on the other hand too much iterations

can lead to over fitting the training data. Many researchers have suggested different

solutions for termination criteria problem e.g. stopping the training session after a

fixed number of iterations (epochs) have elapsed, stopping once the validation error

meets some criterion, or once the error falls below some preset threshold value.

 41

2.4.4 Local Minima

 Since backpropagation uses a gradient-descent procedure, a Backpropagation

network follows the contour of an error surface with weight updates moving it in the

direction of steepest descent. For simple two-layer networks (without a hidden layer),

the error surface is bowl shaped and using gradient-descent to minimize error is not a

problem; the network will always find an errorless solution (at the bottom of the

bowl). Such errorless solutions are called global minima. However, when an extra

hidden layer is added to solve more difficult problems, the possibility arises for

complex error surfaces which contain many minima. Since some minima are deeper

than others, it is possible that gradient descent will not find global minima. Instead,

the network may fall into local minima which represent suboptimal solutions.

2.4.5 Number Of Hidden Layers

 We already know that networks with two hidden layers can represent functions

with any kind of shapes. There is no theoretical reason to use networks with more

than two hidden layers. It has also been proved that for the vast majority of practical

problems, there is no reason to use more than one hidden layer. Problems that require

two hidden layers are only rarely encountered in practice. Even for problems requiring

more than one hidden layer theoretically, most of the time, using one hidden layer

performs much better than using two hidden layers in practice [Mas93]. Training

often slows dramatically when more hidden layers are used. Of course, it is possible

that for a certain problem, using more hidden layers of just a few units is better than

using fewer hidden layers requiring too many units, especially for networks that need

to learn a function with discontinuities. In general, it is strongly recommended that

one hidden layer be the first choice for any practical feed-forward network design. If

using a single hidden layer with a large number of hidden units does not perform well,

then it may be worth trying a second hidden layer with fewer processing units.

 42

2.4.6 Number of Hidden Units

 Another important issue in designing a network is how many units to place in

each layer. Using too few units can fail to detect the signals fully in a complicated

data set, leading to under-fitting. Using too many units will increase the training time,

perhaps so much that it becomes impossible to train it adequately in a reasonable

period of time. A large number of hidden units might cause over-fitting, in which case

the network has so much information processing capacity, that the limited amount of

information contained in the training set is not enough to train the network.

 The best number of hidden units depends on many factors such as the numbers

of input and output units, the number of training cases, the amount of noise in the

targets, the complexity of the error function, the network architecture, and the training

algorithm [Sar97]. There are lots of “rules of thumb” for selecting the number of units

in the hidden layers as mentioned in [Mas93] [Sar97][Ara93] :

• Somewhere between the input layer size and output layer size.

• Two third of the input layer size plus the output layer size.

• Less than twice the input layer size.

• Squared input layer size multiplied by output layer size.

 Those rules can only be taken as a rough reference when selecting a hidden

layer size. They do not reflect the facts well because they only consider the factor of

the input layer size and output layer size, but ignore other important factors that we

have discussed earlier. In most situations, there is no easy way to determine the

optimal number of hidden units without training, using different numbers of hidden

units and estimating the generalization error of each. The best approach to find the

optimal number of hidden units is trial and error. In practice, we can use either the

forward selection (i.e. starting with a small number of hidden units and increasing

 43

gradually until convergence criteria is met) or backward selection (i.e. starting with a

large number of hidden units and decreasing gradually until convergence criteria is

met) to determine the hidden layer size.

2.4.7 Learning Rate and Momentum

 The Backpropagation algorithm requires that the weight changes be

proportional to the derivative of the error. The larger the learning rate, the larger the

weight changes on each epoch, and the quicker the network learns. However, the size

of the learning rate can also influence whether the network achieves a stable solution.

If the learning rate gets too large, then the weight changes no longer approximate a

gradient descent procedure. (True gradient descent requires infinitesimal steps).

Oscillation of the weights is often the result. Ideally then, we would like to use the

largest learning rate possible without triggering oscillation. This would offer the most

rapid learning and the least amount of time spent waiting at the computer for the

network to train. One method that has been proposed is a slight modification of the

backpropagation algorithm so that it includes a momentum term. Applied to

backpropagation, the concept of momentum is that previous changes in the weights

should influence the current direction of movement in weight space. With momentum,

once the weights start moving in a particular direction in weight space, they tend to

continue moving in that direction which can help the network to "roll past" any local

minima, as well as speed learning (especially along long flat error surfaces).

2.4.8 The Training Style

 Updating the weights in a backpropagation network can be achieved by either

of two ways:

1. Online or Pattern By Pattern Learning, in which the network parameters are

updated after the presentation of each pattern. This type of learning is recommended

 44

for application requiring high accuracy and can compromise on other factors such as

time etc.

 2. Batch or Epoch Based Training, where the network parameters are updated once

or after all of the patterns in the training set have been presented. This method works

out to be much faster then the online training methods.

2.4.9 Test, Training And Validation Sets

 In NN methodology, the sample is often subdivided into "training",

"validation", and "test" sets. The distinctions among these subsets are crucial; it is

often argued that any performance comparison among two networks should be done

on data that is not used for training or unseen examples. Neural network models are

trained using the training data set examples, the performance is then compared using

validation data set examples, this approach is known as ‘hold-out’ method [Bis95].

However, this approach can lead to some over-fitting in validation sets, therefore a

third data set usually called test set is used to compare the performance of selected

networks.

In [Spr97] author defines these three types of training data as:

• Training set - A set of examples used for learning that is to fit the parameters

[i.e., weights] of the classifier.

• Validation set - A set of examples used to tune the parameters [i.e.

architecture, not weights] of a classifier, for example to choose the number of

hidden units in a Neural Network.

• Test set - A set of examples used only to assess the performance or

generalization of a fully-specified classifier.

 45

 The crucial point is that a test set, by the standard definition in the NN

literature, is never used to choose among two or more networks, so that the error on

the test set provides an unbiased estimate of the generalization error (assuming that

the test set is representative of the population, etc.). Any data set that is used to choose

the best of two or more networks is, by definition, a validation set, and the error of the

chosen network on the validation set is optimistically biased [Sar97].

 To summarize the above discussion, we should remember that BP learns the

weights for a multilayer network, given a network with a fixed set of units and

interconnections. It employs gradient descent to attempt to minimize the squared error

between the network output values and the target values for these outputs. The

learning or network training is carried out in two phases. In forward stage, we

calculate outputs given training examples of the form [X, t], and in backward stage,

we update weights by calculating delta for all the hidden and input layers separately.

 Many researchers and mathematicians have derived the BP algorithm in

sufficient detail. The readers of this thesis are referred to [RS03][HDB96] and

[Hay96] for an in-depth discussion and derivation of this algorithm. A detailed

derivation of backpropagation algorithm for Multilayer Perceptrons is also presented

in ‘Appendix-A’ for better understanding and further reference in this thesis.

2.5 Variants of the BP Learning

 The gradient descent optimization method used in the standard back-

propagation learning algorithm is widely used and proven very successful in many

applications, but it does have some disadvantages i.e. the convergence tends to be

extremely slow and convergence to the global minimum is not guaranteed. Many

researchers [FM98][RJ99][Bis95][SH96][KP99] have suggested improvements to the

standard gradient descent method, such as dynamically modifying learning parameters

 46

or adjusting the steepness of the sigmoid function. In appropriate circumstances,

other optimization methods may be better than the gradient descent. Many converge

much faster than gradient descent in certain situations, while others promise a higher

probability of convergence to global minima [Wag02].

 Conjugate gradient descent is one of the most often recommended

optimization methods to replace the gradient descent [Mas93][RJ99][Bis95], this is a

direction set minimization method. Minimization along a direction ‘d’ brings the

function ‘E’ to a place where its gradient is perpendicular to ‘d’ . Instead of following

the gradient at every step, a set of ‘n’ directions is constructed which are all conjugate

to each other, such that minimization along one of these directions does not spoil the

minimization along one of the earlier direction.

 Gradient methods using second-derivatives (Hessian matrix), such as Newton's

method, can be very efficient under certain conditions [Wag02]. Where first-order

methods use a local linear approximation of the error surface, second-order methods

use a quadratic approximation. Because such methods use all the first and second

order derivative information in exact form, local convergence properties are excellent.

Unfortunately, they are often impractical because explicit calculations of the full

Hessian matrix can be very expensive in large problems. Some powerful, stochastic

optimization methods such as simulated annealing [Mas93][RJ99] and genetic

algorithms, which can overcome the local minima, have also been used successfully

in a number of problems.

 Methods discussed above are some of many improvements that have been

suggested over a period of 10-15 years. For a detailed overview of these

enhancements we may refer to the resources mentioned in section 2.5. In addition to

that, there are many learning algorithms available in Matlab for experimentation and

evaluation purposes e.g. Gradient Descent Learning with Momentum, Gradient

 47

Descent Learning with Variable Learning Rate, Conjugate Gradient Learning,

Levenberg-Marquardt Learning etc.

2.6 Summary

 This chapter is a detailed overview of learning process in the Neural

Networks. We have introduced different Learning paradigms and rules with particular

emphasis on the Supervised Learning Laws for Multilayer Perceptions. We have also

presented a detailed description of backpropagation algorithm used for training

feedforward networks, and have discussed special issues relating to backpropagation

learning process. Backpropagation algorithms remains the main focus of this work,

therefore we have included a detailed derivation of all the steps in this algorithm as

Appendix-A, which will be referred throughout this thesis for comparison with

proposed simplified algorithms.

 48

CHAPTER 3

APPROXIMATION CAPABILITIES OF FNNs AND

RELATED WORK

 Neural Networks have become very popular in many real life applications. As

described earlier, the range of tasks and potential application areas for Neural

Networks are ever increasing. Along with other recent advancements in the field of

Neural Networks, there has been much research work being carried out in exploring

the function approximation capabilities of NN’s i.e. the problem of estimating a

function from a set of samples [HG92]. Historically, the two main areas of research in

this field were classified as existence/constructive proofs for the ‘Universal

Approximation Problem’ and ‘Tight Bounds on the Size needed by the

Approximation Problem’. However, over the past decade, this focus has shifted more

towards development of new and perhaps more efficient learning algorithms for

Neural Networks to approximate functions.

3.1 Function Approximation-The problem

 Function approximation is known to be a very common computational task in

many science, engineering and real world applications. As a computational problem,

Function approximation is very similar to non-liner regression, or learning a model

depending on the disciplines and community involved. The problems may be dealt

with differently in different communities, but the essence of the problem is the same.

The aim of function approximation is to learn a mapping between an input and an

output space from a set of input-output data i.e. the target function, call it f , may be

 49

unknown; instead of an explicit formula, only a set of points of the form ()(),x f x is

provided. Let,

, 1,2,......,m
ix R i N∈ = and 1, 1,2,......,id R i N∈ = (3.1)

be the N input vectors with dimension mand N real number output respectively.

We seek an unknown function () 1: mf x R R→

that satisfies the interpolation where

()i if x d= and 1,2,........,i N= (3.2)

The goodness of fit of id by the function f is given by an error function. A

commonly used error function is defined by,

() ()2

1

1

2

N

i i
i

E f d y
=

= −∑ ()() 2

1

1

2

N

i i
i

d f x
=

 = − ∑ (3.3)

Where iy is the actual response. In short, the main concern is to minimize the error

function. In the other words, to enhance the accuracy of the estimation is the principal

objective of function approximation.

3.2 FNN’s As Universal Function Approximators

 To date it has been proven by many researchers/ scientists that feedforward

Neural Networks (FNN’s) are capable of approximating any class of generic

functions with sufficient accuracy [ST98] (i.e. NN as mathematical models are

generally enough for most applications). This property is known as Universal

Approximation. A detailed review of results on ‘universal function approximation

property’ can be seen at [TKG03][Pin99][HSW89][AP97][Bau88][Bar93][LMB03].

 The roots of universal approximation dates back to 1950s. Kolmogorov was

perhaps the first of the researchers who proved that for any continuous mapping there

must exist a three-layered feedforward Neural Network of continuous type neurons

(having an input layer with n neurons, a hidden layer with (2n+1) neurons, and an

 50

output layer with m neurons) that implements f exactly, see [Bei98]. Cybenko

[Cyb89] showed that any continuous function defined on a compact subset of nR can

be approximated to any desired degree of accuracy by a feedforward Neural Network

with one hidden layer using sigmoidal nonlinearities. Many other papers have

investigated the approximation capability of three-layered networks in various ways.

Following the initial advancements in this area, Chen et al. [CCL95] pointed out that

the boundedness of the sigmoidal function plays an essential role for its being an

activation function in the hidden layer, i.e., instead of continuity or monotony, the

boundedness of sigmoidal functions ensures the network’s approximation capability

of functions defined on compact sets in R .

 In 1987, Hecht-Nielsen [HeN87] published a communication in which he

turned attention to Kolmogorov's theorem. He pointed out a resemblance between the

formal structure of Kolmogorov's expansion of continuous functions through other

auxiliary functions with three layer feed-forward Neural Networks, condition of

exactness of Kolmogorov formula, and there was only required that the formula only

approximately represents continuous bounded functions.

 Considerable breakthrough in this interesting field of theory of multilayer

perceptrons was done by Hornik et al. [Hor91]. They demonstrated that an arbitrary

continuous function can be uniformly approximated by three layer Neural Networks

(with one layer of hidden neurons), where the hidden and output neurons are

endowed by the so-called squashing transfer functions (sigmoid belongs between

them).

 Mhaskar & Hahm [MH97] presented generalized translation networks to

uniformly approximate a class of nonlinear, continuous functionals defined on

[]()1,1
s

pL − for integer 1,1 1s p≥ ≤ < or []()1,1
s

C − . They obtained lower bounds on

the possible order of approximation for such functionals in terms of any

 51

approximation process, depending continuously upon a given number of parameters.

Their networks almost achieve this order of approximation in terms of the number of

parameters (neurons) involved in the network. The training is simple and non-

iterative. In particular, they avoided any optimization such as that involved in the

usual back-propagation.

 Stinchcombe [Sti99] proposed a characterization criteria for the set of

activation functions, bounded or unbounded, that allow feedforward network

approximation of the continuous functions on the classic two-point compactification

of ()1R . The characterization fails when the set of targets are continuous functions

on the classic compactifications of () , 2R n n≥ . Non-polynomial, analytic activation

functions, with input-to-hidden weights in very limited sets, allow approximation of

continuous function over compact sets in ()R n , while even sigmoidal activation

functions with weights in limited sets cannot approximate continuous functions on

compactifications. The abstract structure foregrounded by compactification leads

directly to possibility results for multi-layer networks and possibility results for

Neural Networks in infinite dimensional settings.

 Selmic & Lewis [SL02] presented a new NN structure for approximating

piecewise continuous functions. In their method a standard NN with continuous

activation functions is augmented with an additional set of nodes with piecewise

continuous activation functions. They proved that such a NN can approximate

arbitrarily well any piecewise continuous function provided that the points of

discontinuity are known. Since this is the case in many nonlinearities in industrial

motion systems (friction, deadzone inverse, etc.) such a NN is a powerful tool for

compensation of systems with such nonlinearities.

 Hagan et al. [HDJ02] investigated the use of Neural Networks in control

systems. They demonstrated the capabilities of this network for function

 52

approximation, and have described how it can be trained to approximate specific

functions. They also presented three different control architectures that use Neural

Network function approximators as basic building blocks. The control architectures

were demonstrated on three simple physical systems.

 Magoulas et al. [MVA99] presented three new gradient-based training

methods. They claimed that these new methods ensure global convergence, that is,

convergence to a local minimizer of the error function from any starting point. They

compared their proposed algorithms with several training algorithms, and proved that

their algorithms are numerically more efficient then its counterparts.

 Park & Sandberg [PS93] proved that under certain mild conditions on the

kernel function, radial-basis-function networks having one hidden layer and the same

smoothing factor in each kernel, are broad enough for universal approximation. This

provides an analytical basis for the design of Neural Networks using radial basis

functions.

 Poggio and Girossi [PG90] developed a theoretical framework for

approximation based on regularization techniques that lead to a class of three-layer

networks that called Generalized Radial Basis Functions (GRBF). They showed that

GRBF networks are not only equivalent to generalized splines, but are also closely

related to several pattern recognition methods and Neural Network algorithms. They

introduced several extensions and applications of the technique and discussed

intriguing analogies with neurobiological data.

 Rossi and Conan-Guez [RCg05] showed that fundamental results for classical

MLP can be extended to functional MLP. They obtained universal approximation

results that showed the expressive power of functional MLP which is comparable to

that of numerical MLP.

 53

3.3 Approximation And Representation Capabilities of FNNs

 Subsequent research in this field followed the pioneering works discussed

above; many authors studied Universal Approximation by Feedforward Neural

Networks. It is well known that a two-layered FNN, i.e. one that does not have any

hidden layers, is not capable of approximating generic nonlinear continuous

functions. On the other hand, four or more layer FNNs are rarely used in practice.

Furthermore, the proof that they are universal approximators is simple. Hence almost

all the work deal with the most challenging issue of the approximation capability of

three-layered FNNs [ST98]. Under very mild assumptions on the activation functions

in the hidden layer, it has been shown that a three-layered feedforward Neural

Network is capable of approximating a large class of functions, including the

continuous functions and integrable functions. The class of functions realized by a

three-layered feedforward Neural Network can be represented as

 ()
1

, ,
N

i i i
i

c g x bθ
=
∑ (3.4)

where N is the number of hidden nodes, nx R∈ is a variable ic R∈ , n
i Rθ ∈ ,

ib R∈ are parameters, and (), ,i ig x bθ is the activation function used in the hidden

layer.

