SIMPLIFIED NEURAL NETWORKS
ALGORITHMS FOR FUNCTION
APPROXIMATION AND REGRESSION
BOOSTING ON DISCRETE INPUT SPACES

A THESIS SUBMITTED TO THEUNIVERSITY OF MANCHESTER FOR
THE DEGREE OFDOCTOR OFPHILOSOPHY IN THEFACULTY OF

ENGINEERING AND PHYSICAL SCIENCES

2010

By
Syed Shabbir Haider

School of Computer Science

Table of Contents

Abstract 9
Declaration 11
Copyright 12
Acknowledgements 13
1 Introduction 14
1.1 Neural Networks-A Brief Overview 14
1.2 Basic Terminology and Architectural Considienag 15
1.3 Real World Applications Of Neural Networks 22
1.4 The Problem Statement 23
1.5 Motivations Behind Initiation Of This Research 23
1.6 Research Objectives To Be Met 25
1.7 Main Contributions 26
1.8 Structure Of Thesis 27
1.9 Summary 28
2 Learning in Feedforward Neural Networks (FNN) 29
2.1 The Learning Process 29
2.1.1 Supervised Learning 30
2.1.2 Un-Supervised Learning 30
2.2.1 Graded (Reinforcement) Learning 31
2.2 Supervised Learning Laws for MLPs 32

2.3
2.4

2.5
2.6

2.2.1 The Perceptron Training Rule

2.2.2 The Widrow-Hoff Learning (Delta) Rule
Backpropagation Algorithm for MLPs

Special Issues in BP Learning and MLPs
2.4.1 Convergence, Stability and Plasticity
2.4.2 Selection of Hidden Layer Units (Activatibanction)
2.4.3 When To Stop Training?

2.4.4 Local Minima

2.4.5 Number of Hidden Layers

2.4.6 Number of Hidden Units

2.4.7 Learning Rate and Momentum

2.4.8 The Training Style

2.49 Test, Training and Validation sets
Variants of BP Learning

Summary

Approximation Capabilities of FNNs and Related Wok

3.1
3.2
3.3

3.4

Function Approximation-The Problem

FNN'’s as Universal Function Approximators

Approximation And Representation Capabilioé&NNs

3.3.1 Ridge Activation Functions

3.3.2 Radial-Basis Activation Functions

3.3.3 Recent Advancements On Function Approxiomaliy
FNNs

Neural Network Ensemble Methods

3.4.1 Bagging

3.4.2 Boosting

3.4.3 Boosting for regression problems

32
34
37

39
39
40
40
41
41
42
43
43

44

45
47

48

48
49
53
54
56

58
60
61
62
63

3.4.4 Gradient-based boosting 64

3.5 Common Issues In FNNs and Problem Description 66

3.6 Special Features Of Function Defined On Discheput Spaces 67
3.6.1 Flexible-Hierarchical Structure Property 67

3.7 Summary 71

Simplified Neural Network (SNN) Approach And

Algorithms 72
4.1 The Simplified Neural Network (SNN) Approach 72
4.1.1 Simplified Neural Networks (SNN) 73
4.1.2 Simplified NN Algorithm-I 76
4.1.3 Simplified NN Algorithm-II 77
4.2 Backpropagation Algorithm For Simplified NNs 81
4.2.1 Performance Index 82
4.2.2 Updating Model Parameters 83
4.2.3 Gradient Calculation 83
4.2.4 Computing Error Signals 84
4.2.5 Back-Propagating The Error Signal 85
4.3 SNN Extension To Regression Boosting 87
4.3.1 Simplified Regression Boosting (SRB) 87
4.3.2 Simplified Regression Boosting Algorithnh-II 89
4.4 Summary 90
Implementation And Evaluation Of SNN Algorithms 92
5.1 Data Collection 92
5.2 Data Pre-processing And Partitioning 94

5.3 Simulation Results For Simplified NN Algorithin&Il 95

5.4 Simulation Results For Simplified Regressiao&ing

Algorithm-1lI 107
55 Summary 110
6 Conclusion 111
6.1 Summary Of Thesis 111
6.1.2 Some Limitations 112
6.2 Future Work 113
6.3 Published Work 411
6.4 Summary 114
Bibliography 115
Appendices 124
Appendix-A Backpropagation Algorithms for standafeural
Network Models 124
Appendix-B Description of Data Sets 131
Appendix-C Proof of Theorem 2 133
Appendix-D Proof of Convergence Algorithm-Ili 135
Appendix-E Matlab Implementation for Simplified NNgorithms 137

Total Pages: 140
Total Word Count: 27710

List Of Figures

Figure 1.1
Figure 1.2
Figure 1.3
Figure 1.4
Figure 1.5
Figure 2.1
Figure 2.2
Figure 3.1
Figure 4.1
Figure 4.2
Figure 5.1
Figure 5.2
Figure 5.3
Figure 5.4
Figure 5.5

Figure 5.6

Figure 5.7

Biological Neuron Vs Artificial Neuron

Block Diagram Of An Artificial Neuron

Neural Network Topologies

Feedforward Neural Network Architecture

Recurrent Neural Networks Architecture

Neural Network Learning Process, PgradiAnd Algorithms

The Widrow-Hoff Learning Algorithm

An Example Of A System With Two Le@dlHierarchical
Structure

Architectural Representation Of SinmgdfNN
Algorithm-I

Architectural Representation Of SimptifiNN
Algorithm-II

Performance of Standard NNs Vs SingalifNNs over test set
(Dummy 1)

Performance of Standard NNs Vs SingalifNNs over test set
(Dummy 2)

Performance of Standard NNs Vs SimplifiNs over test set
(Dummy 3)

Performance of Standard NNs Vs SingalifNNs over test set
(Pyrimidines)

Performance of Standard NNs Vs SingalifNNs over test set
(Triazines)

Comparison Graph, Standard NN Vs SiiedliNN over test
sets for SNN-II (Dummy 4)

Comparison Graph, Standard NN Vs SiiedliNN over test
sets for SNN-II (Dummy 5)

15

16

19

19

21

30

73

68

76

1

97

97

98

98

99

101

101

Figure 5.8

Figure 5.9

Figure 5.10

Figure 5.11

Figure 5.12

Figure 5.13

Figure 5.14

Figure 5.15

Comparison Graph, Standard NN Vs SiiegdliNN over test
sets for SNN-II (Dummy 6)

Comparison Graph, Standard NN Vs SiiedliNN Over Test
sets for SNN-II (Pyrimidines)

Comparison Graph, Standard NN Vs Sfie@INN Over Test
Sets For SNN-II (Triazines)

Pyrimidines Data Set - Performance Gorspn Over Testing
Data For 25 Iterations

Triazines Data Set - Performance CosgraOver Testing
Data For 25 Iterations

Performance Comparison Of SimplifRejression Boosting
Vs Standard Regression Boosting Over Test Sets
(Pyrimidines dataset)

Performance Comparison Of SimplifRejression Boosting
Vs Standard Regression Boosting Over Test Sets
(Triazines Dataset)

Performance Comparison Of SimpulifRegression Boosting

Vs Standard Regression Bogver Test Sets (F1 Dataset)

102

102

103

105

106

108

108

109

List Of Tables

Table 1.1

Table 2.1

Table 2.2

Table 5.1

Table 5.2

Table 5.3

Table 5.4

Table 5.5

Activation Functions And Their Transfdrafacteristics
Supervised And Unsupervised Learningd.aw
Perceptron Vs Delta rule

Performance Comparison of Standard Nélet&vorks
Vs Simplified Neural Networks

Performance Comparison of Standard MNélat@vorks
Vs Simplified Neural Networks for (SNN-II)
Pyrimidines Data set - Performance Corspar
Over Testing Data For 25 Iterations

Triazines Data Set - Performance Comparis
Over Testing Data For 25 Iterations

Performance Comparison Of SimplifiegiResion Boosting

Vs Standard Regression Boosting Over Test Sets

18

31

34

97

100

105

106

109

Abstract

Function approximation capabilities of feedforwad@éural Networks have
been widely investigated over the past couple cades. There has been quite a lot
of work carried out in order to proveniversal Approximation Propertybf these
Networks. Most of the work in application of Neurdletworks for function
approximation has concentrated on problems where itiput variables are
continuous. However, there are many real world g@tamaround us in which input
variables constitute only discrete values, or aiiigant number of these input
variables are discrete. Most of the learning atbams proposed so far do not
distinguish between different features of contimi@nd discrete input spaces and
treat them in more or less the same way. Due ®r#ason, corresponding learning
algorithms becomes unnecessarily complex and tioreswaming, especially when

dealing with inputs mainly consisting of discretgiables.