 Along with number of hidden layers another, very important consideration is

the selection of activation function for the model. In order to explain the

approximation capabilities of FNNs, many authors studied different types of

activation functions. We can also classify the research in this field according to

activation function used in the model. Radial and Ridge activation functions are two

most commonly used activation functions in practice. We will briefly outline the

research in both directions in the following section.

 54

3.3.1 Ridge Activation Functions

 As shown in [ST98], a ridge function has the following form:

() (), ,g x a b a x bσ ′= + where ‘‘ ’ ’’ is the transpose operator, a is a ‘ 1d × ’ vector,

usually referred to as the direction of the ridge function, and b is a scalar called the

threshold. ().σ is a nonlinear function. The most common example is the logistic

sigmoid function i.e.

() () ()'
, , 1 1 a x blsig x a b e− −= + (3.5)

 Ridge activation functions are extensively studied by many authors mainly

[Cyb89][Hor91][Hor93][LLPS93][Kur92][KKK97][CL92]. One of the earliest works

was reported by Hecht-Nielson [HeN87] he used an improved version of

Kolmogorov’s theorem which states that every continuous function

[]: 0,1
n

f R→ can be written as:

() ()
2 1

1 1

,
d d

h
h k

h k

f x x h hλ ψ ε
+

= =

 = ∅ + + 
 

∑ ∑ (3.6)

where the realλ and the continuous monotonically increasing function ψ are

independent of f , the constant ε is a positive number and the continuous function

,1 2 1h h d∅ ≤ ≤ + , depending on f .This formulation represented a three-layered

network where the hth hidden node computes the function

() ()
1

,
d

h
k

k

z h x h hλ ψ ε
=

= + +∑ and the output nodes compute ()
2 1

1

,
d

h h
h

z
+

=

∅∑ .

 The first non-constructive proof was given by Cybenko in 1988 [Cyb89] he

showed that if the ridge activation function σ is a continuous sigmoid, then the set of

()1

N T
i i ii

c x bσ θ
=

+∑ is dense in ()C K where ()C K represents the set of all continuous

functions defined onK , with respect to the uniform norm. According to [Cyb89], if

 55

σ be any continuous sigmoid-type function e.g. ()() 1/ 1 e ξσ ξ −= + , then any

continuous real-valued function f on []0,1
n (or any other compact subspace of nR)

and 0ξ > , there exists vectors 1 2 0, ,....... , , &n ia a a b c c and a parameterized function

[](., , ,) : 0,1
n

Y a b c R→ such that: () (), , ,Y x a b c f x ξ− < , for all []0,1
n

x∈ where

() () 0
1

, , , () '
N

i i
i

Y x a b c NN X c a X b c
=

= = + +∑ (3.7)

And 0& , &n
i ia R c c b R∈ ∈ where () ()1 2 1 2, ,....... , , ,.......,n na a a a c c c c= = and

()1 2, ,....... nb b b b= ”. Also note that ia is a 1dx vector usually referred to as the

direction of the ridge function. More precisely, he proved that Neural Networks with

one hidden layer of sigmoid-activation neurons and an output layer of linear neurons

are universal function approximators i.e. they can approximate any reasonable

function to arbitrary accuracy. Since then many enhancements have been proposed in

order to facilitate convergence, or impose limits on the network size in the terms of

number of layers and number of hidden units required for a particular set of problems.

 Hornik [Hor91] and [Hor93] further extended these results. In particular, in

[Hor93] some theorems are presented which encompass almost all recent results on

FNNs with ridge functions. The theorems state that three-layered FNNs are universal

approximators under very weak assumptions on the activation functions, and suggest

that nonpolynomiality of the activation function is the key property. He proves also

that the approximation can be performed by weights bounded as close to ‘0’ as

required and that for some activation functions, a single threshold for the hidden layer

is sufficient.

 Another approach was used by Chui and Li [CL92] to prove universal

approximation. They showed that if the ridge activation functionσ is a continuous

sigmoid and the direction vector θ satisfies some interpolation conditions, then the

 56

set of ()1
TN

i i ii c x bσ θ=∑ + is dense in ()C K with respect to uniform norm. They

constructed their proof by showing that it is possible to realize polynomials as a sum

of ridge activation functions. Since polynomials are dense in ()nC R , it follows that

the three-layered Neural Networks are dense in ()C K with respect to uniform norm.

 One of the most elegant results on ridge activation was presented by Leshno

et al. [LLPS93]. They relaxed the condition for the activation function to ‘locally

bounded piecewise continuous’ (i.e., if and only if the activation function is not a

polynomial), thus embedding as special cases almost all the activation functions that

have been reported in the literature.

3.3.2 Radial Basis Functions

 Radial basis function network was first introduced by Broomhead and Lowe

in 1988 [BL88]. A Radial basis function (RBF) can be represented as:

(), ,
x a

g x a b k
b

− =  
 

 (3.8)

where g depends on a centre aand a smoothing factor b . ().k is usually assumed to

be integrable on dR , and () 0dR k x dx∫ ≠ . The radial basis functions adopted in

applications usually depend only on the distance between its current value and the

center, i.e. () (), , /g x a b k x a b= − , where . denotes the usual Euclidean norm.

The Gaussian radial basis function () ()2 /
, ,

x a b
gauss x a b

−
= −e is a common example

of such functions [ST98].

 Radial basis functions received relatively less attention compared to ridge

activation functions. However, there has been quite a few very promising results

 57

found in literature. The most well-known result was presented by Park and Sandberg

[PS93][PS91]. They showed that if the Radial basis activation function used in the

hidden layer is continuous almost everywhere, bounded and integrable on nR , and

the integration is not zero, then a three-layered Neural Network can approximate any

function in ()n
pL R with respect to the pL norm with 1 p≤ < ∞ . They further

extended their initial results and showed that if () (), , /g x a b k x a b= − is a RBF, k

is integrable on dR and that () 0dR k x dx∫ ≠ ; then 3
g∑ is dense in 1()dL R . Similar

results were also reported by [PG90][GP90] they also showed that RBFs posses the

universal approximation property.

 Another important result on radial basis functions was given by Chen and

Chen [CC95]. They proved that if the radial-basis activation function

() ()g C R S R′∈ ∩ (i.e., all those continuous functions such that () ()R g x s x dx∫

makes sense for all ()s S R∈) then the set of functions ()1
N

i i ii c g a x θ=∑ − is dense in

()C K if and only if ‘g’ is not an even polynomial. Unlike Park and Sandbergs

formulation this setting does not require radial-basis function to be integrable;

however, it does require the activation function to be a continuous distribution

function, which is a strong requirement. Furthermore, a norm was imposed on

()ix θ− , therefore, the network structure is not considered to be general enough.

 Another simple, but effective technique for approximating a continuous

function of variables with an RBF network was presented by Schilling et al.

[SCAa05]. The method uses an -dimensional raised-cosine type of RBF that is

smooth, yet has compact support. The coefficients of the RBF network are low-order

polynomial functions of the input. More recently, [HSS05] coins the idea of a new

sequential learning algorithm for radial basis function (RBF) networks referred to as

generalized growing and pruning algorithm for RBF (GGAP-RBF). They first

 58

introduced the concept of significance for the hidden neurons and then uses it in the

learning algorithm to realize parsimonious networks. The growing and pruning

strategy of GGAP-RBF is based on linking the required learning accuracy, with the

significance of the nearest or intentionally added new neuron. Significance of a

neuron is a measure of the average information content of that neuron. The GGAP-

RBF algorithm can be used for any arbitrary sampling density for training samples,

and is derived from a rigorous statistical point of view. Simulation results for bench

mark problems in the function approximation area show that the GGAP-RBF

outperforms several other sequential learning algorithms in terms of learning speed,

network size and generalization performance, regardless of the sampling density

function of the training data.

3.3.3 Recent Advancements on Function Approximation by Feedforward NNs

 As highlighted in the introduction of this chapter, the focus of research in the

filed of Function Approximation by Feedforward Neural Networks (FNNs) has

shifted more towards development of new and efficient algorithms for function

approximation problems. A lot of research has been carried out in this direction in the

past few years. We will summarize some of the recent advancements in this section.

 In [HCS06] turned their attention to the fact that in most Neural Network

implementations, tuning all the parameters of the networks may cause learning

complicated and inefficient, and it may be difficult to train networks with non-

differential activation functions such as threshold networks. Unlike conventional

Neural Network theories, they proved, using an incremental constructive method, that

in order to let Single Layer Feedforward Neural Network (SLFNN) as universal

approximators, one may simply randomly choose hidden nodes, and then only need to

adjust the output weights linking the hidden layer and the output layer. In such

SLFNNs implementations, the activation functions for additive nodes can be any

 59

bounded non-constant piecewise continuous functions: and the activation functions

for RBF nodes can be any integrable piecewise continuous functions :g R R→ and

() 0R g x dx∫ ≠ . The proposed incremental method is efficient not only for SLFNNs

with continuous (including non-differentiable) activation functions but also for

SLFNNs with piecewise continuous (such as threshold) activation functions.

 In [ZP08] the authors investigated function approximation by using radial

basis function network and Wavelet Neural Network (WNN). They used different

types of basis functions as the activation function in the hidden nodes of the radial

basis function network and the wavelet Neural Network. The performance is

compared by using the normalized square root mean square error function as the

indicator of the accuracy of these Neural Network models. They showed that WNN

performs better in approximating a periodic function, whereas RBF Netwoks yields

higher accuracy in estimating exponential function.

 The authors of [GTMc08] presented a model with wavelet-like functions in

the functional form of a Neural Network which is used for function approximation.

They argued the fact that the scale parameters are mainly used, neglecting the usual

translation parameters in the function expansion. They then investigated two training

operations; first one consists of optimizing the output synaptic weights and the

second one on optimizing the scale parameters hidden inside the elementary tasks.

Building upon previously published results, it was found that if ()1p + scale

parameters merge during the learning process, derivatives of order p will emerge

spontaneously in the functional basis. It is also found that for those tasks which

induce such mergings, the function approximation can be improved and the training

time reduced by directly implementing the elementary tasks and their derivatives in

the functional basis.

 60

 One of the most significant achievements in the recent past is the idea of

‘Extreme Learning Machine (ELM)’ [HC07][HCS06][HZS06] which does not

require any iterations in order to learn network parameters, and hence considerably

reduces the network training time when compared to traditional BP algorithm.

Although the testing performance of Standard NN models is better than that of the

ELM but in terms of training time it is quite an efficient algorithm.

3.4 Neural Network Ensemble Methods

 Along with other advancements in Neural Networks, ANN ensemble methods

have also become very popular amongst Neural Network researchers in a variety of

ANN application domains. We can think of a Neural Network ensemble as a learning

paradigm where a collection of finite number of Neural Networks is trained for the

same task. It is well-known that the generalization ability of Neural Networks, i.e.,

training many Neural Networks and then combining their predictions are better then a

single NN model.

 In general, a Neural Networks ensemble is constructed in two steps, i.e.,

training a number of component Neural Networks, then combining the component

predictions. Using 1.......... Mf f to denote M individual NNs, a common example of

ensemble for regression problem is, () ()
1

,
M

reg i i
i

f x w f x
=

=∑ where 0iw > is the weight

of the estimator if in the ensemble.

 Neural Network based ensemble methods was first proposed by Hansen and

Salamon's (see [HS90]). In their work they showed that the generalization ability of a

Neural Network can be significantly improved through ensembling a number of

Neural Networks. Since then Neural Network Ensemble methods have been widely

used to improve the generalization performance of the single learner.

 61

 Last decade has seen ever increasing interest in ensemble learning methods

for NNs. There has been much literature published focusing on these methods, we can

broadly classify these methods as either bagging and boosting or stacking. There are

other popular ensemble learning techniques such as Mixtures of Experts [JJ94],

Random Subspace [Hor98], Random Forests [Bre01] and Negative Correlation

Learning [LY97][LY99]. However the application of Neural Networks as ensemble

methods has been mainly studied in bagging and boosting framework. As the main

objective of this work is to investigate approximation capabilities of Neural Networks

therefore we will give a brief explanation of these two methods in the following

section.

3.4.1 Bagging

 Bagging is the common term used for a popular ensemble learning method

called ‘‘Bootstrap Aggregation’’. This technique was proposed by Breiman [Bre96].

This approach is based on the bootstrap statistical resampling technique proposed by

Efron et al. [ET93], to generate diverse training sets that are used to train the

members composing an ensemble. Suppose the training set T consists of m

instances. Each instance is assigned a probability of 1/m, and the training set of a

member network, is generated by sampling with replacement m times from the

original training set T , using these probabilities. Thus many cases in T may be

repeated several times in a member network, while others may be left out. This

process is repeated, and each member network is generated with a different random

sampling of the original training set. In [Bre96] the author concluded that bagging is

effective on ‘‘unstable’’ learning algorithms. Predictors such as ANNs and regression

trees are suitable for bagging. There has been other work in bagging [CC99][Zha99],

which studied bagging in the context of ANNs, and concluded that model

generalization ability can be significantly improved.

 62

3.4.2 Boosting

 Boosting has now become quite a familiar term in machine learning theory.

We can define boosting, or leveraging, in simple terms, as a general way of

improving the accuracy of any learning algorithm [FHT00]. Historically most of the

work in the field of boosting or leveraging methods has concentrated on classification

problems see [FS97], and related leveraging techniques [Bre98][Bre99][Fri01]. In

comparison to regression/function approximation problems (i.e. the output variable

‘y’ is continuous), the application of boosting methods to classification problems

have been well-studied, empirically tested and have good theoretical bounds and

guarantees.

 Boosting algorithms was first proposed by [Dru97]. They achieve improved

performance by producing a series of predictors trained with a different distribution

of the original training data. The algorithm trains the first predictor with the original

training set, and the training set of a new predictor is assembled based on the

performance of the previous predictors. The learning patterns whose predicted values

obtained from the previous predictor differ significantly from their observed values

are adjusted with higher probability of being sampled, so they will have a greater

chance of appearing in the new training set than those correctly predicted. Thus

different predictors are specialized in different parts of the observation space. A

popular example is the AdaBoost algorithm [FHT00], which iteratively builds a

classifier as a linear combination of the so-called weak classifiers. At each step, a

new weak classifier is added optimizing the classification error rate with a new

weighting on training samples.

 63

3.4.3 Boosting for Regression Problems

 Although less investigated, there have been quite a few very promising

attempts to address the issue of boosting for regression/ approximation problems. Just

like boosting for classification [FHT00] were the first ones to come up with boosting

algorithms for regression problems. The much famous Adaboost.R was the first

attempt to address this issue. The AdaBoost.R algorithm [FS97] attacks the

regression problem by reducing it to a classification problem. To fit a set of

(),x y pairs with a regression function, where each []1,1y∈ − , AdaBoost.R converts

each (),i ix y regression example into an infinite set of (),ix z y
 
 
 

∼

 pairs, where

[]1,1z∈ − and ()iy sign y z= −
∼

. The base regressor is given a distribution D over

()ix z− pairs and must return a function f (x) such that its weighted “error”

()()
,

i

i

f x

ii y
D x z dz∑ ∫ is less than 1/2.

 Experimental results have shown that Adaboost.R and its variants, see

[RMR99][BCP97][FS96][Sch90] are quite effective. However, performance of these

models degrades due to the following two reasons. Firstly, the expansion of each

instance in the regression sample into many classification instances. Although the

integral above is piecewise linear, the number of different pieces can grow linearly in

the number of boosting iterations. Secondly, the “error” function that the base

regressor should be minimizing is not (except for the first iteration) a standard loss

function. Furthermore, the loss function changes from iteration to iteration and even

differs between examples on the same iteration. Therefore, it is difficult to determine

if a particular base regressor is appropriate for AdaBoost.R.

 64

3.4.4 Gradient-based Boosting

 One of the most significant works in this area was presented in [FHT00].

They showed how adaptive boosting algorithms can be derived as gradient decent

algorithms. This approach allows all model parameters to optimize one single

common objective function, in comparison to traditional boosting methods that work

by repeatedly calling weak (or base) learning method on modified samples to obtain

different base rules. These are then combined into a master rule or hypothesis. The

algorithm proposed in [Bre99] used the master algorithm to construct iy values for

each data-point ix equal to the (negative) gradient of the loss of its current master

hypothesis on ix . The base learner then finds a function in a class f minimizing the

squared error on this constructed sample.

 As with traditional boosting methods, this view was well received in research

community, and many authors’ derived algorithms targeting classification problems.

The work in [ZP01] was one of the first attempts to take advantage of this approach

and extended it to tackle regression problems. They proposed a novel objective

function for regression problems which lead to a simple boosting algorithm. They

also proved that their method reduces training error when compared with other

regression methods.

 They used ()() 2

1 1

1
exp

n T
i i

T t t
i t

J c f y
n

τ
= =

  = − −    
∑ ∑ x as objective function

in [ZP01], where parameter tC (combination co-efficients) and tw (model weights),

can now be derived using this objective function. They used the same objective

function in the WeakLearn procedure, as the new hypothesis is the step in function

space in the direction of steepest descent of this objective [ZP01]. This allows

parameter tC (combination co-efficients) and tw , (model weights) to be derived using

 65

this objective function. The constant τ is used to distinguish between correct and

incorrect responses and is chosen in problem-specific manner. As highlighted in

[ZP01], this formulation allows each hypothesis to be trained to minimize the squared

error of a weighted distribution. This also allows the objective function to be

determined by simply re-weighting the training distribution. Another exciting fact is

that the new weights of a training example only depend on its old weight and error

produced in the last iteration.

 This algorithm is presented with training set examples in the form

() ()1 1, ,n ny yx x wherey∈ℝ , and the initial distribution of model parameters is

chosen according to ()1 1 1

1i i ip p w
n

= = =x . The next step in their algorithm is the call to

WeakLearn procedure that produces a hypothesis()tf x whose accuracy on the training

set is judged according to the cost function J above. The algorithm then repeatedly

calls the WeakLearn procedure on modified distributions in order to minimize Jt with

distribution pt. On every call to the WeakLearn the algorithm checks the error ‘tξ ’ and

accepts iff ()()2
exp 1i

t t t i ii
p f yξ τ = − − <  ∑ x . The combination coefficient Ct is

then set to minimize Jt using simple line search. In order to generate next training

distribution this algorithm modifies the model parameters according to

()()2

1 * ex pi i i i
t t t tw w c f y τ+

  = − −    
x , where 1 1 1/i i j

t t t
j

p w w+ + += ∑ and

finally estimate output ‘y’ on input x according to ()ˆ /t t t
t t

y c f c=∑ ∑x .

 Two important facts to be noted here is the way in which initial distribution is

chosen i.e. ()1 1 1

1i i ip p w
n

= = =x and how the model parameters are updated by the

WeakLearn procedure. In this work they used single hidden layer Neural Network

(NN) as hypothesis and backpropagation as the learning procedure. In fact this setting

 66

has been a popular choice for regression boosting algorithms due to Neural Networks

function approximation capabilities [FHT00][DH02].

3.5 Common Issues in FNNs & Problem Description

 As shown in the above section, Feedforward Neural Network (FNN)

architecture has been successfully applied to ‘function approximation’ problems in

many real-world application domains. However this model has certain limitations.

The most commonly faced situation is the problem of local minima i.e. the tendency

of the model to get trapped in undesirable local minima in order to reach the global

minimum of a very complex search space. Secondly, training of FNN is very time

consuming task, due to the slow convergence of FNN training algorithms. Thirdly,

FNN also fails to converge when high nonlinearities exist.

 It is also important to understand that these “universal approximation”

proofs are commonly used to justify the notion that Neural Networks can “do

anything” (in the domain of function approximation). What is not considered by these

proofs is that networks are simulated on computers with finite accuracy. And the fact

that approximation theory results cannot be used blindly without consideration of

numerical accuracy limits, and that these limitations constrain the approximation

ability of Neural Networks, see [WGG95].

 In addition to these limitations; the most important observation with reference

to this work is the fact that almost all NN approximation schemes proposed so far are

designed to approximation functions on continuous input spaces],[iiiU βα= , i.e.

the input-vector ‘X ’ takes on continuous values [ZK08][PG90][ZGKL05][SM02]:

() n
n RxxxX ∈= ,........, 11 (3.9)

 67

 Another deficiency in these approximation schemes is that they are

computationally very expensive, because one of the underlying assumptions is the

availability of sufficiently large number of neurons in hidden layer(s). It is also seen

in many practical applications that the size of the network increases very fast (some

times exponentially) when it encounters new information in form of new examples or

additional dimensions (inputs) or when some desired precision is to be achieved

[Bei98].

 Although these schemes can be used for approximation of functions on

discrete input and mixed input spaces (i.e., some input variables are discrete values

where other take continuous values), these schemes, when applying to approximate

functions on discrete or mixed input spaces, are less effective and more complicated

than necessary due to not taking into account special features of discrete input spaces

[ZK08][ZGKL05].

3.6 Special Features Of Functions Defined On Discrete Input

 Spaces

 When we say special features of discrete input spaces, what exactly do we

mean by this? This is the issue of prime importance with regards to this research. The

most apparent of these special features is the property of discrete variables to take on

finite number of states, or in other words the points are isolated from each other in

some sense.

3.6.1 Flexible Hierarchical Structure Property

 Another very important feature of functions defined on discrete input spaces is

their flexible (arbitrarily separable) hierarchical structure. As described in [ZK08],

consider the following function:

 68

1 2 3 4 5 1 2 3 4 5(, , ,) 10sin() 20(0.5) 10 5G x x x x x x x x x xπ= + − + + (3.10)

Let 1g and)2,1(2 =jg j be

1 1 2 5 1 2 5 2,1 1 2 1 2 2,2 3 4 3 4(, ,) 5 (,) sin() (,) 20(0.5) 10g y y x y y x g x x x x g x x x xπ= + + = = − + (3.11)

Then

]),,(),,([),,,(5432,2211,2154321 xxxgxxggxxxxxG = (3.12)

That is,),,,,(54321 xxxxxG can be represented as a function with a hierarchical

structure given in figure 3.1.

Figure 3.1 An Example Of A System With A Two Level Of Hierarchical Structure.

 Figure 3.1 represents a two-level hierarchical structure. In the same paper

[ZK08] authors also showed that, if jg ,2 is also a function with a hierarchical

structure, then further levels of hierarchical structure are also possible. In other

words, multi-level hierarchical structure for),...,(1 nxxG is possible. Further in the

paper they proved that, for a function with hierarchical structure, its hierarchical

structure is not unique. This is illustrated as follows:

Consider the function),,,,(54321 xxxxxG given above. If 1g and)2,1(,2 =jg j are

chosen to be,

1 1 2 1 2 2,1 1 2 1 2 2,2 3 4 5 3 4 5(,) , (,) sin(), (, ,) 20(0.5) 10 5g y y y y g x x x x g x x x x x xπ= + = = − + + (3.13)

21g
22g

1g

1x 2x 3x 4x

5x

y

1y

2y

 69

Then,

)],,(),,([),,,(5432,2211,2154321 xxxgxxggxxxxxG = (3.14)

That is,),,,,(54321 xxxxxG can be represented as a function with a hierarchical

structure which will be different from the hierarchical structure given in figure 3.1

 The authors in [ZK08] also discussed a special case of the functions with

hierarchical structure that is, when input variables in each sub-functions 1g and

jg ,2),...,2,1(mj = are disjointed form each other. We can easily see that the input

variable sets for 1g and jg ,2)2,1(=j in equation (3.12) are disjointed, therefore the

function),,,(54321 xxxxxG given in equation (3.12) is one with separable

hierarchical structure. On the other hand, the input variable sets for 1g and jg2

)2,1(=j are also disjointed. That is,),,,(54321 xxxxxG has another separable

hierarchical structure. This shows that),,,(54321 xxxxxG can be represented by

different separable hierarchical structures. All the facts discussed above are formally

summarized in the form of a theorem as follows, please refer to [ZK08] for a detailed

proof of this theorem.

Theorem 1: Let)(XG be a MISO (multiple input single output) function given by

),...,,()(21 nxxxGXGy == , where RVy ⊂∈ is the output variable and

∈=),...,,(21 nxxxX n
n RUUUU ⊂×××= ...21 is the input variable vector in which

ii Ux ∈ and },...,2,1,|{ ,, ikikii NkRuuU =∈= , in other words, input variable ix

takes discrete values. Then, for any disjoint grouping of the input variables

},...,,{ 21 nxxx into 1+m groups 1G and jG ,2),...,2,1(mj = satisfying the following

conditions:

{ } mjxxGxxG j

jn
j

n iijii
,...,2,1,...,,...,),2(

,2

),2(
1

)1(

1

)1(
1

,21 =






== (3.15)

 70

Where,

=jGG ,21 ∅, mj ,...,2,1= and =',2,2 jj GG ∅ mjjjj ,...,2,1',,' =≠ (3.16)

},...,,{.... 21,21,21 nm xxxGGG = (3.17)

then there exist functions 1g and jg ,2),...,2,1(mj = [in particular, jg ,2),...,2,1(mj =

can be as simple as linear functions or fuzzy systems] such that

[]1,2,21,21,21),(),...,()(XXgXggXG mm= . That is, any MISO function on discrete

spaces has the arbitrary separable hierarchical structure.

 This is a very interesting theorem and the results obtained have some

significant implications on NN approximation schemes. The most significant of them

are:

1. If)(XG can be represented as a function with the given 1G and

jG ,2),...,2,1(mj = as its hierarchical structure is related to the existence of

one-to-one mappings on discrete spaces. These one-to-one mappings not

only exist but also can be realized by using some very simple functions.

2. For a discrete space U , there exist some simple functions which form one to

one mappings from U to R. This is a property which holds only on

discrete spaces but not on continuous spaces. This is because no one-to-one

mapping from a multi-dimensional continuous space],[
1

ii

n

i
U βα

=
×=

)1(>n to R can be continuous (see [ZK08] for detailed discussion). As no

continuous function can be found to form one-to-one mapping from a multi-

dimensional continuous space toR , it is impossible to find a simple function

which is a one to one mapping from multi-dimensional continuous space

U to R .

 71

3.7 Summary

 This chapter presents a detailed literature review of our selected area of

research. First of all it introduces the Function Approximation problem, followed by a

detailed analysis of approximation and representation capabilities of Feedforward

Neural Networks. A systematic review of related work on Universal Function

Approximation Property has been presented. Recent advancement in this field has

also been highlighted in this chapter, followed by a discussion on Neural Network

based ensemble methods with a particular emphasis on application of Neural

Networks in regression boosting frame work. We have also presented common

issues and a formal problem description in this chapter. A comprehensive analysis of

discrete nature of input spaces and ‘Arbitrarily Separable Hierarchical Structure

Property’ of functions defined on discrete input spaces is also presented in this

chapter.

 72

CHAPTER 4

SIMPLIFIED NEURAL NETWORK (SNN) APPROACH

AND ALGORITHMS

 The special features of discrete input spaces discussed in the previous chapter,

the capability of Feedforward Neural Networks to approximate any function

arbitrarily well and the lack of systematic results focusing on discrete input spaces,

are the main reasons behind the initiation of this research. The main objective of this

research is to propose more simplified algorithms based on simplified NN

approximation schemes that make use of these properties of discrete input spaces,

without compromising on accuracy or generalization capabilities of the existing NN

models and techniques.

4.1 The Simplified Neural Network (SNN) Approach

 As we already know, the multilayer feedforward networks are usually

arranged in many layers; input, output and one or more hidden layers. We also know

that any mapping of the form : n mf R R→ can be computed by m mappings

: n
kf R R→ therefore it is sufficient to focus on networks with one output unit only

[LLPS93]. This section gives a detailed analysis of simplified NN approach and

shows how simplification is achieved with these schemes. In the following, it is

always assumed that the input spaces are discrete ones i.e. },...,2,1|{ iiji NjU == α .

 We begin our discussion with a formal definition of standard Neural Network.

In line with the famous Cybenko theorem [Cyb89] we can define a standard NN as:

 73

0
1

() ()
N

i i i
i

y NN X c a X b cτσ
=
∑= = + + (4.1)

where ()1 2, ,..., nX x x x= are input variable, X U∈ 1 2 ... n
nU U U R= × × × ⊂ which

are input space, Ry ∈ is the output variable, τ is the vector transpose, (.)σ is the

activation function and the parameters Rc ∈0 , Rci ∈ , n
i Ra ∈ , and Rbi ∈

(),...,2,1 Ni = . As described in [ZGKL05], the total number of parameters [i.e.,

Rci ∈ , n
i Ra ∈ , Rbi ∈ (),...,2,1 Ni = and Rc ∈0] is 1)2(++ Nn . For nonlinear

complex function approximation, a large N is needed and very often N is subjected to

exponential growth with the increase in dimension of n . As a result, a large number

of parameters are needed in order to achieve good approximation accuracy.

 To overcome these computational expanses new schemes are required which

should be able to exploit the function approximation capabilities of Neural Networks

for discrete input spaces.

4.1.1 Simplified Neural Networks (SNN)

 We can define (see [ZGKL05] for a detailed discussion) a simplified Neural

Network (SNN) as shown in equation (2.2):

0
1

() [()]
N

i i i
i

y SNN X c X cτσ α α β β
=
∑= = + + + (4.2)

where Rc ∈0 , Rci ∈ , Ri ∈α , Ri ∈β (),...,2,1 Ni = and nR∈α , R∈β .

Let βα τ +== XXLz)((4.3)

and 1 0
1

() ()
N

i i i
i

y NN z c z cσ α β
=
∑= = + + (4.4)

Then the proposed SNN given in (4.2) can be rewritten as follows:

)]([)(1 XLNNXSNN = (4.5)

 74

 In other words, the proposed SNN can be presented as a composition function

of a linear function)(XL given in (4.3), and one dimensional standard NN

)(1 zNN given in (4.4). The difference between the above simplified NN from the

standard NN is that it uses a common linear function bXa +' rather than

),...,2,1(' NibXa ii =+ , which results in significant reduction of parameters required

for the model. Such a simplified NN benefits through the following advantages:

1. A simplified NN requires approximately (3N + n + 2) parameters in most of

the cases.

2. SNNs are more effective in overcoming the model over-fitting which is

often the case with standard NN models. This is due to the fact that in the

standard NNs, adding a new neuron [i.e., add an item)(iii bXac +τσ in (4.1)]

means adding 2+n parameters. As a result, it is an often faced situation in

NN modeling, that adding one neuron causes overfitting but without adding

results in underfitting, especially in the case where n is large but only a

limited training data available. However, in SNNs, adding a new dimension

or neuron in hidden layer means adding an item)(iii zc βασ + which only

adds three parameters. As a result, SNNs allow finer adding model

parameters to overcome the model overfitting and underfitting, especially in

the high dimension (i.e. large n) case.

3. More simplified learning algorithms can be developed. For example, in some

cases, multi-dimension NN learning problem can be transformed to one

dimensional NN learning problem and then the corresponding learning

algorithms can be much simpler.

 In the light of the above discussion, and advantages of simplified NN, we

propose two algorithms which can be used with discrete input spaces for function

approximation problems. As described in [ZGKL05], any algorithm developed under

 75

the assumptions discussed above have the universal approximation property and are

general enough to approximate arbitrarily well any function defined on discrete input

spaces. These facts are formally derived from the following two theorems.

Theorem 2: Let)(XG be a function defined on discrete space
1

n

i
i

U U
=
∏= . Then for

any given 0>ε , there exists a simplified NN o

N

i
i cbXacXNNy ++== ∑

=

)'()(
1

σ such

that, || || max | () () |X UG NN G X NN X ε∈− = − < .

Remark 1: The above theorem shows that SNNs can approximate any function on a

discrete space to any degree of accuracy. In other words, SNNs, in spite of their

simplified formula, reserve the universal approximation property of standard NNs and

therefore are generally applicable for function approximation in discrete spaces. This

theorem is very important with reference to this work, therefore a detailed proof of

this theorem as appeared in [ZGKL05] is also included as appendix-C. Following the

discussion in section 3.5 we can now introduce the following Lemma:

Lemma 1: Given a discrete input space
1

n

i
i

U U
=

= ∏ , there exists a linear function

bXa +' which is one to one mapping on
1

n

i
i

U U
=

= ∏ .

Theorem 3: Let)(XG be a function defined on discrete space
1

n

i
i

U U
=

= ∏ and

bXaXL += ')(is any one to one mapping defined on
1

n

i
i

U U
=

= ∏ . Then for any

given 0>ε , there exists a simplified NN using bXaXL += ')(as the common linear

function such that the simplified NN []
1

() ')
N

i o
i

y SNN X c a X b cσ
=

= = + +∑ satisfies,

|| || max | () () |X UG NN G X NN X ε∈− = − < .

Remark 2: The above theorem shows that, for any given one to one linear

function ()L X , simplified NN can be constructed based on ()L X to form universal

approximators.

 76

 What follows is a detailed description of these algorithms, whereas the

derivation of backpropagation algorithm for these simplified algorithms is also

presented in the following section.

4.1.2 Simplified NN Algorithm-I

c0 iβ

 c1

 c2

 c3

 .

 .

 c n

y(t)

 α1

 α2

 α3

 .

 .

 αn

L(X) = a’x+b

x1
x2
.
.
xn

Z = L(X)

Figure 4.1 Architectural representation of Simplified NN Algorithm-I

1. Initialisation:

a. Identify a one to one linear mapping bXaXLz +== ')(on the input

space that is both one to one and onto.

b. Training data transformation:

Transform the training data },...,2,1)];(),({[MttXty = to

},...,2,1)];(),({[Mttzty = by using bXaXLz +== ')(* ;

c. By using the optimisation algorithm such as gradient descent algorithm

or other algorithms in order to identify,

 []
1

())
N

i i i o
i

y NN z c z cσ α β
=

= = + +∑ .