More recently, it has been shown that by focusingspecial features of
discrete input spaces, more simplified and robigdgrahms can be developed. The
main objective of this work is to address the fiorctapproximation capabilities of
Artificial Neural Networks. There is particular ehgsis on development,
implementation, testing and analysis of new legrrafgorithms for the Simplified
Neural Network approximation scheme for functioefirted on discrete input spaces.
By developing the corresponding learning algorithraed testing with different
benchmarking data sets, it is shown that compacorgyentional multilayer neural
networks for approximating functions on discreteoun spaces, the proposed
simplified neural network architecture and alganthcan achieve similar or better
approximation accuracy. This is particularly theseeawhen dealing withhigh
dimensional-low sample casesbut with a much simpler architecture and less

parameters.

1. High Dimensional-Low Sample Cases refers to realldvapplications where the number of explanatoryirdependent
variables is relatively higher in comparison to tneailable training examples.

In order to investigate wider implications of sinfield Neural Networks, their
application has been extended to the Regressionstidgo frame work. By
developing, implementing and testing with empiridaita it has been shown that
these simplified Neural Network based algorithnsogderforms well in other Neural

Network based ensembles.

10

Declaration

No portion of the work referred to in this theles been submitted in support
of an application for another degree or qualifeatof this or any other university or

other institute of learning.

11

Copyright

The author of this thesis (including any appersliaad/or schedules to this
thesis) owns any copyright in it (the “Copyrighihd s/he has given The
University of Manchester the right to use such wmght for any

administrative, promotional, educational and/acteng purposes.

Copies of this thesis, either in full or in extscmay be madenly in
accordance with the regulations of the John Rwaddiversity Library of
Manchester. Details of these regulations may laimdd from the Librarian.

This page must form part of any such copies made.

The ownership of any patents, designs, trade mankkany and all other
intellectual property rights except for the Cogti (the “Intellectual Property
Rights”) and any reproductions of copyright works, example graphs and
tables (“Reproductions”), which may be describedhis thesis, may not be
owned by the author and may be owned by thirdiggarSuch intellectual
Property Rights and Reproductions cannot and matdbe made available for
use without the prior written permission of the nan(s) of the relevant

Intellectual Property Rights and/or Reproductions.

Further information on the conditions under whiifclosure, publication and
exploitation of this thesis, the Copyright and dntgllectual Property Rights
and/or Reproductions described in it may take ela& available in the
University IP Policy (see

http://www.campus.manchester.ac.uk/medialibraryépes/intellectualproper

-ty.pdf), in any relevant Thesis restriction declaratiateposited in the
University Library, The University Library regulahs (see

http://www.manchester.ac.uk/library/aboutus/reqatesd and in The

University’s policy on presentation of Thesis.

12

Acknowledgements

First of all | would like to express my sinceratfude and deep appreciation to
my advisor, Dr. Xiao-Jun Zeng for his guidance, ®magement, and support
throughout this research. | also want to thankatteer committee members specially,
Dr. Ludmil Mikhailov for their time in reviewing #hinitial research proposal and their

invaluable suggestions.

| would also like to give my special gratitudertty employer (Mental Health
Research Network) especially my Managers, Carly pgocand Jane Ramsay for
making this possible. Their continued help and suppas played a very significant

part in successful completion of this work.

My gratitude also goes to my parents speciallymgther and my brother for
their devotion, support and encouragement. Abolvé \abuld like to thank my wife

for her endless patience and support throughositrésiearch.

13

CHAPTER 1

INTRODUCTION

Designing machines that can behave like humangéas amongst one of the
most extensively explored areas of research irfi¢ta of machine learning for many
decades. Neural Networks are one of the major toikes in achieving that goal.
Artificial Neural Networks are considered one d¢ thottest topics both at present and
in the future of computing. They are indeed se#friéng mechanisms which don't
require the traditional skills of a programmer. éngive research in this field is
underway at the moment, and it is claimed thatehe=uron-inspired processors can

do almost anything, which is attracting more resle@nd development in this field.
1.1 Neural Networks-A Brief Overview

There is no universally agreed upon definitioradfleural Network but there
are certainly enough definitions to understand véh&teural Network is. According
to [Hay96], “A Neural Network is a massively paehltistributed processor that has
a natural propensity for storing experiential knesde and making it available for
use. It resembles the brain in two respects; kndgdeis acquired by the network
through a learning process and interneuron cororedirengths known as synaptic
weights are used to store the knowledge.”

Some other popular definitions of Neural Netwocks be found in [Kas96]
and [Rip96]. At this point we can define a Neuratiork (NN) or more precisely an
Artificial Neural Network (ANN) as “a computationabr mathematical model
composed of a large number of simple, highly irdarected processing elements
capable of learning, information processing andblemm solving based upon the
connectionist approach to computation” [Med98], may also refer to [RS03] and

14

[Wal90] for a detailed history of connectionism.eThnalogy between a biological

neuron and an artificial neuron is depicted infthaere 1.1.

inputs
}%\ xl X2 X3 ... % o
/ ; Sviapse
Dendrites Axaon from
. another neuron
Cell body
A= ey inner
Membrang oy
. N
U_ E=X Wikg
i=1
output.
y=1E}
Axon
Tao ather neurons Y

Figure 1.1 Biological Neuron Vs Artificial Neuron

Image Source: Negishi, M. 1998. Everything thaguists have Always Wanted to Know about ConnastiorDepartment of
Cognitive and Neural Systems, Boston UniversigL: http://hemming.se/gslt/LingRes/NeuralNetwdrks.

1.2 Basic Terminology and Architectural Consideratbns

As defined earlier, an artificial Neural Network & mathematical model
composed of a large number of simple, highly irdarected, processing elements
for studying learning and intelligence. According [KS96], artificial Neural

Networks are parallel computation models that hsexeeral distinguishing features:

1. A set of processing units.
2. An activation state for each unit, which is equardlto the output of the unit.

15

3. Connections between the units. Generally each ationeis defined by a

weight W, that determines the effect that the signal of uriiis on unitj .

4. A propagation rule, which determines the effectiwput of the unit from its

external inputs.
5. An activation function, which determines the neweleof activation based on
the effective input and the current activation.
An external input (bias, offset) for each unit.
A method for information gathering (learning rule).
An environment within which the system can operateyide input signals and,

if necessary, error signals.

As shown in figure 1.2, a processing unit receigeset of inputs X,
i =(1,2,3...n); these inputs are then multiplied with correspogdonnection
weightsW, , i,j =(1,2,3...n). The net input to a neuron is computed by sumraihg

the individual products of network inputs, corresgimg weight connections & bias

i.e.
Z W, X + b (1.1)
i=1
X — W —_|
n

X g f(n) >y
x —{w | b

4

X
Inputs Weights Summation Activation O»utput

Figure 1.2 Block Diagram of An Artificial Neuron

16

Each non-input unit in a Neural Network combinatues that are fed into it via
synaptic connections from other units, producingirale value called net input. The
function that combines values is called tdoenbination functionwhich is defined by a
certain propagation rule. In most Neural Networls agsume that each unit provides
an additive contribution to the input of the unittwwhich it is connected. The total
input to unit j is simply the weighted sum of theparate outputs from the connected

units plus a threshold or bias term mentioned inyrtaxts a$j:

DI R (1.2)
=

The contribution for positivd\, is considered as an excitation and an inhibition
for negativeW, . The units having the propagation rule as showequation (1.2) are

called Sigma Units. In some cases more compless fislecombining inputs are used.