 Notice that this is a single variable function approximation;

d. Form the initial simplified NN as :

[]
1

())
N

i i i o
i

y NN z c z cσ α β
=

= = + +∑

2. Iterations: Using the back-propagation algorithm to update the model.

 77

4.1.3 Simplified NN Algorithm-II

Figure 4.2 Architectural Representation of Simplified NN Algorithm-II

1. Input: () ()1 1, ,n nS y y= x x wherey∈ℝ , and training iterationsT .

2. Initialize: The initial distribution of model parameters ()1

ip x is chosen

according to ()1 1 1

1i i ip p w
n

= = =x .

a. Compute the linear approximation . bXaXLz +== ')(* ;

b. Training data transformation:

Transform the training data {[(), ()]; 1,2,..., }y t X t t M= to

},...,2,1)];(),({[Mttzty = by using bXaXLz +== ')(* ;

c. By using the optimisation algorithm such as gradient descent algorithm

in order to identify,

 []
1

())
N

i ii o
i

y NN z c z cβασ
=
∑= = + + . Notice that this is a single variable

 function approximation;

d. Form the initial simplified NN as :

[]
1

() (')
N

i ii o
i

y NN z c a X b cβασ
=
∑= = + + +

3. Iterations: Using the back-propagation algorithm to update the model.

 78

 The basic difference in both the algorithms is their initialisation conditions.

Algorithm-I uses a simple linear mapping to transform the input space in to a

unidirectional one, this is a very simple method as by using the one-to-one linear

mapping)(XL , the approximation problem is transformed to a simple learning

problem of a single variable NN, figure 4.1 gives an architectural realisation of such a

SNN. The first algorithm is based on the proof of Theorem 2 (See Appendix-C)

which includes two steps; the first step is to find a one-to-one linear mapping

)(XL from U toRand then one dimensional function)]([)(1 zLGzg −= or

)()]([XGXLg = can be defined; the second step is using the available data

},...,2,1|),{(NtyX tt = to get a set of training data for function)(zg as

},...,2,1),(|),{(NtXLzyz tttt == and then, for)(zg , apply the learning algorithms

of the standard NN to find one dimensional NN approximator)(1 zNN with the

required approximation accuracy. Finally the SNN approximator can be obtained by

)]([)(1 XLNNXSNN = . Theoretically, this is a very simple method as by using the

one-to-one linear mapping)(XL , the approximation problem is transformed to a

simple learning problem of a single variable NN.

 In the case where the number of input variables and the possible values of

each input variables are small, then this is a good algorithm in practice due to its

simplicity. However, this method is not suitable for high dimension (i.e., many input

variables or n is large) with each input variable having many possible values (i.e.,

jN is large). The is mainly due to the fact that; as the total number of all possible

values of input vector),...,,(21 nxxxX = are
1

n

i
i

N
=
∏ , it means that the total number of the

possible function values of one-to-one mapping)(XLz = is
1

n

i
i

N
=

∏ . When n and

iN),...,2,1(ni = are large, this is impossible as all these possible values are beyond

the representation accuracy of float numbers in today’s computers. Therefore, in the

 79

case when n and),...,2,1(niNi = are large, the implementation of this algorithm,

requires more specialised methods e.g. use of Extended Simplified Neural Networks

(ESNN) as described in [ZGKL05]. The use of ESNN for such modeling problems is

not discussed any further and remains a further research objective.

 The second algorithm begins with initialising model parameters to

()1 1 1

1i i ip p w
n

= = =x ; the training data is then transformed

{[(), ()]; 1,2,..., }y t X t t M= to },...,2,1)];(),({[Mttzty = into single dimension by using

a linear approximation bXaXLz +== ')(* . However, unlike algorithm-I, two

additional parameters (see figure 4.2) are added to the one-dimensional Neural

Network)]([)(1 XLNNXSNN = . The second step in the algorithm is the application

of the gradient descent optimisation algorithms to minimise,

[]2

1

1
()

2

T

t t
t

E y SNN X
=

= −∑ , where)(XSNN is given in algorithm-II step 1.d, with the

parameters },...,2,1|,,,,,{ 0 Nicc iii =βαβα to be identified. In this algorithm, it is not

required that βα τ +== XXLz)(is a one-to-one mapping (noticing that one-to-one

mapping is a sufficient but not the necessary condition), rather parameters α and β

are tuned by the learning algorithm to meet the approximation requirement. This

algorithm is more complicated than the first one but likely it will handle high

dimensional modeling situation [ZGKL05]. Architecture of such a SNN resembles

the figure 4.2.

 In the standard NNs we use to have weight connections i.e. ija , coming from

each individual input to every hidden layer node. However, in the case of SNN of

algorithm-II we transform the input vector X into one dimension using a linear

function ('a X b+). The result of this setup is a scalar weight matrix representing the

hidden layer weight connections rather than a vector representing all the hidden layer

 80

weights. The architecture shown in figure 4.2 also represents a one dimensional

Neural Network because now we don’t have to update all the hidden layer weights

associated with each neuron; instead only two parameter per neuron will be updated

in the hidden layer i.e. the common weight connection and the bias attached to it.

 An exciting fact to be noted here is the way the data is transformed into one

dimension using the linear approximation bXaXLz +== ')(* . Such a linear

approximation can also be found by applying multiple regression techniques. A

multivariate or least squares fit model of the data is usually represented as

0 0 1 1 2 2........ n nz x x x xα α α α= + + . Therefore we have to solve for unknown

coefficients 0 2, , nα α α α , by performing a least squares fit. We can then use

these estimates to initialize network parameters to transform the training data before

passing it on to our one dimensional NN. However, in algorithm-II, we have not

adopted this approach since in standard NN models we do not perform any such data

pre-processing and therefore the comparison of both the methods may be biased.

Instead we will look at this approach i.e. use of multiple regression methods for data

transformation in regression boosting frame work, see section 5.

 The Algorithm-II presented above can be easily extended to be viewed as a

regression boosting method for functions defined on discrete input spaces i.e.

1

n

i
i

X U U
=

∈ = ∏ . With similar error bounds and convergence guarantees as presented

in [HZ09]. Based on these exciting facts we propose a new simplified approach to

regression boosting for functions defined on discrete input spaces. We will refer to

our approach as Simplified Regression Boosting (SRB) for discrete input spaces.

Following is a step by step description of this approach for functions defined on

discrete input spaces.

 81

4.2 Backpropagation Algorithm for Simplified NNs

 In-line with the definition and architectural representations of Simplified

Neural Network algorithms, we can now define our simplified network parameters as:

),...,(1 nxxX = are input variable, ∏
=

=∈
n

i
iUUX

1

 which are input space, my R∈ is

the output variable, ‘m’ is the layer index and denotes output layer, the index of the

layer just below output layer will be ‘m-1’ and ‘m-2’ and so on. iα are the

connection weights associated with input layer to hidden layer and in the Simplified

NN case it will be represented as,

1

2

.

.

.

i

n

α

α
α

α

 
 
 
 

=  
 
 
 
  

 (4.6)

 Notice the change in definition of this network parameter; in the case of

standard NN this parameter was a 1dx vector where as in simplified case it is replaced

by a scalar parameter.

 iβ is the bias attached to hidden layer neurons, where as ic & 0c are the

connection weight and bias from hidden layer to output layer respectively. ‘σ ’ is the

activation function and in the case of sigmoidal neurons it will be
exp

1
()

1 x
xσ −=

+
,

and in the case of linear neurons it will be xx =)(σ . The output of hidden layer

neuron j in the layer 1m− can therefore be computed as;

[]1

1
)

N
m

i ij
i

y z βασ−

=
∑= + , []1

1

('))
N

m
j i i

i

y a X bσ α β−

=
= + +∑ (4.7)

The net input to our hidden layer neurons will be:

 82

[]1

1

)
N

m
j i i

i

net zσ α β−

=

= +∑ ,
1

1

(')
N

m
j i i

j

net a X b α β−

=

= + +∑ (4.8)

The output of the last layer will be the same as its net input since the output layer uses

the linear neurons. So the output of neuron ‘i’ in the layer ‘m’ (which is last layer)

will be:

()1
0

1

n
m m m m
i i j

i

y c y cσ −

=

= +∑ (4.9)

where 1m
jy − can be computed as in equation (4.7)

4.2.1 Performance Index:

 We know that our training set is of the form:

{ X1, t1}{ X2, t2}…………………….{ Xk, tk}, (4.10)

where Xk is the input vector and tk is the corresponding target value and k = 1….p

represents the ‘kth’ iteration or pattern. Let ‘W’ denote all the network parameters i.e.

[]0, , , , ,i i iW a b c cα β= . Our objective is to minimize the cost function or the error

measure i.e. sum of squared errors over whole the training set/ patterns which can be

defined as:

() () ()()2

1 1

1

2

pn

i i
i k

E W t k y k
= =

∇ = −∑ ∑ (4.11)

And in the vector case we can define the above as:

() ()()
TtE W e e t y t y∑ ∑   = = − −   

 (4.12)

Where ‘e’ is the sum of squared errors over all the training patterns. Therefore the

approximate mean square error over a single sample (k) would be:

() (() ()) (() ())() ()T Tt k y k t k y kE X e k e k∧ − −= = (4.13)

 83

4.2.2 Updating Model Parameters:

 We can define the approximate steepest descent or generalised delta rule for

MLP’s as follows:

n e w o ld

W W W= + ∆ (4.14)

where the parameters of our SNN are, []0, , , , ,i i iW a b c cα β= and,

^
()WEW W

η
∂

= −
∂∆ (4.15)

where ‘η ’ is the learning rate In the vector case we can write the equations (4.14) and

(4.15) altogether as :

^

(1) ()
E

w w
w

k k η ∂+ = −
∂

 (4.16)

where ‘k’ represents the ‘kth’ iteration or pattern.

4.2.3 Gradient Calculation

Now we have to compute the gradients
^ ^ ^ ^ ^ ^ ^

 , , , , ,
oi i i

E E E E E E E

W c c a bβα

 ∂ ∂ ∂ ∂ ∂ ∂ ∂=  ∂ ∂ ∂ ∂ ∂ ∂∂ 

 , by

using the chain rule of differentiation as follows:

^ ^ m
i

m
i i i

netE E

C net C

∂∂ ∂= ∧
∂ ∂ ∂

 and
^ ^

0 0

m
i

m
i

netE E

C net C

∂∂ ∂= ∧
∂ ∂ ∂

 (4.17)

1^ ^

1

m
j

m
i j i

netE E

netα α

−

−

∂∂ ∂= ∧
∂ ∂ ∂

 and
1^ ^

1

m
j

m
ji i

netE E

netβ β

−

−

∂∂ ∂= ∧
∂∂ ∂

 (4.18)

1^ ^

1

m
l

m
l

netE E

a net a

−

−

∂∂ ∂= ∧
∂ ∂ ∂

 and
1^ ^

1

m
l

m
l

netE E

b net b

−

−

∂∂ ∂= ∧
∂ ∂ ∂

 (4.19)

Note that our initial simplified networks are of the form:

i. []
1

())
N

i i i o
i

y NN z c z cσ α β
=

= = + +∑

 84

ii. []
1

() ('))
N

i i i o
i

y NN z c a X b cσ α β
=

= = + + +∑

 This gives rise to two different scenarios as depicted above. We can proceed

in two ways:

a. Following NN definition in (algorithm-I) compute the gradients
^ ^
 ,

i i

E E

βα

∂ ∂
∂ ∂

b. Following NN definition in (algorithm-II) also compute the gradients

^ ^
 ,E E

a b

∂ ∂
∂ ∂

.

The effect of computations in step ‘b’ will be the provision of two extra parameters

for network tuning.

4.2.4 Computing Error Signals

 Let
^

, 1
,

m m
i j

E

net
−

∂
∂

 , 1
,

m m
i js

−= , be the sensitivity or error signal for the output and

hidden layers respectively. From the network definition above we can see that we

have to compute the following gradients inline with the eqns. (4.17) (4.18) & (4.19)

1
0

1

m ni m
i j

ii i

net
yc c

C C
 −

=
∑

∂ ∂  = +
  ∂ ∂

 and 1
0

10 0

m ni m
i j

i

net
yc c

C C
 −

=
∑

∂ ∂  = +
  ∂ ∂

 therefore,

1
m
i m

j
i

net
y

C

−∂ =
∂

 and
0

1
m
inet

C

∂ =
∂

 (4.20)

Similarly,

1

1

m Nj
i i

ji i

net
z βα

α α

−

=
∑

∂ ∂  = + ∂ ∂  
 and

1

1

m Nj
i i

ji i

net
z βα

β β

−

=
∑

∂ ∂  = + ∂ ∂  

1m
j

j

net
Z

α

−∂
=

∂
 and

1

1
m
j

i

net

β

−∂
=

∂
 (4.21)

And

 85

1

1
(')

m Nj
i i

j

net

a a
a X b βα

−

=
∑

∂ ∂  = + + ∂ ∂  
 and (4.22)

1

1
(')

m Nj
i i

li

net

b
a X b βα

β

−

=
∑

∂ ∂  = + +
  ∂ ∂

 (4.23)

Therefore,

1m
j

i

net

a
x

−∂
=

∂
 and

1

1
m
jnet

b

−∂
=

∂
 (4.24)

Now we can re-write our steepest descent rule as follows:

1. For output layer weight and bias values:

1(1) () mm
i i i jyc c sk k η −+ = − , 0 0(1) () m

ic c sk k η+ = − (4.25)

2. For hidden layer weight and bias values:

1(1) () m
i i js zk kα α η −+ = − , 1(1) () m

i i jsk kβ β η −+ = − (4.26)

and:

2(1) () m
ija a s xk k η −+ = − , 2(1) () m

i jb b sk k η −+ = − (4.27)

4.2.5 Back-Propagating The Error Signal

 The only thing left to be computed are the sensitivities i.e.
^

, 1
,, 1

,

m m
i jm m

i j

E
s

net

−
−

∂ =
∂

.

This is the process which gives the name of back propagation to this algorithm. Note

that the sensitivities are computed by starting at the last layer, and then propagating

backwards through the network to the first layer.

i.e. 1 2 2 1.....m m mS S S S S− −→ → → . For the last or output layer this sensitivity or

error signal (i.e. how the error at the output is affected by the net input ‘i’) can be

easily computed as follows:

^ 2

1 1
(() ())

1

2

pn
m
i m m i ki i

E mm k kys t i inet net = =
∑ ∑ −

∂ ∂  = =  ∂ ∂  
 (4.28)

 86

(() ())
()i

m
i

y
k kyt ii net

k
−

∂= −
∂

, where the term
()i

m
i

y

net

k∂
∂

is actually the derivative of our

activation function i.e.
()

'()i m
im m

i i

mnety i
net

net net
f

σ∂∂ = =
∂ ∂

 (4.29)

Note that in the case of Sigmoidal neurons it will be:

()2

exp

exp exp exp(1)exp

1 1 1
1 1

() 1 1 1

x

i ix x xx
x x

x

−

− − −−+

     ∂ = = − = −     ∂ + + +     
,

and in the case of linear neurons it will be ()
()

x x
x

∂ =
∂

. (4.30)

Therefore we can see that the sensitivity/ error signal for output layer will be,

() '()m m
i i

mm ys nett i i f−= − (4.31)

From here we can now compute the sensitivity of the hidden layer. Note that the error

at hidden layer is not a direct function of its weight and bias; instead it is an

accumulation of error from the layer just after this. So, we need another application of

chain rule of differentiation to compute this error signal.

^ ^
1

1 1

m
im

j m m m
j i j

netE E
s

net net net

−
− −

∂∂ ∂= =
∂ ∂ ∂

 (4.32)

Note that we have already computed the first term
^

m
im

i

E
s

net

∂ =
∂

 in equation (4.28).

Therefore, we are left with,

1
1

01 1 11

mm n ji m
i j im m mij j j

ynet
yc c

net net net
c

−
−

− − −=
∑

∂∂ ∂  = + =
  ∂ ∂ ∂

 (4.33)

1 1
1

1 1

()
'()

m m
j j m

jm m
j j

y net
net

net net
f

σ− −
−

− −

∂ ∂
= =

∂ ∂
 (4.34)

‘ 1'()m
jnetf − ’ is the derivative of activation function and can be computed following

the derivation depicted in eqns. above (4.29) and (4.30).

By combining (4.32) and (4.33) we get,

1 1'()m m m
j i i js s c netf− −= (4.35)

 87

We can now obtain the updated weight and bias values for our network by

substituting the sensitivities/ error signal obtained in equation (4.31) and (4.35) into

(4.17) (4.18) & (4.19) respectively.

4.3 SNN Extension To Regression Boosting

 As discussed above we can see that Simplified NN approach has its distinct

advantages over traditional NN approximation schemes. Especially when it comes to

dealing with function defined on discrete input spaces. In order to investigate wider

implications of SNN approach we will extend our approach to regression boosting,

which will target the regression problems for our selected domain i.e. function

approximation problems in high dimension-low sample cases where the model inputs

constitutes of a significant number of discrete variables.

 The algorithm-II presented above can be easily extended to be viewed as a

regression boosting method for functions defined on discrete input spaces i.e.

1

n

i
i

X U U
=

∈ = ∏ . With similar error bounds and convergence guarantees as presented in

[HZ09]. Based on these exciting facts we propose a new simplified approach to

regression boosting for functions defined on discrete input spaces. We will refer to

our approach as Simplified Regression Boosting (SRB) for discrete input spaces.

Following is a step by step description of this approach for functions defined on

discrete input spaces.

4.3.1 Simplified Regression Boosting (SRB):

 Let G(x) be an objective function we wish to minimize this cost function, this

could be any objective function such as one presented in [ZP01] or e.g.

() () ()()
1 1

21

2

pn

i k
h k y kii

G x
= =

−= ∑ ∑ . In traditional regression boosting settings ()kih

 88

is referred to as the hypothesis generated by the WeakLearn Procedure. The accuracy

of this hypothesis on the training set is then measured according to cost function

G(x). As highlighted before many regression boosting methods used Neural

Networks as base regressor or WeakLearn procedure to generate a hypothesis ()kih at

every iteration. In such situations the output or hypothesis generated by a standard

Neural Network can be represented as 0
1

() () ()
N

i i i i
i

h k NN X c X b cτσ
=

= = + +∑ a , where

1 2(, , ...,)nX x x x= are input variable, X U∈ 1 2 ... n
nU U U R= × × × ⊂ which are

input space, y R∈ is the output variable, τ is the vector transpose, (.)σ is the

activation function and the parameters 0c R∈ , ic R∈ , n
ia R∈ , and ib R∈

(1, 2, ...,)i N= . In the following section we propose a new simplified version of the

WeakLearn procedure to boost functions defined on discrete input spaces; we will

refer to this simplified version as ‘Simplified WeakLearn’.

 Based on this approach we can derive algorithms for boosting regression

problems for function defined on discrete input spaces. These will be a lot faster and

simpler in architecture when compared to existing regression boosting models using

Neural Networks as WeakLearn procedure. In fact, this approach can be used with

any existing regression boosting algorithms using Neural Networks as WeakLearn

procedure by simply replacing the Standard WeakLearn with the ‘Simplified

WeakLearn’ discussed above. We can prove the convergence for this algorithm by

following the approach used in [ZP01] and is included at the end of this thesis as

appendix-D.

 89

4.3.2 Simplified Regression Boosting Algorithm-III

 In line with definition of a simplified NN presented in [HZ09] we define our

‘Simplified WeakLearn’ as []*

1

() (')
N

i i i i o
i

h x c a X b cσ α β
=

= + + +∑ , where ic R∈ , n
ia R∈ ,

ib R∈ ((1,2,...,)i N= and 0c R∈ . This Simplified WeakLearn approach will differ

1. Input:

• Training set examples () ()1 1, ,n nS y y= x x wherey∈ℝ , training

iterationsT .

• Simplified WeakLearn: A learning procedure that produces a

hypothesis *()xih

2. Identify a best linear approximation bXaXLz +== ')(* which can be found

by the least square algorithm;

(Note that we can represent a multivariate or least squares fit model of the data
as: 0 0 1 1 2 2........ n nz x x x xα α α α= + + . Therefore we have to solve for unknown

coefficients 0 2, , nα α α α , by performing a least squares fit i.e. multivariable

regression)
3. Initialize: Initialize the model parameters using 0 2, , nα α α α

4. Iterate:

• Call Simplified WeakLearn-minimize cost function G(x) with initial

model parameters. (accept iff tξ = ()()2
*

1
1i

i i

p

k
h k y τ∑

=
− − <

• Set combination co-efficient tc to minimize G(x)

• Modify model parameters using gradient descent algorithm in order to

identify, []*

1

() (')
N

i i i i o
i

h x c a X b cσ α β
=

= + + +∑

5. Estimate Output: ()* /t i t
t t

c h x cy =∑ ∑
∼

 90

on two main aspects: the initialisation criteria and the total number of model

parameters for the WeakLearn procedure. This algorithm will first identify a best

linear approximation, then use these initial estimates to initialize the network weights,

combining at a summing junction before the hidden layer neurons; then Call the

Simplified WeakLearn procedure in order to minimize cost function G(x). This

approach has many distinct advantages. Firstly, a single common objective function

is both used by the weak learning procedure to produce hypotheses and determines

the other parameters in the algorithm. Secondly, the distribution of examples is used

to control the generation of hypotheses and each hypothesis is trained to learn the

same underlying function. Since the Simplified WeakLearn use simplified NN as the

base learner, it also reduces the model parameters and enhances the performance. As

highlighted section 4.1.1 the result of such a setup benefits in two ways; firstly in

forward pass we have a good initial estimate as compared to individual inputs only

and in backward pass we have two additional parameters associated with each input

for further fine tuning of the initial estimates of the best linear approximation

coefficients. This approach results in significant reduction of model parameters. As

described in [HZ09], the total number of parameters required is 3N+n+2 as compared

to a standard NN where the total number of parameters required for function

approximation problems is (n+2)N+1, (n = number of network inputs, N= number of

hidden layer neurons). Another distinct advantage of this approach is that when we

add neurons in the hidden layer, we only add three parameters per neuron; this

gradual increase in parameter helps in avoiding model over-fitting, a commonly faced

situation in standard NN models.

4.4 Summary

 The first part of this chapter is the introduction of simplified NN schemes and

corresponding learning algorithms. A derivation of Backpropagation algorithm for

these simplified NN algorithm is also outlined in detail. The simplified NN schemes

 91

and algorithms are mathematically analysed and an architectural representation of

these algorithm is also presented in this chapter. A detailed analysis of approximation

capabilities of simplified NN algorithms is also included in this chapter. This chapter

also contains a discussion on the wider implications of the simplified Neural Network

approach, and gives an overview of how simplified NN approach can be applied to

regression boosting. We have given a brief introduction to regression boosting in this

chapter, and discussed how a simplified regression booting scheme can be developed

using simplified NN approach. We also propose a new algorithm for regression

booting on functions defined on discrete input spaces in this chapter.

 92

CHAPTER 5

IMPLEMENTATION AND EVALUATION

OF THE SNN ALGORITHMS

 There are many tools and applications available to simulate Neural Network

based models for evaluating their performance. In order to assess the performance of

our proposed simplified NN algorithms, and to compare the results with standard NN

models, we have implemented these algorithms in Matlab 7.0. The reasons for

choosing Matlab are: its familiarity in research community, success in recent years

and availability of a range of learning and optimisation algorithms for NNs.

5.1 Data Collection

 One of the most significant aspects in the success of any Neural Network

application is the quality and availability of data. The availability of sufficient

training data plays a very important role in success of a NN based model. As

highlighted before unavailability of sufficient training data in certain application

domains makes it difficult for standard NN models to achieve the desired results.

 In order to analyse the performance of simplified Neural Networks (SNN)

we first produced some dummy data sets and trained our SNN on these datasets. The

dummy data sets are functions of varied complexity with two or three input variables

as shown in table 5.1 and 5.2. For the dummy examples 25 (see table 5.1) and 40 (see

table 5.2) cases of discrete values have been generated, independently each of which

 93

uniformly distributed over [0,1]. The values of the target variable Y was then

computed using the equations shown in tables 5.1 and 5.2.

The obvious advantage of using dummy data sets is that we have prior

knowledge of underlying function and we can easily monitor the performance of our

proposed algorithms, as both the dependent and independent variables are under

experimental control.

 Once the performance of our network is verified on these dummy data sets,

we identified some benchmarking examples to show that the proposed algorithms are

general enough for any kind of approximation problems taking on discrete values.

Selection of benchmarking data was a tedious task since our algorithms represent a

special case of standard NN, therefore we need datasets that can meet the following

criteria:

• All or at least a significant number of independent variables should be

discrete. (Any continuous variables remaining in the data sets can be later

rounded off to make it a discrete variable i.e. for experimentation purpose

only).

• The number of independent variables should be large.

• The variables should be independent of each other.

• Availability of data is limited i.e. there are not enough examples for training a

standard NN.

 As argued earlier, most of the NN approximation schemes proposed so far

consider the NNs to take on continuous inputs only. Therefore most of the

benchmarking datasets have continuous values only. Alternatively, if there are any

datasets available that has discrete values, they were used for classification problems

instead.

 94

 There are many well known resources of experimental data available for use

with NNs e.g. UCI Machine Learning Repository, Bilkent University function

approximation repository, statlib data archives and Delve data sets etc. We have

selected three different benchmarking examples from ‘Bilkent University Function

Approximation Repository’. For the Pyrimidines data set, the task consists of

Learning Quantitative Structure Activity Relationships (QSARs) i.e. The Inhibition

of Dihydrofolate Reductase by Pyrimidines. For the Triazines Dataset, the problem is

to learn a regression equation, rule or tree to predict the activity from the descriptive

structural attributes. A detailed description of the selected data sets and their past

usage is given in Appendix-B.

5.2 Data Pre-Processing And Partitioning

 Once the data is selected the next step is perform some data pre-processing. In

practice, it is nearly always beneficial, sometimes critical, to apply pre-processing to

the input data before they are fed to a network. There are many techniques and

considerations relevant to data pre-processing e.g. simple filtering, principle

component analysis and many others , please see [Sar97][Bis95][Mas93]. However,

the aim of these pre-processing techniques is roughly the same i.e. transformation of

the data into a form suited to the network inputs, selection of the most relevant data

and reducing the number of inputs to the network.

 In order to compare the performance of these simplified algorithms with

standard NN models, we have used the method of three way splits, and partition the

data into training sets, validation sets, and test sets. As defined earlier, validation sets

are used to decide the architecture of the network, training sets are used to actually

update the weights in a network and test sets are used to examine the final

performance of the network. The crucial point is that a test set, by the standard

 95

definition in the NN literature, is never used to choose among two or more networks,

so that the error on the test set provides an unbiased estimate of the generalization

error (assuming that the test set is representative of the population, etc. Any data set

that is used to choose the best of two or more networks is, by definition, a validation

set, and the error of the chosen network on the validation set is optimistically biased

[Sar97].

5.3 Simulation Results for SNN Algorithms I &II

 Once the data pre-processing tasks are performed, the networks are ready for

training. The selected data sets (i.e. dummy and real-world examples) are first used

for training of a standard Neural Network. The objective is to set a standard for

evaluation against our simplified algorithms. These standard NNs are actually

feedforward Neural Networks of three layers i.e. input, hidden and output layer.

According to the conventional setup, the hidden layer activation function is chosen to

be sigmoid, whereas the output layer activation function is pure linear. With these

initial parameters in place, we can now train the standard NN for approximation on

the selected data sets. The same data sets are then used for training of proposed

simplified NN models. The results obtained are summarized in (see tables 5.1-5.4),

followed by comparative graphs (see figures 5.1-5.12) showing performance of these

simplified NNs against standard NNs over testing data sets; where total number of

training iterations or epochs are recorded on x-axis and mean squared error on y-axis.

96

Table: 5.1 Performance Comparison of Standard NNs Vs Simplified NNs

Data Set

ANN SNN-I SNN-II

MSE No. of

iterations

No. of

parameters

(n+2)N+1

MSE No. of

iterations

No. of

parameters

3N+n+2

MSE No. of

iterations

No. of

parameters

3N+n+2

Dummy 1

(2X1+X2
2)

0.080659 100 (2-4-1)

17

0.494222 100 (1-4-1)

15

0.465661 100 (1-4-1)

15

Dummy 2

(2X1+2X2)

0.360283 100 (2-4-1)

17

0.313595 100 (1-4-1)

15

0.4626 100 (1-4-1)

15

Dummy 3

(Sin(X1+X2))

0.42679 100 (2-4-1)

17

0.0709674 100 (1-4-1)

15

0.0686217 100 (1-4-1)

15

Pyrimidines 0.0919559 300 (14-6-1)

97

0.0119983 300 (1-10-1)

33

0.0236143 300 (1-8-1)

27

Triazines 0.436261 300 (18-8-1)

161

0.0159458 300 (1-10-1)

33

0.0428223 300 (1-12-1)

39

97

0 20 40 60 80 100
0

0.5

1

1.5

2

2.5

Epoch

S
qu

ar
ed

 E
rr

or

ANN

SNN1
SNN2

Figure 5.1 Performance of Standard NNs Vs Simplified NNs over Test Set

(Dummy 1)

0 50 100 150
0

5

10

15

20

25

30

35

40

45

Epoch

S
qu

ar
ed

 E
rr

or

ANN

SNN1
SNN2

Figure 5.2 Performance Of Standard NNs Vs Simplified NNs over Test Set

(Dummy 2)

 98

0 20 40 60 80 100
0

1

2

3

4

5

6

7

8

9

Epoch

S
qu

ar
ed

 E
rr

or

ANN

SNN1
SNN2

Figure 5.3 Performance of Standard NNs Vs Simplified NNs over Test Set

(Dummy 3)

0 50 100 150 200 250 300
0

1

2

3

4

5

6

7

8

9

Epoch

S
qu

ar
ed

 E
rr

or

ANN

SNN1
SNN2

Figure 5.4 Performance of Standard NNs Vs Simplified NNs over Test Set

(Pyrimidines)

 99

0 50 100 150 200 250 300
0

0.5

1

1.5

2

2.5

3

3.5

4

4.5

5

Epoch

S
qu

ar
ed

 E
rr

or

ANN

SNN1
SNN2

Figure 5.5 Performance of Standard NNs Vs Simplified NNs over Test Set

(Triazines)

 The initial experimental results obtained with dummy data sets do not

reflect any significant improvement in terms of total number of parameters. The

reason for that is we are only using two independent variables, and therefore the

effect of simplification is not apparent. However, the results of benchmarking

datasets show a significant reduction in the total number of parameters. These

results supports our claim that simplified NNs are universal approximators for

functions defined on discrete input spaces; since we have achieved approximately

the same or in some cases even better accuracy, with significantly less

parameters. Although the performance of the simplified algorithms was quite

promising on the selected datasets, one may argue the simplicity of dummy

datasets mainly consisting of two variables. We therefore extended our

experiments to use more complicated dummy data sets with varying complexity

and number of variables. We then used these datasets to experiment with

simplified algorithm-II which yielded even better performance then before; please

refer to table 5.2 and comparison graphs (figure 5.6-5.10). The experiments were

 100

initially performed with 100 training iterations for dummy datasets and 300

iterations for real world examples; in order to verify whether the performance of

these models degrade upon increasing training iterations. Hence, increasing the

number of iterations actually does not affect or add any value to the initial

performance of our simplified NNs, we re-evaluated the performance of our

algorithms against standard NN with no data pre-processing for both the models,

we also reduced the number of training iterations significantly (i.e. 25) for

Pyrimidines and Triazines datasets, see table 5.3 and 5.4 with corresponding

comparison graphs as shown in figures 5.11 and 5.12.

Data Set

Standard NN Simplified NN-II

MSE No. of
iterations

No. of
parameters
(n+2)N+1

MSE No. of
iterations

No. of
parameters

3N+n+2

Dummy 4
SIN(2X1+4X2

2)

0.146185 100 17 0.074572 100 16

Dummy 5
2X3

2+X1
3+LOG(X2)

0.126166 100 21 0.011201 100 16

Dummy 6

2

321 5.0
4

6 xxxSin +






 π

0.210441

100

31

0.058809

100

28

Pyrimidines 0.079212 100 88 0.0035615 100 47

Triazines 0.035513 100 187 0.011004 100 74

Table: 5.2 Performance Comparison of Standard NNs Vs Simplified NNs for

(SNN-II)

 101

0 10 20 30 40 50 60 70 80 90 100
0

0.5

1

1.5

2

2.5

Epoch

S
qu

ar
ed

 E
rr

or

Figure 5.6 Comparison Graph, Standard NN Vs Simplified NN over Test Sets for

SNN-II (Dummy 4)

Legend:

Standard NN: - - - - - - - - - -----

Simplified NN: __ __ __ __ __

0 10 20 30 40 50 60 70 80 90 100
0

0.5

1

1.5

2

2.5

3

3.5

Epoch

S
qu

ar
ed

 E
rr

or

Figure 5.7 Comparison Graph, Standard NN Vs Simplified NN over Test Sets for

SNN-II (Dummy5)

 102

0 10 20 30 40 50 60 70 80 90 100
0.5

1

1.5

2

2.5

3

3.5

4

4.5

5

5.5

Epoch

S
qu

ar
ed

 E
rr

or

Figure 5.8 Comparison Graph, Standard NN Vs Simplified NN over Test Sets for

SNN-II (Dummy 6)

Legend:

Standard NN: - - - - - - - - - -----

Simplified NN: __ __ __ __ __

0 10 20 30 40 50 60 70 80 90 100
0

0.5

1

1.5

2

2.5

3

3.5

Epoch

S
qu

ar
ed

 E
rr

or

Figure 5.9 Comparison Graph, Standard NN Vs Simplified NN over Test Sets for

SNN-II (Pyrimidines)

 103

0 10 20 30 40 50 60 70 80 90 100
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

Epoch

S
qu

ar
ed

 E
rr

or

Figure 5.10 Comparison Graph, Standard NN Vs Simplified NN over Test Sets

for SNN-II (Triazines)

 Legend:

Standard NN: - - - - - - - - - -----

Simplified NN: __ __ __ __ __

The experimental results show that these simplified networks have the

ability to approximate functions defined on discrete input spaces to arbitrary

accuracy by employing less number of parameters as compared to standard NN

approximation schemes. The simplified algorithms have shown to be

computationally inexpensive and simpler in architecture. Based on theses findings

we decided to proceed with formal publication of our work.

 One crucial point to be noted here is the fact that when comparing our

results with standard NN models, we have not used any data pre-processing with

standard NN models. For this particular reason, we either have to omit the data

pre-processing stage from the simplified NNs and initialise the network

parameters with random weights as in standard NN model, or do similar data pre-

processing for standard NN model for a fair comparison. We have adopted the

 104

first approach and eliminated the data pre-processing stage from simplified NNs.

With this setup in place, we re-evaluated the performance of our proposed

simplified algorithms against standard NN model. Upon analysis of results

presented above we can also see that the difference in performance of standard

and simplified NNs is more apparent during initial training iterations. Hence,

increasing the number of iterations actually does not add any value to the initial

performance of our simplified NNs. For these reasons we re-evaluated the

performance of our algorithms against standard NN with no data pre-processing

for both the models, we also reduced the number of training iterations

significantly (i.e. 25) for Pyrimidines and Triazines datasets.