One of the propagation rules known as sigma-pihagollowing format [KS96]:

Y = 2::1 Wij L_:ll X« + 0, (1.3)

Lots of combination functions usually use a "biag" "threshold" term in
computing the net input to the unit. For a lineatpait unit, a bias term is equivalent to

an intercept in a regression model. It is needechuich the same way as the constant
polynomial ‘1’ is required for approximation by pobmials. The functionf (n)
shown in the figure 1.2 is the unit's activatiomdtion. In the simplest casd, is the

identity function, and the unit's output is jus ret input. This is called a linear unit.
There are many other popular choices for activafimetions summarised in the table
1.1:

17

Activation Function Transfer Characteristics Network Type
o SX)=0ifx <(_
Hard Limiting) Backpropagation
=1ifx>0
. i S(x) =-1if x<0 :
Symmetrical Hard Limiting _ Backpropagation
=1ifx>0
Lineau S(X) = » ADALINE
S(X)=0ifx<C
Saturating Linear S(X)=xif0<x<1 ADALINE
=1lifx>1
S(x)=-1ifx<C
Symmetrical saturating linear SX)=xif-1<x<1 ADALINE
=1lifx>1
Log Sigmoic S(x) = 1/1+ex™ Backpropagatic
. . : l1-e* :
Bipolar Sigmoid S(X) = —— Backpropagation
1+e™*
) S(x) = tanh(x) :)
Hyperbolic Tangent Backpropagation
g-e"le+e”
))) S(x) = 0 if x<()
Sigmoid +ve Linear _ Backpropagation
=xifx>0
. . X—a
Radial Basis S(xab)= k(—b j RBF
S(x)=1; for neuron witl
Competitive maximum ‘X’ LVQ
= Q; for all others

Table 1.1 Activation Functions And Their Transfdragacteristics

The architecture or topology of a network is defirby the number of layers, the
number of units per layer, and the interconnecpatterns between layers. They are
generally divided into two categories based on patern of connections i.e.

Feedforward Neural Networks and Recurrent Neuravieks as shown in figure 1.3.

18

Neural Networks

Feedforward /
Networks

Recurrent
Networks
Single/ Radial basis Competitive Kohonen's Hopfield ART
Multilayer Networks Networks SOM Network Models
Perceptrons

Figure 1.3 Neural Network Topologies

1) Feed-forward networkallows the data to flow from input units to outjpunits

in strictly one direction, this is the property thggves this architecture the name ‘feed-

forward’. The data processing can extend over plelfayers of units, but no feedback

connections are present. That is, connections @xigrirom outputs of units to inputs

of units in the same layer or previous layers arepermitted as shown in the figure

1.4. Every unit only acts as an input to the imratginext layer. Obviously, this class

of networks is easier to analyze theoretically tloéimer general topologies because

their outputs can be represented with explicit fioms of the inputs and the weights.

Xn

bias

Input Laye

Hidden Laye

Output Laye

Figure 1.4 Feedforward Neural Netwostchitecture

19

Single Layer Perceptron, Multilayer Layer Percept(MLP’s) and Radial Basis
Networks are examples of feedforward network aechitre. Feedforward networks
trained with backpropagation algorithm are the nfacus of this thesis. Details will
be described in next chapter. The feed-forward aedsvprovide a general framework
for representing non-linear functional mapping kestw a set of input variables and a
set of output variables. The representation cajabil a network can be defined as the
range of mappings it can implement when the weightsvaried. The approximation
and representation capabilities of feedforward nete are widely publicized and one
may refer to [Sar97][RJ99][Bis95][Hor91] for a diétd review of the issue; at the
moment it is sufficient to recognize the followirfgcts about the representation

capabilities of feedforward architecture:

* Single Layer Networks are capable of representimy dinearly separable
functions or linearly separable decision domains.

 One hidden layered network can approximate arbitravell any functional
continuous mapping from one finite-dimensional gp#&x another, provided that the
number of hidden units is sufficiently large. To baore precise, feed-forward
networks with a single hidden layer and trained lbgst-squares are statistically
consistent estimators of arbitrary square-integegression functions if assumptions
about samples, target noises, number of hidders,uaitd other factors are all met.
Feed-forward networks with a single hidden layeingisthreshold or sigmoid
activation functions are universally consistenineators of binary classifications under
similar assumptions.

« Two hidden layered networks can represent an arkitdecision boundary to
arbitrary accuracy with threshold activation funog8, and could approximate any

smooth mapping to any accuracy with sigmoid adtivetunctions.

2) Recurrent Networksllow feedback connections. This type of netwoak lat least
one feedback loop which can connect a unit tolt see figure 1.5. In comparison to

feed-forward networks, the dynamic properties @f tietwork are important. In some

20

cases, the activation values of the units undergelaxation process such that the
network will evolve to a stable state in which aation does not change further. In
other applications in which the dynamic behavioonstitutes the output of the
network, the changes of the activation values @& dutput units are significant.
Common examples of Recurrent Neural Networks areng&titive Networks,
Kohonen’s Self Organizing Maps, Hopfield NetworldahRT Models [KS96].

X1

X2

X3

Xn

Input Laye Hidden Laye Output Laye

Figure 1.5 Recurrent Neural Networks Architecture

The issue of selecting architecture optimal fapacific problem is of prime
importance. The representation capabilities oféehestworks allow us to choose the
best architecture for a specific problem. In additto a networks representation
capabilities, a comprehensive problem specificatitso help define the network in

many ways [HDB96]:

. Number of network inputs = number of problem inputs
. Number of neurons in output layer = number of peabbutputs.
. Output layer transfer function choice at least lgagdetermined by problem

specification of the outputs.

21

The last, but perhaps the most important consiideras the learning process
in Neural Networks. This is the most important teatof Neural Networks which
allows them to learn from past experiences. Thenleg process is also very
important with reference to this work and we whletefore discuss learning laws and

corresponding algorithms in more detail in chagter
1.3 Real World Applications Of Neural Networks

This evolutionary technology (ANNSs) has been sasfidly applied to many
real world applications, and performs very well tasks involving Classification,
Clustering, Pattern Recognition, Function Approxima and Time Series Prediction
problems.

These capabilities of (NN) make them a very popuhoice for many
application areas such as Aerospace, ElectronicankiBg, Forecasting,
Manufacturing, Medicine, Entertainment, Defence aBdbinformatics. This
technology has been successfully used in mediegndisis (e.g. diagnosis of heart
infection & epilepsy), system identification andntéwl (e.g. vehicle control, process
control), pattern recognition (e.g. face identifion, radar systems, object
recognition, etc.), sequence recognition (e.g. d@pebandwritten text recognition,
gesture,) game-playing and decision making (e.ginga backgammon, chess),
financial applications, data mining, visualizatiand e-mail spam filtering. The list
of Neural Network applications in real world is yéong and the readers are referred
to [HDB96][SS96][AB99] for more detailed review tifese applications.

Most of the work in application of Neural Networkfr function
approximation has concentrated on problems where itiput variables are
continuous. However, there are many real world g@tamaround us in which input
variables constitute only discrete values, or anificant number of these input
variables are discrete. For the purpose of thisareh we will focus on real-world

22

function approximation problems, where the indegemdor input variables are

mainly discrete. We will discuss special featuresuzh applications in Chapter 3.

1.4 The Problem Statement

Approximation and representation capabilities ofifisial Neural Networks
(ANN) are widely publicized, and to date it has meproved by many that
Feedforward Neural Networks (FNN'’s) are capablamgroximating any continuous
function to reasonable accuracy; this propertynievkn as ‘Universal Approximation
Property’. More recently, it has been shown thatfdgusing on the distinguished
features of discrete input spaces, it is possibleave more simplified and possibly
more accurate Neural Network architecture thataggroximate functions defined on
discrete input spaces with sufficient accuracy, awithout any compromise on
generalisation and approximation capabilities ofstmxgy NN schemes. Although
standard NN approximation methods can be usedgproaimation of functions on
discrete and mixed input spaces, when dealing suith problems these methods
become unnecessarily complex, and less effective tdunot taking into account
special features of discrete input spaces. The oigective of this work is to address
the function approximation capabilities of ArtifatiNeural Networks, with particular
emphasis on development, implementation, testind) amalysis of new learning
algorithms for the simplified Neural Network appmmation scheme for functions

defined on discrete input spaces.