 For illustration, consider the example of Pyrimidines data set, which

consists of 74 instances, 27 explanatory variables and 1 response variable. With

five hidden layer neurons and over a set of 25 iterations, the performance of a

standard NN in terms of mean squared error was recorded to be 0.2764 by

employing a total of 146 parameters according to (n+2)N+1 (i.e. n = number of

network inputs, N = number of hidden layer neurons). The same data are then

used for training of our simplified NN. We obtained an accuracy of 0.0292 over

25 iterations by employing 47 parameters in total according to 3N+n+2. We have

also achieved better accuracy in terms of means squared error. Also note that SNN

has not only achieved similar accuracy but it has achieved that in relatively fewer

training iterations or cycles, e.g. see the comparison graph for Triazines dataset,

where similar accuracy is achieved in very fewer training cycles. These results

support our claim that simplified NNs are universal approximators for functions

defined on discrete input spaces, since we have achieved approximately the same

or in some cases even better accuracy with significantly less parameters.

 105

Pyrimidines

 MSE
No. of
iterations

No. of
parameters

Standard
NN

0.2764 25 146

Simplified
NN

0.0292 25 47

Table 5.3 Pyrimidines Data set - Performance Comparison Over Testing Data

for 25 Iterations

Figure 5.11 Pyrimidines Data set - Performance Comparison over Testing Data

for 25 Iterations

0 5 10 15 20 25
0

0.5

1

1.5

2

2.5

3

3.5

4

4.5

5

Epoch

S
qu

ar
ed

 E
rr

or

Standard

Simplified

 106

Triazines

 MSE
No. of
iterations

No. of
parameters

Standard

NN
0.1032 25 311

Simplified

NN
0.0225 25 77

Table 5.4: Triazines Data set - Performance Comparison over Testing Data for

25 Iterations

0 5 10 15 20 25
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

Epoch

S
qu

ar
ed

 E
rr

or

Standard

Simplified

Figure 5.12 Triazines Data set - Performance Comparison over Testing Data for

25 Iterations

 107

5.4 Simulation Results For Simplified Regression Boosting

 Algorithm-III

 In order to evaluate the performance of the SRB Algorithm-III we have

chosen three different benchmarking datasets: Pyrimidines and Triazines which

are already used for evaluating simplified NN performance and a third example

named F1 dataset, () ()2
1 2 3 4 510sin 20 .5 10 5y x x x x xπ= + − + + . This first

appeared in [Fri91] and then in [ZP01]. Since our focus is on function

approximation problems for functions defined discrete input spaces, therefore we

have not used standard data for this problem, this is because their input variables

are continuous. Instead we have generated dummy samples for all the five

explanatory variables which constitute discrete values. A total of 100 instances is

produced and then partitioned into training, validation and test sets as per standard

practice. For a fair comparison with [ZP01] we have used Neural Networks as the

hypotheses and backpropagation as the learning procedure to train them. However

our algorithm uses a simplified WeakLearn instead of a standard WeakLearn as

used in [ZP01]. Each network had a layer of three ‘tansig’ activation functions

between the input units and a single linear output. We used early stopping with a

validation set in order to reduce over fitting in the hypotheses.

 Performance of this algorithm is compared with a slightly modified

version of the algorithm presented by Zimmel & Pittasi which appeared in

[ZP01]. The first step in the simplified regression boosting algorithms is

identifying a best linear approximation from the available data. The aim is to

provide our Simplfied WeakLearn procedure. This can be achieved easily by

applying multiple regression. In Matlab this can be done by using back-slash

operator (“/”). We may refer to Matlab Neural Network toolbox help section for

further details on specific implementation related issues.

 108

 The results were consistent for all the three examples and the training error

was reduced steadily. Please refer to the comparison graphs (see figure 5.13-5.15)

which show the performance of these examples over the test sets.

0 10 20 30 40 50 60 70 80 90 100
0

0.5

1

1.5

2

2.5

3

3.5

Epoch

S
qu

ar
ed

 E
rr

or

Figure 5.13 Performance Comparison of Simplified Regression Boosting Vs

Standard Regression Boosting over Test Sets (Pyrimidines dataset)

0 10 20 30 40 50 60 70 80 90 100
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

Epoch

S
qu

ar
ed

 E
rr

or

Figure 5.14 Performance comparison of Simplified Regression Boosting Vs

Standard Regression Boosting over Test Sets (Triazines dataset)

Legend:

Standard Regression boosting: - - - - - - - - - -----

Simplified Regression boosting: __ __ __ __ __

 109

Figure: 5.15 Performance comparison of Simplified Regression Boosting Vs

Standard Regression Boosting over Test Sets (F1 dataset)

Legend:

Standard Regression boosting: - - - - - - - - - -----

Simplified Regression boosting: __ __ __ __ __

Data Set Standard Regression Boosting using
Z&P Algorithm

Simplified Regression Boosting

MSE No. of
iterations

No. of
parameters
(n+2)N+1

MSE No. of
iterations

No. of
parameters

3N+n+2

Pyrimidines 0.079212 100 88 0.0035615 100 38

Triazines 0.035513 100 187 0.011004 100 71

F1

0.310441 100 22 0.208809 100 16

Table 5.5: Performance comparison of Simplified Regression Boosting Vs

Standard Regression Boosting over Test Sets

0 10 20 30 40 50 60 70 80 90 100
0

0.5

1

1.5

2

2.5

Epoch

S
qu

ar
ed

 E
rr

or

 110

 Performance comparison of simplified and standard regression boosting is

summarized in table 5.5. On comparison of the obtained results we can see that

the Simplified Regression boosting algorithm has achieved lower or

approximately similar MSE on all the three examples. For instance, see the results

obtained for F1 data set. We can see that we have achieved almost similar

accuracy in terms of MSE. However, the number of parameters required for the

model has been reduced to 16 from 22 in standard regression boosting algorithm.

For F1, dataset reduction in parameters is not so significant due to the fact that F1

data set has only five inputs but if we compare the parameters required for both

algorithms over Traizines and Pyrimidines datasets, we can see the effect of

significant reduction in model parameters. For example in Traizines dataset we

have achieved much better MSE by employing only 71 parameters as compared to

187 required for standard regression boosting model.

5.5 Summary

 This chapter of the thesis discusses the implementation details of the

simplified NNs. As illustrated earlier, these algorithms are implemented in Matlab

7.0 using Neural Network tool box functions. The algorithms are first

implemented and then their performance is evaluated against standard NN

approximation schemes. The data collection and pre-processing tasks are also

discussed briefly. The proposed algorithms are initially tested on three dummy

data sets, in order to understand the effects and these algorithms in detail, and then

on two real world examples from Bilkent University Function Approximation

repository. The experimental results are shown in the form of tables and graphs. A

comparison of training, validation and test sets for all data sets are presented.

Separate graphs showing the approximation and forecasting performance of these

simplified NNs against standard NN scheme, on test sets, are also presented.

Similarly, the implementation and evaluation details of simplified regression

boosting algorithm are also given in this chapter. The performance evaluation and

results for simplified regression boosting algorithm have been reported on three

benchmarking datasets.

 111

CHAPTER 6

CONCLUSION

 Function approximation capabilities of feedforward Neural Networks have

been widely investigated over the past couple of decades. However, use of these

NN models is restricted due to complex computations attached with them. Over

the years many improvements have been suggested but no particular attention has

been paid to the nature of input spaces, the majority of the research undertaken

ignores the fact the by focusing on distinguished features of discrete input spaces

more simplified and robust algorithms can be developed. The main focus of this

thesis is a special case of function approximation problems that take on discrete

variables only.

6.1 Summary of Thesis

 A survey of results on universal approximations properties followed, by a

detailed analysis of simplified NN approach, along with a discussion on special

features of discrete input spaces, provides us theoretical basis for further work.

We then proposed simplified Neural Network algorithm I and II for function

approximation in our selected domain i.e. functions defined on discrete input

spaces with high dimensional-low sample case.

 Experimental analysis, evaluation and comparison of these simplified

Neural Network based algorithms have shown that these algorithms work well in

the following situations:

• Limited availability of training data is the main reason for choosing SNN

over standard NNs because any networks performance mainly depends on

 112

the number of training examples. Therefore, in the absence of adequate

training data, it is hard for standard Neural Network to show high level of

accuracy, which ultimately justifies the use of these simplified methods.

• When the input variables are independent of each other, it is easier to use

aggregation methods, described in simplified algorithms. This will result

in good initial starting solution which is the main objective behind using

aggregation methods.

 In order to investigate wider implications of the simplified Neural

Network approach, we extended our approach to regression boosting problems.

After a detailed analysis of existing regression boosting schemes, a simplified

regression boosting approach was introduced. Based on the simplified regression

boosting approach, we proposed algorithm-III, which is used for boosting

regression problems in our selected domain.

6.1.2 Some Limitations

 Like any other algorithms, these simplified algorithms have some

limitations as well. Application of these algorithms to benchmarking data and

examples have shown that it is hard to achieve desired results if the independent

variables have too much variation, there are variables which take on continuous

values, the number of values a discrete variable can take on is very large, and the

input variables are not independent of each other.

 The transformation phase of these algorithms may cause independent

discrete variables to be continuous; thus requiring more parameters to achieve the

desired approximation accuracy. Therefore special care is required while selecting

a linear map that transforms multiple inputs to unidirectional data. Selection of an

appropriate mapping, which can achieve desired accuracy, is a trivial task and

hence proves the fact that functions defined on discrete input spaces have

arbitrarily separable hierarchical structure which is not unique. Algorithm-II is

not prone to this phenomenon, since each input is dealt separately.

 113

 The algorithms were implemented and their performance was compared

with standard Neural Network models. Experimental results obtained so far, show

that these schemes work in practice and have shown to achieve sufficient

approximation accuracy. In most of the cases we have achieved approximately the

same accuracy or even better by employing much less parameters as compared to

standard NN models.

6.2 Future work

 The results obtained in this research have many extensions which can be

explored in order to carry out future research. One of the most obvious extensions

is to extend our selected application domain to include mix input variables i.e.

some inputs are discrete and some inputs are continuous. This extended simplified

approach has already been discussed in [ZGKL05]. The idea is to use certain

inputs as groups, and rather than having a single input Neural Network model, use

more inputs, each representing separate groups. We can further extend this

simplified approach to replace the lower level system with fuzzy systems or rule

based system i.e. simplified neural fuzzy systems, see [ZK08][ZGKL05].

 As highlighted in chapter 4, the simplified Neural Network approach uses

ridge activation functions in the hidden layer. There are many other types of

activation functions available for use in hidden layer, especially radial-basis

activation functions, which have recently become very popular. The simplified

Neural Network approach can therefore be investigated with other activation

functions. Neural Network based ensemble methods have also become very

popular mainly due to the fact many Neural Network models can generally

produce better results than a single model. As shown in our simplified regression

boosting scheme this approach can be applied to Neural Network based ensembles

models. There are many other ensembles that can be investigated for application

of these simplified methods.

 114

 Success of any Neural Network based model largely depends on the

availability and reliability of training data. However, availability of data for

certain application domains is always limited for different reasons e.g. LMCP

modeling, QSAR modeling and many other. These schemes can be applied to

many other application domains, where we are limited by the availability of data

due to different reasons. One such example is the health care data, especially in

United Kingdom, where access to patient related information is very restricted due

to strict data protection rules. Health informatics itself, is a vast field and the

opportunities for inter-disciplinary research employing these simplified methods

for developing decision support systems, are immense.

6.3 Published Work

 The outcomes of this research work have been formalized and have

appeared in following paper:

• Syed Shabbir Haider, Xiao-Jun Zeng, Simplified Neural Networks

algorithm for function approximation on discrete input spaces in high

dimension-limited sample applications, Neurocomputing, Volume 72,

Issues 4-6,January 2009, Pages 1078-1083.

6.4 Summary

 This chapter is a brief summary of the research work undertaken. It

includes a detailed discussion on advantages and limitations of these simplified

Neural Networks. We have also highlighted future research directions in this field,

followed by enlisting our published work.

 115

Bibliography

[AB99] M. Anthony, P.L. Bartlett, Neural Networks Learning: Theoretical

foundations, Cambridge University Press, 1999.

[AP97] J.G. Attali & G. Pagès. Approximations of functions by a

multilayer perceptron: A new approach. Neural Networks, Vol 10,

No. 6, pp. 1069–1081, 1997.

[Ara93] M. Arai. Bounds on the number of hidden units in binary valued

three-layer neural networks. Neural Networks, Vol. 6, No. 6, pp

855–860, 1993.

[Bar93] A.R. Barron. Universal approximation bounds for superpositions of

a sigmoidal function. IEEE Trans. Info. Theory, Vol. 39, No. 3, pp.

930–945, 1993.

[Bau88] E.B. Baum. On the capabilities of multilayer perceptrons. Journal

of Complexity, Vol. 4, pp. 193–215, 1988.

[BCP97] A. Bertoni, P. Campadelli, M. Parodi, A boosting algorithm for

regression. In W. Gerstner, A. Germond, M. Hasler, and J.-D.

Nicoud (Eds.), Proceedings ICANN’97, Int. Conf. on Artificial

Neural Networks Berlin: Springer. Vol. V of LNCS. pp. 343–348,

1997.

[Bei98] Valeriu Beiu, On Kolmogorov's Superpositions and Boolean

Functions. 5th Brazilian Symposium on Neural Networks (SBRN

'98), 9-11 December 1998, Belo Hoizonte, Brazil. pp. 55-60, 1998.

[Bis95] C.M. Bishop, Neural Networks for Pattern Recognition, Oxford

University Press, 1995.

[BL88] D.S. Broomhead, D. Lowe, Multivariable function interpolation

and adaptive networks. Complex Systems, Vol. 2, pp. 321-335,

1988.

[Bre01] L. Breiman. Random forests. Machine Learning, Vol. 45, No. 1,

pp. 5-32, 2001.

[Bre96] L. Breiman, Bagging predictors, Mach. Learning, Vol. 24, pp. 123–

 116

140, 1996.

[Bre98] L. Breiman, Arcing classifiers. The Annals of Statistics, Vol. 26,

No.3, pp. 801–849,1998.

[Bre99] L. Breiman, Prediction games and arcing algorithms. Neural

Computation, Vol. 11, pp. 1493–1517, 1999.

[CC95] T. Chen and H. Chen, Universal approximation to nonlinear

operators by neural networks with arbitrary activation functions

and its application to dynamical systems. IEEE Transactions on

Neural Networks, Vol. 6, No. 4, pp. 911-917, 1995.

[CC99] J. G. Carney, P. Cunningham, The NeuralBAG algorithm:

Optimizing generalization performance in bagged neural networks,

in Proceedings of the 7th European Symposium on Artificial

Neural Networks, pp. 35– 40, 1999.

[CCL95] T. Chen, H. Chen and R.W. Liu. Approximation capability in

C(Rn) by multilayer feedforward networks and related problems.

IEEE Trans Neural Networks Vol. 6, pp. 25-30, 1995.

[Cyb89] G. Cybenko, Approximation by superpositions of sigmoidal

function, Mathematics of Control, Signals and System, Vol. 2, pp.

303-314. 1989.

[CL92] K. Charles, X. L. Chui, Approximation by ridge functions and

neural networks with one hidden layer, Journal of Approximation

Theory, Vol. 70, No. 2, pp. 131-141, 1992.

[DH02] Nigel Duffy, David Helmbold Boosting Methods for Regression,

Machine Learning, Vol. 47, pp. 153–200, 2002.

[Dru97] H. Drucker, Improving regressors using boosting techniques. In

Proceedings of the Fourteenth International Conference on

Machine Learning, pp. 107–115), 1997.

[ET93] B. Efron, and T. J. Tibshirani, An Introduction to the Bootstrap,

Chapman and Hall, New York, 1993.

[FHT00] Jerome H. Friedman, T. Hastie, and R. Tibshirani Additive logistic

regression: a statistical view of boosting (With discussion and a

 117

rejoinder by the authors). Annals of Statistics Vol. 28, No. 2, pp.

337-407. 2000.

[FM98] Y. Fukuoka, H. Matsuki, A Modified Back-propagation Method to

Avoid Local Minima, Neural Networks, , Vol. 11, pp. 1059-

1072,1998.

[Fri01] J. H. Friedman, Greedy function approximation: A gradient

boosting machine. Annals of Statistics, 2001.

[Fri91] J. H. Friedman, Multivariate Adaptive Regression Splines, Annals

of Statistics Vol. 19, pp. 1-82. 1991.

[FS96] Y. Freund, and R. E. Schapire, Experiments with a new boosting

algorithm, in Proceedings of the Thirteenth International

Conference on Machine Learning, pp. 148– 156, 1996.

[FS97] Y. Freund, R. E. Schapire, A decision-theoretic generalization of

on-line learning and an application to boosting. Journal of

Computer and System Sciences, Vol. 55, No.1, pp. 119–139, 1997.

[GB00] H. Altay Guvenir and I. Uysal, Bilkent University Function

Approximation Repository, See URL:

http://funapp.cs.bilkent.edu.tr, 2000.

[GP90] F. Girosi and T. Poggio Networks and the best approximation

property. Biological Cybernetics Vol. 63, pp. 169-176, 1990.