1.5 Motivations Behind Initiation Of This Research

The motivations that contributed towards initiatmirthis research are:

» ‘Biological Analogy: The fact that Neural Networks resemble the human
brain in their architecture and have the abilityi¢garn from experience; just

like humans.

23

‘The Success of Feedforward Neural Network Archirec. At present, only
a few of Neural Network models, paradigms actuallye being used
commercially. One particular model, thieedforward back-propagation
network is by far and away the most popular.

‘Universal Approximation Property’:The ability of Feedforward Neural
Networks to approximate any reasonable functioratoitrary accuracy is
known as the universal approximation property.

‘Nature of Input Variable Spaces:Whilst proving the universal
approximation property, almost all the approximatiechemes have
considered the independent variables (network g)piot take on continuous
values only. There are very few methodical redaksng into account the true
nature of input variable spaces, if there are ahgy follow the same
methodology as for continuous variables. A detailedew of the research
and results obtained so far will be presented iap@dr 2, in connection with
the review of existing techniques and methods.

‘Discrete Nature of VariablesIn real world applications, many of the
variables are discrete in nature i.e. they taka eountable number of values,
as compared to continuous variables which can d¢akeny number of values
within a given interval. Categorical, nominal anddry variables are classical
examples of discrete data. Many real world modglpnoblems have a large
number of variables that just take on discrete esla.g. Location Market
Condition Performance Modelling (LMCP) as describefzKO8][ZGKLO05].
‘Separable Hierarchical Structure’The property of functions defined on
discrete input spaces to have a separable hiecaidtructure as discussed in
[ZKO8].

‘Limited Availability Of Training Data’:In order to achieve desired accuracy,
it is necessary for any NN model to have suffidieferge amount of data
available for training. In practice there are maages when the availability of
training data is limited as indicated in [ZKO8][Z&B5].

24

1.6

‘Possibility Of A More Simplified Neural Network chitecture’: Keeping in
mind the special properties of discrete variabkeg.(they take on a finite
number of states), it is possible to have a morpkiied feedforward Neural
Network architecture; that exploits this naturelisicrete variables.

‘More Practical and Acceptable Architectureh practice, it is very hard to
convince commercial organizations and other custente employ NN
technology to their specific problems because @f biack-box nature of
Neural Networks and complex computations associati¢dl them. A more
simplified architecture may be a better idea ifinfij that gap; besides the
most apparent advantage of saving valuable resostaeh as processing time

and memory while performing complex computations.

Research Objectives To Be Met

The main objectives of this research are to ingatt the function

approximation capabilities of Feedforward Neuratidek Models, keeping in mind

the limitations of standard Feedforward Neural Netwmodel and special features

of discrete input spaces. The main objectives isfrésearch will be:

To propose new simplified algorithms based on tiapkfied Neural
Network approximation scheme proposed in [ZGKLOSjr ffunction
approximation on discrete input spaces, to overctineeweakness of the
existing NN algorithms.

Development of the corresponding learning algorghfior these new
proposed schemes.

Implementation and analysis of the approximatiopatdities of these newly

proposed simplified Neural Network algorithms.

25

1.7

Testing the performance of these algorithms basednapirical data such as
in Quantitative Structural Activity Relationship Meling (QSARs), and
compare with the standard Neural Network model.

Investigate the wider implications of simplified INal Network approach to
regression boosting.

Propose new simplified regression boosting appraaing simplified Neural
Network model as base learner.

Development and implementation of the new simplifregression boosting
scheme along with corresponding algorithm.

Analysis and performance comparison of simplifiesjression boosting
algorithm, with standard regression boosting modemsploying Neural
Networks as base/ weak learners.

Main Contributions

The main contributions of this research are listeldw:

A systematic review of function approximation caifies of feedforward
Neural Network model and universal approximatiooperty.

Detailed analysis and evaluation of simplified N#UNetwork approach.
Simplified Neural Network based algorithms | andfidi approximation of
functions defined on discrete input spaces. By kbgweg these learning
algorithms, and comparing the performance of tlaégerithms with standard
Neural Network model over benchmarking examplebag been shown that
these algorithms work in practice and achieve sinmol better accuracy with
employing relatively less parameters required tiermodel.

Derivation of simplified backpropagation algorithfor simplified Neural
Network algorithm | and II.

Analysis of wider implications of simplified Neur&etwork approach in

regression boosting frame work.

26

» Simplified regression boosting algorithm-Ill basexh the simplified
regression boosting approach. By implementing aothparing with a
standard regression boosting model over benchnmsiamples; it has been
shown that this algorithm can be used for boostegyession estimates for

selected domain.

Although all three algorithms are domain speciiad targets the approximation
problems in high dimension-low sample cases foctions defined on discrete input
spaces, they are simple enough to be easily exdetwdéarget mixed variable and

high sample cases.

1.8 Structure Of Thesis

This thesis consists of six chapters, a briefiogitis as follows:

Chapter one gives a brief overview and introductd the chosen research
area, with particular emphasis on Neural Networtht®logy. Chapter one also
contains a brief problem description, motivatioesibd this work, and a summary of

research objectives.

Chapter two of this thesis focuses on the all g learning phase of
Neural Network models. We presented different foroidearning, along with a
discussion on learning in MLP models, with parttcubmphasis on feedforward
Neural Network architecture, and the correspondbarkpropagation learning

algorithm.

Chapter three introduces the function approxinmagioblem, with a detailed
review of related work in this field, along with e recent advancement. Neural

Network based ensemble methods have also beerssétwith a particular focus on

27

application of Neural Networks in regression bawgtirame work. Chapter three
also details the fundamentals of simplified Neuxatwork approach and special
features of discrete input spaces.

Chapter four of the thesis details the proposegkiied algorithms based on
simplified NN approach. A detailed analysis of apgmation capabilities of
simplified NN algorithms is also included in thisapter. This chapter also contains a
discussion on the wider implications of the simptif Neural Network approach, and
gives an overview of how simplified NN approach dam applied to regression
boosting. We have given a brief introduction toresgion boosting in this chapter,
and discussed how a simplified regression bootoigmme can be developed using
simplified NN approach. We also propose a new #lgaor for regression booting on

functions defined on discrete input spaces in¢hapter.

Chapter five of this thesis presents implementatod evaluation details.
The obtained results are summarised in form oketabhd graphs. A detailed analysis
of the performance of the simplified Neural Netwdr&sed algorithms 1, Il and

simplified regression boosting algorithm-IIl is @lgiven in chapter five.

Chapter six concludes this research with a detalenmary of the research
carried out, results obtained, and contributionsliterature. We also discussed

important observations and future research direstin chapter six.

1.9 Summary

This chapter gives an introduction to the chosea af research and gives a
brief overview of the Neural Network technology atslapplications. We have also
included a summary of technological consideratams motivations behind initiation
of this research. A summary of problem statemeah@lwith details of research
objectives to be achieved are also presented snctiapter. This chapter concludes
with a summary of all the six chapters of this thes

28

CHAPTER 2

LEARNING IN FEEDFORWARD NEURAL NETWORKS

Most of the Neural Networks used in practice de onmore of the tasks such as
pattern classification, function approximation, seireduction, optimization, data
clustering etc. While performing any of these taskArtificial Neural Network maps
a set of inputs to a set of outputs. This non-limeapping is generally considered in a
multidimensional surface. The objective of learniago mould the decision surface
according to a desired response, either with ohauit the training process RS03.
Readers of this thesis are referred to [AB99] facomprehensive understanding of

theoretical foundation of learning in Neural Netkar
2.1 The Learning Process

Learning or training process is perhaps the backebof Neural Network
technology. As described earlier, functionalityaoNeural Network is determined by
the combination of the topology (number of layengmber of units per layer, and the
interconnection paths between the layers) and #ghis of the connections within the
network. The topology is usually held fixed, ane teights are determined by a
certain training algorithm. The process of adjugtihe weights to make the network

learn the relationship between the inputs and tangecalled learning, or training.

Many learning algorithms have been invented tg Hgld an optimum set of
weights that result in a desired solution of thebbems. The figure 2.1 presents

taxonomy of learning process in a context ascrinefHay96]:

29

Learning process

Learning paradigms

1 1 1
Supervised LearniTg Reinforcement Unsupervised

Learning learning

Learning Algorithms (Rules|

1 1 1 1 1
Error-correctior Boltzman Thorndikes Lay Hebbian Competitive

learning Learning of effect Learning Learning

Figure 2.1 Neural Network Learning Process, ParadsgAnd Algorithms

211 Supervised Learning Laws

Neural Network Model that uses Supervised Learnarg trained by
presenting it with examples (also called trainirgadl of inputs, and desired outputs
(target values). These input-output pairs are pieyiby an external teacher, or by the
system containing the network. The difference betwéhe real outputs and the
desired outputs is used by the algorithm to adaptweights in the network. It is
often posed as a function approximation problenvergtraining data consisting of
pairs of input patterns ‘x’, and corresponding &r, the goal is to find a function

f(x) that matches the desired response for eaafhirigainput.
2.1.2 Unsupervised (Self Organizing) Learning

With unsupervised learning, there is no feedbadmfthe environment to
indicate if the outputs of the network are corr@tte network must discover features,
regulations, correlations, or categories in theuingata automatically. In fact, for
most varieties of unsupervised learning, the targe¢ the same as inputs. In other
words, unsupervised learning usually performs #mestask as an auto-associative

network, compressing the information from the irgput

30

2.1.3 Graded (Reinforcement) Learning

Graded or reinforcement learning is quite simitasupervised learning, except
that instead of being presented by correct examplesetwork response on each
individual trial, the network receives only a sexqce of multiple training trials, i.e. at
time intervals containing multiple input-output spiles; the network is given a
numeric score or grade that represents the valusoofe network performance
measurement function over this time interval. Tiyige of networks are particularly
used in control and process optimization problerhere there is no way to know
what the desired outputs should be [RS03].

Every learning algorithm follows a learning ruket dictates the whole learning
process, in other words the conditions that haveetonet by that learning algorithm.
Hebb’s rule and Delta rule (also called LMS i.ademean squared error rule) are two
of the most basic and famous of the learning ruldse table 2.1 summarizes the
different types of learning rules categorized undapervised and unsupervised

learning methods.

Unsupervised Learning Laws Supervised Learning Laws
Kohonen'’s self organizing maps Delta rule
Hebb’s rule/ signal Hebb law Generalized delta rule
Competitive learning laws Simulated Annealing

Differential Hebbian learning lawg Supervised Cotitpe Learning

Differential competitive learning laws

Table 2.1 Supervised and Unsupervised Learning Laws

31

2.2 The Supervised Learning Laws For MLPs

This section details various supervised learnilggpréghms, with particular
emphasis on multilayer feedforward networks trainedth backpropagation
algorithm, since this is the main focus of thiseaash. Before we move on to a
detailed analysis of these learning algorithms, gbkection of an objective or cost
function under which these algorithms operate,eig/vmportant. To train a network
and measure how well it performs, an objective fimmc(or cost function) must be
defined to provide an unambiguous numerical ratihgystem performance. Selection
of an objective function is very important becatise function represents the design
goals and decides what training algorithm can lxerta To develop an objective
function that measures exactly what we want is aoteasy task. A few basic

functions are very commonly used. One of themesstim of squares error function,

1 P N 5
E = mpz_l ;1 (tpi - Opi) (20)

where ‘P’ indexes the patterns in the training $étdenotes the total number of

patterns, ‘I’ indexes the output nodes, anddnd ‘O, " are, respectively, the target

and actual network output for the ‘ith’ output uoit the ‘pth’ pattern. In real world
applications, it may be necessary to complicatefuhetion with additional terms to

control the complexity of the model.
2.2.1 The Perceptron Learning Rule

The McCulloch-Pitts (1943) neuron model has selmrgations e.g. the lack of
learning capabilities mainly due to the presencéxeid set of weights and threshold.
To overcome these severe shortcomings, severallsnagee proposed that have the
ability to some how adjust the synaptic weight axtions [KS04]. Theerceptron
learningrule is perhaps the first of all supervised leagniules. It was introduced by

Frank Rosenblatt in late 1950’s. Although very basiits computing capabilities, it

32

nevertheless influenced extensive research takethig field of computing. In
perceptrons, training the weights are updated teyiag) the network parameters by an
amount proportional to the difference between #ngdt output and the actual output.
One way to learn an acceptable weight vector iseigin with random weights, then
iteratively apply the perceptron to each trainingraple, modifying the perceptron
weights whenever it misclassifies an example. Tgnscess is repeated, iterating
through the training examples as many times aseteedtil the perceptron classifies
all training examples correctly. Weights are maatifiat each step according to the
perceptron training rule Following is a description of basic steps in petcon

training rule.

Initialization: Set all the weights and node threshold to smalilean numbers. Note
that the node threshold is the negative of the efgppm the bias unit (whose

activation level is set to one).

Computing activation level of unit¥he activation level of an input unit is determined

by the instance presented to the network. Howeteractivation level of an output

unit is determined asO, = f, (&), where a = Zn: (Wjixi -6,),fh(a)is a hard
=1

limiting function given by: f, (a) =1, if a>0and, f, (a) =0if a<o0.

Weight AdjustmentAdjust weights by following the rule:

w; (new = v (olg +A w (2.2)

where as change i can be computed as,

Aw; :’7(11" -Q) X (2.2)

where 77 ' is a time dependent learning rate (D<1), tj represents the target output

where a®; represents the actual output of the unit.

33

Iterations Repeat the process until convergence is achieved.

Note thatoutput value ¢ is +1 or -1 (not a real); the perceptron ruleais

learning rule for a threshold unit and to achieeavergence the training examples

should be linearly separable and the learningstadelld be sufficiently small.

2.2.2 The Widrow-Hoff Learning (DELTA) Rule

The very first extension of perceptron traininfgerwas proposed in early 1960’s
by Widrow called the delta rule. His model ADALIN&as the ability to adjust the

network synaptic weights according\Widrow-Hoff learning rulamously known as
theLeast Mean Square (LMS) Algorithithe learning rule for ADALINE is formally

derived using the gradient descent algorithm. TRKSLrule adjusts the weights of the

network by incrementing them every iteration stgpab amount proportional to the

gradient of the cumulative error of the network.

The basic differences in both the rules are sunaein table 2.2.

Perceptron rule

Delta rule

Thresholded output

Unthresholded output

Converges after a finite number
iterations to a hypothesis that perfe
classifies the training data, provided

training examples are linearly separa

Converges only asymptoticallpward
the error minimum, possibly requiri
unbounded time, but converg
bleegardless of whether the training d

are linearly separable.

Linearly separable data

Linearly non-separable data

Table 2.2 Perceptron Vs Delta rule

34

The delta training rule is best understood by wis1g the task of training an

unthresholdegberceptron; that is, lanear unitfor which the outputd’ is given by:
0(X) = W.X (2.3)

In order to derive a weight learning rule for linemits, let us begin by specifying a
measure for the training error of a hypothesis giwevector), relative to the training

examples:
. _ 1 2
E(W) = EZ oo (tg = 04) (2.4)

Where the ternt, is the target an@®, refers to actual output of the linear units. The

vector derivative of equation (2.4) is called tigeadient of E with respect

to(w) written as:

OE(W) S | — — —— ...

0E O0E OE 0E (2.5)
ow, ow, dw, ow

The gradient specifies the direction that produites steepest increase i The

negative of this vector therefore gives the dimtf steepest decrease.