[GTMc08] Leila Ait Gougam, Mouloud Tribeche, Fawzia Mekideche-Chafa,

A systematic investigation of a neural network for function

approximation, Neural Networks, Vol. 21, No. 9, pp. 1311-1317,

2008.

[Hay96] S. Haykin Neural Networks-A Comprehensive Foundation,

Macmillan College Pub., New York. 1996.

[HC07] G.B. Huang, L. Chen, Convex incremental extreme learning

machine, Neurocomputing Vol. 70 (16–18), pp. 3056–3062. 2007.

[HCS06] Guang-Bin Huang, Lei Chen, Chee-Kheong Siew, Universal

Approximation Using Incremental Constructive Feedforward

Networks With Random Hidden Nodes, IEEE transactions on

 118

neural networks, Vol. 17, No. 4, 2006.

[HDB96] Martin Hagan, Howard Demuth and Mark Beale Neural Network

Design, (Oklahoma State University), 1996.

[HDJ02] M. Hagan, H. Demuth, O. De Jesus, An Introduction to the Use of

Neural Networks in Control Systems, International Journal of

Robust and Nonlinear Control, Vol. 12, No. 11, pp. 959-985, 2002.

[HeN87] R. Hecht-Nielsen Kolmogorov’s mapping neural network existence

theorem. In: Proceedings Int Conf on Neural Networks, IEEE

Press, New York, Vol. 3, pp. 11-13, 1987.

[HG92] C.M Higgins, R.M Goodman, Learning fuzzy rule-based neural

networks for function Approximation International Joint

Conference on Neural Networks, IJCNN 7-11, Vol. 1, pp. 251 –

256, 1992.

[Hor91] K. Hornik, Approximation capabilities of Multilayer Feedforward

Networks, Neural Networks, Vol. 4, pp. 251-257, 1991.

[Hor93] K. Hornik, Some new results on neural network approximation,

Neural Networks, Vol. 6, pp. 1069-1072, 1993.

[Hor98] K. Hornik, The random subspace method for constructing decision

forests. IEEE Transaction on Pattern Analysis and Machine

Intelligence, Vol. 20, No. 8, pp. 832-844, 1998.

[HS90] L. K. Hansen and P. Salamon. Neural network ensembles. IEEE

Transactions on Pattern Analysis and Machine Intelligence, Vol.

12, No. 10, pp.993-1001, 1990.

[HSS05] G. B. Huang, P. Saratchandran, Narasimhan Sundararajan,, A

Generalized Growing and Pruning RBF (GGAP-RBF) Neural

Network for Function Approximation, IEEE transactions on

Neural Networks, Vol. 60, No.1, pp 57-67, 2005.

[HSW89] K. Hornik, M. Stinchcombe, and H. White. Multilayer feedforward

networks are universal approximators, Neural Networks, Vol. 2,

pp. 359-366. 1989.

 119

[HZ09] S. S. Haider, and X. Zeng, Simplified neural networks algorithm

for function approximation on discrete input spaces in high

dimension-limited sample applications. Neurocomputing Vol. 72

(4-6), pp. 1078-1083, 2009.

[HZS06] G.B. Huang, Q.-Y. Zhu, C.K. Siew, Extreme learning machine:

theory and applications, Neurocomputing, Vol. 70, pp. 489–501,

2006.

[JJ94] M. I. Jordan and R. A. Jacobs. Hierarchical mixtures of experts and

the em algorithm. Neural Computation, Vol. 6, No. 2, pp.181-214,

1994.

[Kas96] N. K. Kasabov, Fonundation of Neural Networks, fuzzy systems

and knowledge engineering, Massachusetts Institute of technology,

1998.

[KKK97] V. Kurková, P.C. Kainen & V. Kreinovich. Estimates of the

number of hidden units and variations with respect to half spaces.

Neural Networks, Vol. 10, No. 6, pp.1061–1068, 1997.

[KP99] S. V. Kamarthi, S. Pittner, Accelerating Neural Network Training

using Weight Extrapolations, Neural Networks, Vol. 12, pp. 1285-

1299, 1999.

[KS04] F.O. Karray and C. De Silva, Soft Computing and intelligent

systems design, pp. 236 Addison Wesley 2004.

[KS96] B. Kröse, Patrick V.D. Smagt, An Introduction to Neural Network.

8th Edition, The University of Amsterdam, 1996

[Kur92] V. Kurková. Kolmogorov’s theorem and multilayer neural

networks, Neural Networks, Vol. 5, No. 4, pp. 501–506, 1992.

[LLPS93] M. Leshno, V. Y. Lin, A. Pinkus, S. Schocken, Multilayer

feedforward networks with a nonpolynomial activation function

can approximate any function. Neural Networks, Vol. 6, No. 6, pp.

861-867, 1993.

[LMB03] Fei-Long, Li You-Mei XU and Zong-Ben, Lp simultaneous

approximation by neural networks with one hidden layer. Journal

 120

of Software, Vol. 14, No. 11, pp. 1869-1874, 2003.

[LY97] Y. Liu and X. Yao. Negatively correlated neural networks can

produce best ensembles. In Australian Journal of Intelligent

Information Processing Systems Vol.4 (3/4), pp. 176-185, 1997.

[LY99] Y. Liu and X. Yao. Ensemble learning via negative correlation.

Neural Networks, Vol. 12, No. 10, pp.1399-1404, 1999.

[Mas93] T. Masters, Practical Neural Network Recipes in C++. Academic

Press, Inc., 1993.

[Med98] David A. Medler, A Brief History of Connectionism, Neural

Computing Surveys Vol. 1, pp. 61-101, 1998.

[MH97] H.N. Mhaskar, Nahmwoo Hahm, Neural Networks for function

approximation and System Identification, Neural Computation Vol.

9, pp. 143-159, 1997.

[MVA99] G. D. Magoulas, M. N. Vrahatis, and G. S. Androulakis Improving

the Convergence of the Backpropagation Algorithm Using

Learning Rate Adaptation Methods, Neural Computation Vol. 11,

pp. 1769–1796, 1999.

[PG90] T. Poggio & F. Girosi. A theory of networks for approximation and

learning, Networks for approximation and learning, Proc. IEEE

(Special Issue on Neural Networks), Vol. 78, No. 9, pp. 1481–

1497, 1990.

[Pin99] Allan Pinkus, Approximation theory of MLP model in Neural

Networks, Acta Numerica, pp. 143-195. 1999.

[PS91] J. Park and I. W. Sandberg, Universal approximation using radial-

basis function networks, Neural Computation, Vol. 3, pp. 246-257,

1991.

[PS93] J. Park & I.W. Sandberg. Approximation and radial-basis function

networks. Neural Computation, Vol. 5, No. 3, pp. 305–316, 1993.

[RCg05] Fabrice Rossi and Breuc Conan-Guez Functional multi-layer

perceptron: a non-linear tool for functional data analysis , Neural

Network, Vol. 18, No.1, pp. 45-60, 2005.

 121

[Rip96] B.D. Ripley, Pattern Recognition and Neural Networks. Cambridge

University Press, 1996.

[RJ99] R.D. Reed and Robert J. Mark, Neural Smithing: Supervised

Learning in Feedforward Artificial Neural Networks. The MIT

Press, 1999.

[RMR99] G. Ridgeway, D. Madigan, & T. Richardson, Boosting

methodology for regression problems. In D. Heckerman, & J.

Whittaker (Eds.), Proc. Artificial Intelligence and Statistics, pp.

152–161, 1999.

[RS03] M Ananda Rao, J. Srivinas, Neural Networks, Algorithms and

Applications, 2nd Edition, 2003.

[Sar97] W.S. Sarles, Neural Network FAQ, periodic posting to the Usenet

newsgroup see comp.ai.neural-net, see URL:

ftp://ftp.sas.com/pub/neural/FAQ.html, 1997.

[SCAa05] Robert J. Schilling, James J. Carroll, Ahmad F. Al-Ajlouni,

Approximation of Nonlinear Systems with Radial Basis Function

Neural Networks IEEE Transactions on Neural Networks, Vol. 12,

No. 1, January 2001.

[Sch90] R. E. Schapire, The strength of weak learnability, Mach. Learning,

5, 197–227, 1990.

[SH96] R. Salomon, J. L. Hemmen, Accelerating Backpropagation through

Dynamic Self-Adaptation, Neural Networks, Vol. 9, pp. 589-601,

1996.

[SL02] Ratsko R. Selmic and Frank L. Lewis, Neural Network

Approximation of piecewise continuous functions: Application to

Friction compensation, IEEE transactions on Neural Networks,

Vol. 13, No. 3, pp. 745-751, 2002.

[SM02] Jeff Schneider, Andrew Moore, Active Learning in Discrete Input

Spaces, Auton Paper, 2002. See URL:

http://www.autonlab.org/autonweb/papers/y2002/14677.html.

[Spr97] D.A. Sprecher. A numerical implementation of Kolmogorov’s

 122

superpositions, Neural Networks, Vol. 10, No. 3, pp. 447– 457,

1997.

[SS96] Christos Stergiou and Dimitrios Siganos Neural Networks-Online

Technical Report. Department of computing, Imperial college of

Science technology and Medicine, Surprise, Vol. 4, 1996.

[ST98] Franco Scarselli & AH Chung Tsoi, Universal Approximation

using Feedforward Neural Networks: A survey of some existing

methods, and some new results, Neural Networks, Vol. 11, No.1,

pp. 15-37, 1998.

[Sti99] M.B Stinchcombe, Neural Network approximation of continuous

functionals and continuous functionals on compactifications,

Neural Networks, Vol. 12, pp. 467-477, 1999.

[TKG03] D. Tikk, L.T. Kóczy, T.D. Gedeon, A survey on the universal

approximation and its limits in soft computing techniques

International Journal of Approximate Reasoning, Vol. 33, No. 2,

pp. 185-202, 2003.

[Wag02] W. P. Wagner, Daily Peak Load Electricity Forecasting using

Artificial Neural Networks.2002. See URL:

http://hsb.baylor.edu/ramsower/acis/papers/wagnerw.htm

[Wal90] S. F. Walker. A brief history of connectionism and its

psychological implications. AI & Society, Vol. 4, pp. 17-38, 1990.

[Wat80] G. A. Watson, Approximation Theory and Numerical Methods,

New York, John Wiley and Sons, 1980.

[WGG95] Jonathan Wray, G. Gary, R. Green, Neural networks,

approximation theory, and finite precision computation, Neural

Networks, Vol. 8, No. 1, Pages 31-37, 1995.

[Yao99] Xin Yao, Evolving Artificial Neural Networks, Proceeding of the

IEEE, Vol. 87, No.9, pp.1423-1447, 1999.

[ZGKL05] Xiao-Jun Zeng, John Yannis Golermas, John A. Keane and Panos

Liatsis, Approximation capabilities of Hierarchical Neural-fuzzy

systems for function approximation on discrete spaces,

 123

International Journal of Computational Intelligence, Vol. 1, No.1,

pp. 29-41, 2005.

[Zha99] J. Zhang, Developing robust non-linear models through bootstrap

aggregated neural networks, Neurocomputing, Vol. 25(1–3), pp.

93–113. 1999.

[ZK05] Xiao-Jung Zeng, John A. Keane, Approximation capabilities of

hierarchical fuzzy systems, IEEE Transactions on Fuzzy Systems

Vol. 13, No. 5, pp. 659–672, 2005.

[ZK08] Xiao-Jun Zeng and John A. Keane, Hierarchical fuzzy systems for

function approximation on discrete input spaces with Application,

IEEE Transactions on Fuzzy Systems, Vol. 16, No. 5, pp. 1197-

1215, 2008.

[ZP01] R. S. Zemel, T.A Pitassi, Gradient-Based Boosting Algorithm for

Regression Problems Advances In Neural Information Processing

Systems, No.13, pp. 696-702. 2001.

[ZP08] Zarita Zainuddin and Ong Pauline. Function approximation using

artificial neural networks. WSEAS Trans. Math. Vol. 7, No. 6, pp.

333-338, 2008.

 124

Appendix-A: Backpropagation Algorithms for Standard

Neural Network Models.

We can define a standard Neural Network for function approximation problems as

shown in equation (1.1). Note that it has been proved and widely accepted that

Neural Networks with one hidden layer of sigmoid-activation neurons and an

output layer of linear neurons are universal function Approximators i.e. they can

approximate any reasonable function to arbitrary accuracy. More precisely,

according to the definition of famous (Cybenko, 1989) theorem as:

“let σ be any continuous sigmoid-type function (e.g. σ(ξ) = 1/ (1+e-ξ)). Then any

continuous real-valued function ‘f’ on [0,1]n (or any other compact subspace of

Rn) and ξ >0, there exists vectors a1, a2……….an , b , ci & co and a parameterized

function Y(. , a, b, c) : [0,1]n� R such that:

|Y(x , a, b , c) – f (x)| < ξ for all x ∈ [0,1]n

Where,

 () () () 0
1

, , , '
N

i i
i

Y x a b c NN X c a X b cσ
=

= = = + +∑ (1.1)

And ai ∈ Rn & ci , co & b ∈ R, where a = (a1,a2……, an), c = (c1,c2……, cn) and b

= (b1,b2…, bn)”. Also note that ‘ai’ is ‘d x 1’ vector usually referred to as the

direction of the ridge function.

Deriving The BP Algorithm For MLPs

Let,

• ()1,..., nX x x= are input variable.

• my R∈ is the output variable, ‘m’ is the layer index and denotes output

layer, the index of the layer just below output layer will be ‘m-1’ and ‘m-

2’ and so on.

 125

• jia is the connection weight going from input ‘i’ to hidden layer neuron

‘j’ . And can be represented in matrix form as shown below:

11 12 1

21 22 2

1 2

...

...

. . . .

. . . .

...

i

i

ji

j j ji

a a a
a a a

a

a a a

 
 
 
 =
 
 
 
 

• jb is the bias attached to hidden layer neuron ‘j’,

• Where as ic & 0c are the connection weight and bias from hidden layer to

output layer respectively.

• σ is the activation function and in the case of sigmoidal neurons,

1
()

1 exp x
xσ −=

+
, and in the case of linear neurons it will be xx =)(σ .

Since

• The output of hidden layer neuron ‘j’ in the layer ‘m-1’ will be;

1m
jy − = '

1

()
N

ji i j
j

a x b σ
=

+∑ (1.2)

Where the subscript ‘i’ represents the ith input variable ‘x’.

In vector/ matrix form this can be seen as:

• The net input to our hidden layer neurons will be:

1m
jnet − = '

1

()
N

ji i j
j

a x b σ
=

+∑ (1.3)

• The output of the last layer will be the same as its net input since the

output layer uses the linear neurons. So the output of neuron ‘i’ in the

layer ‘m’ (which is last layer) will be:

m
iy = 1

0
1

n
m m m
i j

i

c y c−

=
+∑ (1.4)

where 1m
jy − can be computed as shown in equation (1.2).

 126

Performance Index:

We know that our training set is of the form:

{ X1, t1}{ X2, t2}…………………….{ Xk, tk} (1.5)

Where Xk is the input vector and tk is the corresponding target value and k = 1….p

represents the ‘kth’ iteration or pattern.

Let ‘W’ denote all the network parameters i.e. 0, , ,ji i iW a b c c =   . Our objective

is to minimize the cost function or the error measure i.e. sum of squared errors

over whole the training set/ patterns which can be defined as:

() () ()()2

1 1

1

2

pn

i k

E W i it k y k
= =

∇ = −∑ ∑ (1.6)

And in the vector case we can define the above as:

()E W =   ∑ te e = () ()T
t y t y − −

 ∑ (1.7)

Where ‘e’ is the sum of squared errors over all the training patterns. Therefore the

approximate mean square error over a single sample (k) would be:

 () () () () ()() () ()()T T
E X k k t k y k t k y k∧ = = − −e e (1.8)

The Generalised Delta Rule/ Approximate Steepest Descent For Weight/ Bias

Update:

We can define the approximate steepest descent or generalised delta rule for

MLP’s as follows:

new oldW W W= + ∆ , where 0, , ,ji i iW a b c c =   (1.9)

And,

W
EW

W

∂
∂

−=∆
)(

^

η , where ‘η ’ is the learning rate (2.0)

In the vector case we can write the equations (1.9) and (2.0) altogether as:

 127

(1) ()
E

w k w k
w

η
∧∂+ = −

∂
 (2.1)

where ‘k’ represents the ‘kth’ iteration or pattern.