As we know that the training rule for gradient degalgorithm is:

W W+AW (2.6)
where
Aw = —ndE(w) (2.7)

The negative sign is presented because we wantote rthe weight vector in the
direction that decreasé&s This training rule can also be written in its gonent form

as shown in equation (2.8):

35

W, « w, +Aw, (2.8)
Where

oE
Aw = - —
w ﬂawi (2.9)

which makes it clear that steepest descent is aethiby altering each component

of w in proportion toa—E
W, prop PV

The vector of derivatives that form the gradient can be obtairmd

differentiatinge

STEi = %%z L (ty = 04)? (2.10)
STEi:% dDDa"Ti(td ~0,)? (211)
:TEi:%ZdDDZ(td -0,) OGTi(td - 0,) (2.12)
:TEi =3 (ty - 0y) aaTi(td - W.X,) (2.13)
:TE = oo (tg = 04) (= %) (2.14)

36

The weight update rule for standard gradient deéscambe summarized as:

Aw; = -7 9E where,
ow,

|
Aw; = Z 40D (tg —04) (=X%q4) (2.15)
The major steps of this gradient descent learnigorghm are outlined in figure 2.2:

Recall that the training pairs are of the fc{mmt> , Where X is the vector of

input values and ' is the corresponding target valuedl * is a small value e.g 0.5,

called the learning rate.

Step 1. Initialization: Initialize eachV; to small random values.
Step 2. Until termination condition is met, repeat

- Initialize eachAw;, to zero.
- For each<7(, t> in training set, repeat

Input each instanc&X to the unit and compute the output ‘O *.
For each linear unit weighwV; , Do
AW, AW +77(t o) X

- For each linear unit weighwv; , Do

Figure 2.2 The Widrow-Hoff Learning Algorithm
2.3 Backpropagation Algorithm For MLPs

The Backpropagation algorithm was first proposgdPaul Werbos in the
1970's. However, it was not until it was rediscedetin 1986 by Rumelhart and

McClelland that BackPropagation became widely used.

37

As described earlier, linear approximation netwgogte too restrictive and
nonlinear approximation networks offer much greaspacity. In order to enhance
the approximation capabilities, it is critical tapand a single layer structure to a
multilayer network. A typical multilayer Neural Nebrk may consist of many layers
of neurons that can be divided into three categori@mput, Output, and a Hidden
layer. We have already seen how the Input and @idyers work, so now we will
discuss the hidden layer. When it comes to usimggtadient descent method for
training a multilayer Neural Network, we run intonse problems. Recall that the
gradient descent technique basically measures itioura of error that our present
output differs from the actual output we want. rRrthe gradient descent technique
described in simple Neural Networks, it was easycédculate this change in
proportional error because our weights are onlynéown input cells. Since our
gradient descent really only calculate the chamgeseight proportion based on the
input weights, how do we go about adjusting thedérdlayer weights? One way of
thinking is to re-calculate each hidden-layer uniteight based on their own
individual inputs. While this would work, it woulde quite time-consuming. One

method that recursively does this, is the concéptiokpropagation.

The idea behind backpropagation is to computarntieidual error functions
for each output node in our Neural Network and teem them up. This summed up
error represents the overall error function for diaural Network. Now, since our
error function is a summation of a group of outpodes' errors, we can determine the
individual negative gradients for each output as fhnction is a continuous and
differentiable function over the weights that cdmited to that output nodes' error.
We apply this same process recursively for eacdmdayer of the Neural Network
and update all of the weights. This recursive Wdalon of each layer's error and
subsequent negative gradient calculation is knowrbackpropagation, as you are

propagating the calculation back through the netiayer by layer.

38

This algorithm is basically a generalization oé tgradient descent method
explained above. What we are in essence doingeatinng each output as a single
perceptron and updating the weights associated withWe then recursively
backpropagate this calculation through all the sy the network until the Neural
Network is trained. The combination of weights whininimizes the error function is

considered to be a solution of the learning problem

This algorithm will form the basis of our work ane will frequently refer to
different steps in this algorithm throughout tthegis. Therefore, we have included a

detailed derivation of the standard BP algorithnajgsendix-A.
2.4 Special Issues in BP Learning and MLPs

The section below briefly describes some of themonly addressed issues

relating to backpropagation learning and Multilalerceptrons (MLPS).
2.4.1 Convergence, Stability And Plasticity

Convergence We can say that the network has achieseavergencevhen
the examples of the tasks are continuously predeatad the corresponding weight
changes are carried out in such a way that thegasamade during one iteration does
not affect changes made in earlier alterations B30 other words, a situation when
the network response for two consecutive cyclabessame and therefore no further

iterations are required.

Stability - If weights are altered after each iteration, tloemvergence of
weights should constitute towards the stabilitytref network. But in most situations
it takes many more iterations than you desire teelwutput in two consecutive cycles
to have the same response. Then a tolerance Ievbkecconvergence criterion can be
used. With a tolerance level, an early and stallizetwork state can be achieved.

39

Plasticity —Suppose a network is trained to learn some new pbesmand in
this process the weights are adjusted accordirantalgorithm. After learning those
examples the network encounters a new examplendatveork then alters the model
parameters again to learn that new example. Btlieifnew weight structure is not
responsive to the latest example; then the netwlods not possess plasticity. Thus
the Plasticity is the ability to deal satisfactorily with new shederm memory (STM)
while retaining the long-term memory (LTM) [RSOBJowever, attempts to endow a

network with plasticity may have some adverse ¢ffea the stability of the network.

2.4.2 Selection of Hidden Layer Units (Activatiorfunction)

Since this method requires computation of the igradf the error function at
each iteration step, we must guarantee the cotyiand differentiability of the error
function. Obviously we have to use a kind of adiva function other than the step
function used in perceptrons, because the compdsitetion produced by
interconnected perceptrons is discontinuous, aektbre the error function too. One
of the more popular activation functions for badgagation networks is the

sigmoidal activation function.

2.4.3 When To Stop Training?

Another important issue with backpropagation lesgns when to stop the
training. We know that in typical applications theight update loop may be iterated
thousands of times. The choice of termination cwlis important because too few
iterations can fail to reduce error sufficiently) the other hand too much iterations
can lead to over fitting the training data. Mangea&rchers have suggested different
solutions for termination criteria problem e.g.gimg the training session after a
fixed number of iterations (epochs) have elapstahpng once the validation error

meets some criterion, or once the error falls bedome preset threshold value.

40

2.4.4 Local Minima

Since backpropagation uses a gradient-descenéguog, a Backpropagation
network follows the contour of an error surfacehwiteight updates moving it in the
direction of steepest descent. For simple two-layggworks (without a hidden layer),
the error surface is bowl shaped and using gradiestent to minimize error is not a
problem; the network will always find an errorlesslution (at the bottom of the
bowl). Such errorless solutions are called globalimm. However, when an extra
hidden layer is added to solve more difficult peobb, the possibility arises for
complex error surfaces which contain many minimac& some minima are deeper
than others, it is possible that gradient desceltnat find global minima. Instead,

the network may fall into local minima which repeas suboptimal solutions.

2.4.5 Number Of Hidden Layers

We already know that networks with two hidden tayean represent functions
with any kind of shapes. There is no theoreticalsom to use networks with more
than two hidden layers. It has also been provetlfthahe vast majority of practical
problems, there is no reason to use more than iddemn layer. Problems that require
two hidden layers are only rarely encountered acfice. Even for problems requiring
more than one hidden layer theoretically, mosthef ime, using one hidden layer
performs much better than using two hidden layerpractice [Mas93]. Training
often slows dramatically when more hidden layeeswsed. Of course, it is possible
that for a certain problem, using more hidden Isyarjust a few units is better than
using fewer hidden layers requiring too many uretgecially for networks that need
to learn a function with discontinuities. In gerleiiis strongly recommended that
one hidden layer be the first choice for any pcattfeed-forward network design. If
using a single hidden layer with a large numbernidfien units does not perform well,

then it may be worth trying a second hidden layih fewer processing units.

41

2.4.6 Number of Hidden Units

Another important issue in designing a networkasv many units to place in
each layer. Using too few units can fail to detdet signals fully in a complicated
data set, leading to under-fitting. Using too maniyts will increase the training time,
perhaps so much that it becomes impossible to tta@mequately in a reasonable
period of time. A large number of hidden units migause over-fitting, in which case
the network has so much information processing agpahat the limited amount of

information contained in the training set is nobegh to train the network.