Gradient Calculation

Now we have to compute the gradients , , ,
i i ji i

E E E E E

w c c a b

∧ ∧ ∧ ∧ ∧ ∂ ∂ ∂ ∂ ∂=  ∂ ∂ ∂ ∂ ∂  
 , by

using the chain rule of differentiation as follows:

and
0 0

m
i

m
i

netE E

C net C

∧ ∧ ∂∂ ∂= ∧
∂ ∂ ∂

 (2.2)

1

1

m
j

m
ji j ji

netE E

a net a

−∧ ∧

−

∂∂ ∂= ∧
∂ ∂ ∂

 and
1

1

m
j

m
i j i

netE E

b net b

−∧ ∧

−

∂∂ ∂= ∧
∂ ∂ ∂

 (2.3)

Let , 1
,, 1

,

m m
i jm m

i j

E
s

net

∧
−

−

∂ =
∂

, be the sensitivity/ error signal for the output and hidden

layers respectively. From the network definition above we can see that we have

to compute the following gradients inline with the eqns. (2.2) and (2.3) above :

1
0

1

m n
mi

i j
ii i

net
c y c

C C
−

=

∂ ∂  = + ∂ ∂  
∑ and 1

0
10 0

m n
mi

i j
i

net
c y c

C C
−

=

∂ ∂  = + ∂ ∂  
∑

1
m

mi
j

i

net
y

C
−∂ =

∂
 and

0

1
m
inet

C

∂ =
∂

 (2.4)

Similarly,

1
'

1

m N
j

ji i i
jji ji

net
a x b

a a

−

=

∂  ∂= + ∂ ∂  
∑ and

1
'

1

m N
j

ji i i
ji i

net
a x b

b b

−

=

∂  ∂= + ∂ ∂  
∑

1m
j

i

ji

net
x

a

−∂
=

∂
and

1

1
m
j

i

net

b

−∂
=

∂
 (2.5)

Now we can re-write our steepest descent rule in equation (2.3) as follows:

m
i

m
i i i

netE E

C net C

∧ ∧ ∂∂ ∂= ∧
∂ ∂ ∂

 128

1. For output layer weight and bias values:

yscc
m

j

m

iii
kk

1
)()1(

−
−=+ η , scc

m

i
kk η−=+)()1(

00
 (2.6)

2. For hidden layer weight and bias values:

xsaa i

m

jjiji
kk

1
)()1(

−−=+ η , sbb
m

jii
kk

1
)()1(

−−=+ η (2.7)

Computing The Sensitivities (Back Propagation Of Error)

The only thing to left to be computed is the sensitivities i.e. , 1
,, 1

,

m m
i jm m

i j

E
S

net

∧
−

−

∂ =
∂

.

This is the process which gives the name of back propagation to this algorithm.

Note that the sensitivities are computed by starting at the last layer, and then

propagating backwards through the network to the first layer. i.e. SM � SM-1
�

….. � S2 � S1.

For the last/ output layer this sensitivity or error signal (i.e. how the error at the

output is affected by the net input ‘i’) can be easily computed as follows:

() ()()2

1 1

1

2

pn
m m m
i i im m

i ki i

E
S t k y k

net net

∧

= =

 ∂ ∂= = − ∂ ∂  
∑∑

() ()() ()i
i i m

i

y k
t k y k

net

∂
= − −

∂
 (2.8)

Where the term
()i

m
i

y k

net

∂
∂

is actually the derivative of our activation function

i.e.
net
y

m

i

i

∂

∂ =
net
net

m

i

m
i

∂

∂)(σ =)(' net
m

i
f (2.9)

Note that in the case of sigmoidal neurons it will be

()2

1 exp 1 1
1

() 1 exp 1 exp 1 exp1 exp

x

x x xxx

−

− − −−

      ∂  = = −      ∂ + + +     + 

()1 i ix x= − and in the case of linear neurons it will be:

 () ()x x
x

∂ =
∂

 (3.0)

 129

Therefore, we can see that the sensitivity or error signal for output layer will be,

() ()
'

m m
i i

m m
S neti it y f= − − (3.1)

From here we can now compute the sensitivity of the hidden layer. Note that the

error at hidden layer is not a direct function of its weight and bias. It is an

accumulation of error from the layer just after this. So, we need another

Application of chain rule of differentiation to compute this error signal.

1
1 1

m
m i
j m m m

j i j

netE E
S

net net net

∧ ∧
−

− −

∂∂ ∂= =
∂ ∂ ∂

 (3.2)

Note that we have already computed the first term m
im

i

E
S

net

∧∂ =
∂

 in equation (3.1).

Therefore, we are left with,

1
1

01 1 1
1

mm n
jmi

i j im m m
ij j j

ynet
c y c c

net net net

−
−

− − −
=

∂∂ ∂  = + = ∂ ∂ ∂ 
∑ (3.3)

() ()
11

' 1
1 1

mm
jj m

jm m
j j

nety
f net

net net

σ −−
−

− −

∂∂
= =

∂ ∂
 (3.4)

()' 1m
jf net − ’ is the derivative of activation function and can be computed

following the derivation depicted in equations (2.9) and (3.0).

By combining (3.3) and (3.4) we get,

()1 ' 1m m m
j i i jS S c f net− −= (3.5)

We can now obtain the updated weight and bias values for our network by

substituting the sensitivities or error signal obtained in equation (3.1) and (3.5)

into (2.6) and (2.7) respectively.

Jacobian Matrix

Note that the vector/ matrix representation of the term
1

m
i

m
j

net

net −

∂
∂

 computed in

equation (3.3) is of the form:

 130

1 1 1
1 1 1

1 2

2 2 2
1 1 1

1 2

1

1 1 1
1 2

......

......

. . .

.

. . .

......

m m m

m m m
j

m m m

m m m
jm

i
m
j

m m m
i i i

m m m
j

net net net

net net net

net net net

net net net
net

net

net net net

net net net

− − −

− − −

−

− − −

 ∂ ∂ ∂
 ∂ ∂ ∂ 
 ∂ ∂ ∂
 
∂ ∂ ∂ 

∂  =
 ∂
 
 

 ∂ ∂ ∂

∂ ∂ ∂ 

()' 1m m
i jc f net −= =






 (3.6)

Where as ()

()

()

()

1
1

1
1

1
2

1
2

' 1

1

1

0 0

0 0

. . .

. 0 . .

. . .

0 0

m

m

m

m

m
j

m
j

m
j

net

net

net

net

f net

net

net

σ

σ

σ

−

−

−

−

−

−

−

 ∂
 

∂ 
 ∂ 
 ∂
 

=  
 
 
 
 

∂ 
 ∂ 

 (3.7)

Therefore ()' 1
1

m
m mi
i jm

j

net
c f net

net
−

−

∂ = =
∂

.

 131

Appendix-B: Description of Data Sets

The Pyrimidines and Triazines data sets are taken from UCI Machine Learning

Repository. A brief description of their past usage and original sources is given

below.

A. Title of Database: Pyrimidines

1. Sources: Luis Torgo

 http://www.ncc.up.pt/~ltorgo/Regression/DataSets.html

2. Relevant Information: The task consists of Learning Quantitative Structure

Activity Relationships (QSARs). The Inhibition of Dihydrofolate Reductase by

Pyrimidines. The data and methodology are described in:

- R. D. King, S. Muggleton, R. A. Lewis, M. J. Sternberg, Drug Design by

machine learning: the use of inductive logic programming to model the structure-

activity relationships of trimethoprim analogues binding to dihydrofolate

reductase. Proceedings of The National Academy of Sciences , Vol. 89, Issue 23,

Pages 11322-11326, 1992.

5. Number of Instances: 74

6. Number of Attributes: 27 + 1 Response variable i.e. activity

7. Missing Attribute Values: None

B. Title of Database: Triazines

1. Sources: Luis Torgo

 http://www.ncc.up.pt/~ltorgo/Regression/DataSets.html

2. Relevant Information: The problem is to learn a regression equation, rule or

tree to predict the activity from the descriptive structural attributes. The data and

methodology is described in detail in:

- Ross D. King, Jonathan D. Hirst and Michael J.E. Sternberg, A comparison of

artificial intelligence methods for modelling QSARs, Applied Artificial

Intelligence, Vol. 9, Issue 2, Pages 213-233, 1995.

- Jonathan D. Hirst, Ross D. King and Michael J.E. Sternberg, Quantitative

Structure-Activity Relationships by Neural Networks and inductive logic

 132

programming. I. The inhibition of dihydrofolate reductase by triazines. Journal of

Computer Aided Molecular Design, Vol. 8, Issue 4, Pages 405-420, 1994.

3. Number of Instances: 186

4. Number of Attributes: 60 + 1 Response variable i.e. activity

5. Missing Attribute Values: None

C. Title of Database: F1

1. Sources:

 (a) Original owners of database:

 This is an artificial data set used by J.H. Friedman (1991) for MARS.

 -BREIMAN, L. (1996): Bagging Predictors. Machine Learning, Vol. 24, Issue 3,

Pages 123-140. Kluwer Academic Publishers.

 -FRIEDMAN, J. (1991): Multivariate Adaptive Regression Splines. Annals of

Statistics, Vol. 19, Issue 1, Pages 1-82.

2. Relevant Information: The cases are generated using the following method:

Generate discrete values of 5 attributes, X1, ..., X5 independently each of which

uniformly distributed over [0,1]. Obtain the value of the target variable Y using

the equation below:

() ()2
1 2 3 4 510sin 20 .5 10 5y x x x x xπ= + − + +

3. Number of Instances: 100

4. Number of Attributes: 5

5. Missing Attribute Values: None

 133

Appendix-C: Proof of Theorem 2

For the given input space U , based on Theorem 1 in [ZGKL05], there exists a

linear function: ∑
=

+==
n

i
ii xwwXLz

1
0)((C.1)

which is one to mapping from U to R . For every

() i

n

i
knkkkkk UUuuuX

nn 1
,,2,1... ,...,,

2121 =
×=∈= where nlNk ii ,...,2,1,...,2,1 == (C.2)

Define:

()
nn kkkkkk XLz 2121

= (C.3)

That is,
nkkkz ...21
is the function value of)(XL at

nkkkX ...21
and the set of all such

values is denoted as :

{ }niNkyV ilkkk n
,...,2,1,,...,2,1...21

=== , (C.4)

which is the output variable space of function)(XL . As)(XL is one-to-one

mapping, then all elements of V are different to each other. Therefore, for

every Vz∈ , there exists only one element X in U such that)(XLz = . Further,

as U is a discrete space with finite elements, then V is a discrete space with finite

elements.

Now define function)(zg on V as follows: For every Uz∈ , let X be the unique

element in U such that)(XLz = . Then define the value of g at zas follows:

)()(XGzg = (C.5)

For the function g defined in the above, it can be proved by the reverse process

that for all UX ∈ .

[])()(XLgXG = (C.6)

 As)(zg is a function on finite discrete space V which is bounded, based

on [Wat80] it can extended to be a continuous function)(ˆ Xg on],[ˆ zzV =

(where min , maxz V z Vz z z z∈ ∈= =) in the sense that:

 134

)()(ˆ XgXg = andz V∈ . (C.7)

As)(ˆ Xg is a continuous function on V̂ , then it is implied immediately from the

universal approximation property of standard NNs on continuous spaces that

there exists a NN)(1 zNN on Û such that

ε<−=− ∈∞ |)()(ˆ|max||ˆ|| 1ˆ1 zNNzgNNg
Vz

 (C.8)

Now define a SNN as)]([)(1 XLNNXSNN = , then (C.6), (C.7) and (C.8) imply

that, for any UX ∈ ,

ε<−≤
−≤

−=−

∈

∈

|)()(ˆ|max

)()(max

|)]([)]([||)()(|

1ˆ

1

1

zNNzg

zNNzg

XLNNXLgXSNNXG

Vz

Vz

which leads to ε<−=− ∈ |)()(|max|||| XNNXGNNG UX and hence complete the

proof.

 135

Appendix-D: Proof of Convergence Algorithm-III

By following the same approach as in [ZP01] we can prove the standard boosting

property for our simplified regression boosting algorithm in the case where all

combination coefficients 1tc = . Let
1

/
ni i j

t t tj
p w w

=
= ∑ and tξ denote the error that

hypothesis t makes on its distribution, ()()2*

1

n
i i

t t t i
i

p h yξ τ
=

 = − −  ∑ x .

Theorem: Assume that for all t T≤ hypothesis t makes error tξ on its

distribution. If the combined output y
∼

is considered to be in error iff

2

yy τ
 

− > 
 

∼

 then the output of the boosting algorithm (after T stages) will have

error at most ξ where,
2

1

Ti
t

t
P y yξ τ ξ

=
∏

  = − > ≤  
   

∼

.

Proof: The proof presented below is based on the approach first appeared in [78]

and then followed by [ZP01]. It is shown that the sum of weights at stage T is

bounded above by the product of the tξ ’s , while at the same time, for each input i

that is incorrect, its corresponding weight i
Tw at stage T is significant.

()()2*
1

1 1

Tn
i i i i
T T t i t T t

i i i t

w w h y wτ ξ ξ+
= =

 = − − = =  ∑ ∑ ∑ ∏x

The second equality holds because, ()()2* /i i i
t t t i t

i i

w h y wξ τ  = − −    
∑ ∑x .

Now

let ()*. /i i
T ty h T

−
∑= x , then the weight of example i at time t is:

()() ()
2

2* * . .i i i i i
t t i t i

t t

w h y h y y yτ τ
− −        = − − = − + − −                  

∑ ∑x x

()()
2 2

* . .i i i i iT h y y T y yτ τ
− −      = + − − ≥ − −      

         
Var x

 136

The last in equality holds because ()() ()
2

* *1 .i i i
tt

h T h y
− = = − 

 
∑Var x x . Now

consider an example input i that produce an error, then we have

2

. 1i i i
ty y wτ

− − > ⇒ ≥ 
 

, if ξ is the total error rate of the combination output,

then i
ti

w ξ≥∑ . Thus we have, 1
1

T
i
T t

i t

wξ ξ+
=

≤ =∑ ∏ .

One important fact to be noticed that there are no assumption about error rate tξ of

individual hypothesis. Also if all 1 ,tξ < = ∆ where 1,∆ < then Tξ < ∆ .

 137

Appendix-E: Matlab Implementation for Simplified NN

Algorithms

1. Importing data into Matlab:

The first step in experiments is to import the data sets in Matlab Work Area;

Matlab does support many formats; we have got the data in Excel format with all

the independent and dependent variables in one file with the last column having

target values.

1.1 Initialisation:

Note: Matlab provides inbuilt functions to find the best linear approximation i.e.

the task of finding a line or tangent plane that best fits the given data (Simple or

Multiple Regression). Matlab represents a multivariate or least squares fit model

of the data as:

y = a0 + a1 x1 + a2 x2+…….….+ an xn

We have to solves for unknown coefficients a0, a1, a2, and an , by performing a

least squares fit. For this we have to construct and solve the set of simultaneous

equations by forming the regression matrix, X, and solving for the coefficients

using the backslash operator.

Step 1: Input Independent and dependent variables

a) Set xi = [observations for all the independent variables xi , i = 1….n]’

// a transpose operator is used to later set the problem in matrix

form //

 138

b) Set y = [target values for each input pattern]’

// a transpose operator is used to later set the problem in matrix

form //

Step 2: Solve for the least square fit model of the data (i.e. to Find the best

Linear approximation z = L*(X) = a’X + b using Least squares algorithm)

c) Construct the regression matrix ‘X’ by using Matlab command

X = [ones(size(x1)) x1 x2…….xn];

// This will generate the matrix ‘X’ with all the independent

variables appearing as columns with an extra column of ones in the

beginning so that we can have the constant value ‘ao’ in the

equation above.//

d) Using backslash i.e. ‘A = X\y’ to solve for unknown coefficients;

// X = A\B Denotes the solution to the matrix equation AX = B //

Step 3: Training data transformation: Transform the training data

},...,2,1)];(),({[MttXty = to },...,2,1)];(),({[Mttzty = by using

bXaXLz +== ')(* ;

e.1) In the case of algorithm 1 Set P = [X] * [A]

// multiplying the Input variables matrix ‘X’ with the regression

equation calculated in step 2(d) //

 139

e.2) In the case of algorithm 2 Set net.iw {1,1} = A (i.e. a1, a2, a3…)&

net.b{1} = a0

// this will set the weights & bias for the additional layer before the

one dimensional NN to be the same as the coefficients of the

regression equation computed in step 2.d.//

Step 4: Forming the initial simplified NN as [] o

N

i
i czczNy ++== ∑

=1

))(βασ

f) Set P = P’

// Setting the resultant ‘P’ from step 3(e) as new independent

variable //

 g) Set T = [target values for each input Pi]

h) Now creating the feedforward network with one hidden layer of

sigmoid activation units and linear activation neuron at the output (i.e

to be consistent with the conventional FF NNs used for function

approximation). [] o

N

i
i cbXaczNNy +++== ∑

=1

))'()(βασ .

The matlab command below will be used to create the architecture as

above

net=newff(minmax(P),[Hid_N, Out_N],{'tansig','purelin'},'traingd');

// Hid_N = number of neurons in hidden layer & Out_N =

number of neurons in output layer; always one in our case. The

function minmax is used to determine the range of the inputs to

be used in creating the network.//

1.2 Iterations:

Step 5: The network will be trained using traditional back-propagation

(gradient descent) algorithm to identify and update the weight and bias

values for our network as depicted in Matlab command in step 4(h),

 140

a) Use the Matlab command as below to train the network,

[net,tr]=train(net,P,T)

Note: To allow for more flexibility with experimentation we may wish to

change some of the default parameters associated with network training

prior to training i.e. training progress record (net.trainParam.show),

choice of number of training iterations (net.trainParam.lr), learning rate

(net.trainParam.epochs) & training goal i.e. desired accuracy

(net.trainParam.goal).

Step 6: The network can now be simulated to check its response for the input

patterns.

a) By using following command

a = sim(net,p)

1.3 Forecasting:

Step 7: Once the network has been fully trained and performance goal for the

training session has been achieved, we can predict the outputs for any

new input pattern as below.

a) Set fi = [input pattern to be forecasted, fi , i = 1….n]’

b) F = [ones(size(f1)) f1 f2…….fn];

c) Set P = [F] * [A]

// multiplying the Input variables matrix ‘f’ with the regression

equation calculated in step 2(d) //

d) Repeat step 6 (a) to obtain your forecast.