The best number of hidden units depends on mangriasuch as the numbers
of input and output units, the number of trainirages, the amount of noise in the
targets, the complexity of the error function, tie@work architecture, and the training
algorithm [Sar97]. There are lots of “rules of thinfor selecting the number of units
in the hidden layers as mentioned in [Mas93] [ShA8@93] :

* Somewhere between the input layer size and oudyet kize.
* Two third of the input layer size plus the outpatdr size.
» Less than twice the input layer size.

» Squared input layer size multiplied by output lagee.

Those rules can only be taken as a rough referehea selecting a hidden
layer size. They do not reflect the facts well heseathey only consider the factor of
the input layer size and output layer size, bubignother important factors that we
have discussed earlier. In most situations, thereo easy way to determine the
optimal number of hidden units without trainingjngsdifferent numbers of hidden
units and estimating the generalization error aheaThe best approach to find the
optimal number of hidden units is trial and error.practice, we can use either the

forward selection (i.e. starting with a small numioé hidden units and increasing

42

gradually until convergence criteria is met) or bvaard selection (i.e. starting with a
large number of hidden units and decreasing graduatil convergence criteria is

met) to determine the hidden layer size.

2.4.7 Learning Rate and Momentum

The Backpropagation algorithm requires that theighte changes be
proportional to the derivative of the error. Thegkr the learning rate, the larger the
weight changes on each epoch, and the quickeretveork learns. However, the size
of the learning rate can also influence whethemiitsvork achieves a stable solution.
If the learning rate gets too large, then the wiegdtanges no longer approximate a
gradient descent procedure. (True gradient descemiires infinitesimal steps).
Oscillation of the weights is often the result. dthe then, we would like to use the
largest learning rate possible without triggerirsgithation. This would offer the most
rapid learning and the least amount of time speating at the computer for the
network to train. One method that has been propasedslight modification of the
backpropagation algorithm so that it includes a momm term. Applied to
backpropagation, the concept of momentum is thatipus changes in the weights
should influence the current direction of movemanweight space. With momentum,
once the weights start moving in a particular dicgcin weight space, they tend to
continue moving in that direction which can help tietwork to "roll past" any local

minima, as well as speed learning (especially along flat error surfaces).

2.4.8 The Training Style

Updating the weights in a backpropagation netwsatk be achieved by either

of two ways:

1. Online or Pattern By Pattern Learnin@) which the network parameters are

updated after the presentation of each patterrs fijjple of learning is recommended

43

for application requiring high accuracy and can poymise on other factors such as

time etc.

2. Batch or Epoch Based Traininghere the network parameters are updated once
or after all of the patterns in the training setdndeen presented. This method works

out to be much faster then the online training roesh

2.49 Test, Training And Validation Sets

In NN methodology, the sample is often subdividedlo "training”,
"validation”, and "test" sets. The distinctions amahese subsets are crucial; it is
often argued that any performance comparison amweogietworks should be done
on data that is not used for training or unseenmgt@s. Neural network models are
trained using the training data set examples, grpnance is then compared using
validation data set examples, this approach is knaw ‘hold-out’ method [Bis95].
However, this approach can lead to some overdjtimvalidation sets, therefore a
third data set usually called test set is usedotopare the performance of selected
networks.

In [Spr97] author defines these three types ohingi data as:

» Training set -A set of examples used for learning that is tahé parameters
[i.e., weights] of the classifier.

* Validation set -A set of examples used to tune the parameters [i.e
architecture, not weights] of a classifier, for eyde to choose the number of
hidden units in a Neural Network.

» Test set -A set of examples used only to assess the perfarenar

generalization of a fully-specified classifier.

44

The crucial point is that a test set, by the statiddefinition in the NN
literature, is never used to choose among two aemetworks, so that the error on
the test set provides an unbiased estimate of éherglization error (assuming that
the test set is representative of the populatitm).éAny data set that is used to choose
the best of two or more networks is, by definitianjalidation set, and the error of the

chosen network on the validation set is optimidiydaiased [Sar97].

To summarize the above discussion, we should rdreethat BP learns the
weights for a multilayer network, given a networkthwa fixed set of units and
interconnections. It employs gradient descentteEngit to minimize the squared error
between the network output values and the targktesafor these outputs. The
learning or network training is carried out in tvyphases. In forward stage, we
calculate outputs given training examples of thenf¢X, t], and in backward stage,

we update weights by calculating delta for all hidden and input layers separately.

Many researchers and mathematicians have derivedBP algorithm in
sufficient detail. The readers of this thesis aeéemred to [RSO03][HDB96] and
[Hay96] for an in-depth discussion and derivatidntls algorithm. A detailed
derivation of backpropagation algorithm for Muljiex Perceptrons is also presented

in ‘Appendix-A’ for better understanding and furthreference in this thesis.

2.5 Variants of the BP Learning

The gradient descent optimization method used he standard back-
propagation learning algorithm is widely used amdvpn very successful in many
applications, but it does have some disadvantageshe convergence tends to be
extremely slow and convergence to the global mimmms not guaranteed. Many
researchers [FM98][RJ99][Bis95][SHI6][KP99] haveggested improvements to the

standard gradient descent method, such as dyndymoadlifying learning parameters

45

or adjusting the steepness of the sigmoid functidn. appropriate circumstances,
other optimization methods may be better than tladignt descent. Many converge
much faster than gradient descent in certain sinsit while others promise a higher

probability of convergence to global minima [Wag02]

Conjugate gradient descent is one of the mostnoftecommended
optimization methods to replace the gradient desd¢as93][RJ99][Bis95], this is a
direction set minimization method. Minimization atp a direction'd’ brings the
function ‘E’ to a place where its gradient is pergieular to'd’. Instead of following
the gradient at every step, a set of ‘n’ directimneonstructed which are all conjugate
to each other, such that minimization along onéhe$e directions does not spoil the

minimization along one of the earlier direction.

Gradient methods using second-derivatives (Hessatnx), such as Newton's
method, can be very efficient under certain coodgi [Wag02]. Where first-order
methods use a local linear approximation of theresurface, second-order methods
use a quadratic approximation. Because such methselsall the first and second
order derivative information in exact form, localnwergence properties are excellent.
Unfortunately, they are often impractical becaugplieit calculations of the full
Hessian matrix can be very expensive in large prabl Some powerful, stochastic
optimization methods such as simulated annealingsp3][RJ99] and genetic
algorithms, which can overcome the local minimajehalso been used successfully

in a number of problems.

Methods discussed above are some of many imprausmbat have been
suggested over a period of 10-15 years. For a ldétabverview of these
enhancements we may refer to the resources medtiargection 2.5. In addition to
that, there are many learning algorithms availabl®latlab for experimentation and

evaluation purposes e.g. Gradient Descent Learmwtg Momentum, Gradient

46

Descent Learning with Variable Learning Rate, Cgaje Gradient Learning,

Levenberg-Marquardt Learning etc.

2.6 Summary

This chapter is a detailed overview of learningpgess in the Neural
Networks. We have introduced different Learningagiégms and rules with particular
emphasis on the Supervised Learning Laws for Muylét Perceptions. We have also
presented a detailed description of backpropagagilgorithm used for training
feedforward networks, and have discussed spe@atssrelating to backpropagation
learning process. Backpropagation algorithms resn#ie main focus of this work,
therefore we have included a detailed derivatiomalbthe steps in this algorithm as
Appendix-A, which will be referred throughout thteesis for comparison with

proposed simplified algorithms.

47

CHAPTER 3

APPROXIMATION CAPABILITIES OF FNNs AND
RELATED WORK

Neural Networks have become very popular in maay life applications. As
described earlier, the range of tasks and potemipglication areas for Neural
Networks are ever increasing. Along with other rtcaadvancements in the field of
Neural Networks, there has been much research g carried out in exploring
the function approximation capabilities of NN’'s.i#ne problem of estimating a
function from a set of samples [HG92]. Historicallye two main areas of research in
this field were classified as existence/constrgctiproofs for the ‘Universal
Approximation Problem’ and ‘Tight Bounds on the &imeeded by the
Approximation Problem’. However, over the past degcahis focus has shifted more
towards development of new and perhaps more ettidearning algorithms for

Neural Networks to approximate functions.

3.1 Function Approximation-The problem

Function approximation is known to be a very comrmomputational task in
many science, engineering and real world applioatids a computational problem,
Function approximation is very similar to non-linegression, or learning a model
depending on the disciplines and community involvBde problems may be dealt
with differently in different communities, but tlessence of the problem is the same.
The aim of function approximation is to learn a piag between an input and an

output space from a set of input-output data he.target function, call if , may be

48

unknown; instead of an explicit formula, only a e€points of the forn"(x, f(x)) is

provided. Let,
x OR",i=12,....Nandd OR,i=12,...N (3.2)
be the N input vectors with dimensioomand N real number output respectively.

We seek an unknown functioh(x) :R" ~ Rthat satisfies the interpolation where
f(x)=dandi=12,....N (3.2)

The goodness of fit ofd by the function f is given by an error function. A

commonly used error function is defined by,
1 2 1Y 2
E()=52(d - ¥) =52 [(d - F(x))] (33)
Where y; is the actual response. In short, the main coniseta minimize the error
function. In the other words, to enhance the aayuod the estimation is the principal

objective of function approximation.

3.2 FNN’s As Universal Function Approximators

To date it has been proven by many researcheesitsts that feedforward
Neural Networks (FNN’s) are capable of approximgtiany class of generic
functions with sufficient accuracy [ST98] (i.e. NAs mathematical models are
generally enough for most applications). This propes known as Universal
Approximation. A detailed review of results on ‘uarsal function approximation
property’ can be seen at [TKGO3][Pin99][HSW89][AR®Bau88][Bar93][LMB03].

The roots of universal approximation dates back960s. Kolmogorov was
perhaps the first of the researchers who provedféihany continuous mapping there
must exist a three-layered feedforward Neural Netwad continuous type neurons

(having an input layer with n neurons, a hidderetawith (2n+1) neurons, and an

49

output layer withm neurons) that implements exactly, see [Bei98]. Cybenko

[Cyb89] showed that any continuous function definada compact subset &"can

be approximated to any desired degree of accuraeyfbedforward Neural Network
with one hidden layer using sigmoidal nonlineasitietMany other papers have
investigated the approximation capability of thtagered networks in various ways.
Following the initial advancements in this areagQlet al. [CCL95] pointed out that
the boundedness of the sigmoidal function playsssential role for its being an
activation function in the hidden layer, i.e., gmtl of continuity or monotony, the

boundedness of sigmoidal functions ensures theank®svapproximation capability

of functions defined on compact setsRn.

In 1987, Hecht-Nielsen [HeN87] published a commatian in which he
turned attention to Kolmogorov's theorem. He pardat a resemblance between the
formal structure of Kolmogorov's expansion of coatus functions through other
auxiliary functions with three layer feed-forwardetNal Networks, condition of
exactness of Kolmogorov formula, and there was oadpiired that the formula only

approximately represents continuous bounded fungtio

Considerable breakthrough in this interestingdfief theory of multilayer
perceptrons was done by Hornik et al. [Hor91]. Theynonstrated that an arbitrary
continuous function can be uniformly approximatedtiiree layer Neural Networks
(with one layer of hidden neurons), where the hiddad output neurons are
endowed by the so-called squashing transfer fumetigigmoid belongs between
them).

Mhaskar & Hahm [MH97] presented generalized trainsh networks to
uniformly approximate a class of nonlinear, continsi functionals defined on

L, ([—1,]]S)for integers=>1,1< p<lor ¢ ([_1,1]5). They obtained lower bounds on

the possible order of approximation for such fumwils in terms of any

50

approximation process, depending continuously upgiven number of parameters.
Their networks almost achieve this order of appr@tion in terms of the number of
parameters (neurons) involved in the network. Tianing is simple and non-
iterative. In particular, they avoided any optintiaa such as that involved in the

usual back-propagation.

Stinchcombe [Sti99] proposed a characterizatioter@ for the set of
activation functions, bounded or unbounded, thdowalfeedforward network

approximation of the continuous functions on thessic two-point compactification

of R(1). The characterization fails when the set of target continuous functions

on the classic compactifications 6%‘(n), n= 2. Non-polynomial, analytic activation

functions, with input-to-hidden weights in very ited sets, allow approximation of

continuous function over compact sets IR(n) while even sigmoidal activation

functions with weights in limited sets cannot apgmeate continuous functions on
compactifications. The abstract structure foregdmah by compactification leads
directly to possibility results for multi-layer nedrks and possibility results for

Neural Networks in infinite dimensional settings.

Selmic & Lewis [SLO2] presented a new NN structime approximating
piecewise continuous functions. In their methodtandard NN with continuous
activation functions is augmented with an additioset of nodes with piecewise
continuous activation functions. They proved thaths a NN can approximate
arbitrarily well any piecewise continuous functigmovided that the points of
discontinuity are known. Since this is the casen@ny nonlinearities in industrial
motion systems (friction, deadzone inverse, etachsa NN is a powerful tool for
compensation of systems with such nonlinearities.

Hagan et al. [HDJOZ2] investigated the use of Netlatworks in control

systems. They demonstrated the capabilities of thetwork for function

51

approximation, and have described how it can bmddato approximate specific
functions. They also presented three different robrarchitectures that use Neural
Network function approximators as basic buildingdids. The control architectures

were demonstrated on three simple physical systems.

Magoulas et al. [MVA99] presented three new gnadimmsed training
methods. They claimed that these new methods emgoibal convergence, that is,
convergence to a local minimizer of the error fimrttfrom any starting point. They
compared their proposed algorithms with severatitrg algorithms, and proved that

their algorithms are numerically more efficientrhits counterparts.

Park & Sandberg [PS93] proved that under certaid conditions on the
kernel function, radial-basis-function networks imgvone hidden layer and the same
smoothing factor in each kernel, are broad enoogluriversal approximation. This
provides an analytical basis for the design of ldedetworks using radial basis

functions.

Poggio and Girossi [PG90] developed a theoretit@mework for
approximation based on regularization techniques lad to a class of three-layer
networks that called Generalized Radial Basis Fanst(GRBF). They showed that
GRBF networks are not only equivalent to generdligplines, but are also closely
related to several pattern recognition methodsNwaral Network algorithms. They
introduced several extensions and applications haef technique and discussed

intriguing analogies with neurobiological data.

Rossi and Conan-Guez [RCg05] showed that fundahesgults for classical
MLP can be extended to functional MLP. They obtdinmiversal approximation
results that showed the expressive power of funatidMLP which is comparable to

that of numerical MLP.

52

3.3 Approximation And Representation Capabilities of FNNs

Subsequent research in this field followed thenp@&ying works discussed
above; many authors studied Universal Approximatpn Feedforward Neural
Networks. It is well known that a two-layered FNiN. one that does not have any
hidden layers, is not capable of approximating gen@&onlinear continuous
functions. On the other hand, four or more layeiNBNare rarely used in practice.
Furthermore, the proof that they are universal @gprators is simple. Hence almost
all the work deal with the most challenging isstiehe approximation capability of
three-layered FNNs [ST98]. Under very mild assuoniion the activation functions
in the hidden layer, it has been shown that a tlapered feedforward Neural
Network is capable of approximating a large clagsfumctions, including the
continuous functions and integrable functions. Thess of functions realized by a
three-layered feedforward Neural Network can beasgnted as
ic. 9(x8.b) (3.4)

where Nis the number of hidden nodeg [R'is a variablec OR, 8 OR",

b O R are parameters, ang(x,6f , b)is the activation function used in the hidden

layer.

Along with number of hidden layers another, venportant consideration is
the selection of activation function for the modéh order to explain the
approximation capabilities of FNNs, many authorsdmd different types of
activation functions. We can also classify the aede in this field according to
activation function used in the model. Radial andgR activation functions are two
most commonly used activation functions in practidée will briefly outline the

research in both directions in the following sectio

53

3.3.1 Ridge Activation Functions

As shown in [ST98], a ridge function has the fallog form:
g(xab=0c(dx+) where “ " " is the transpose operatoais a ‘dx1’ vector,
usually referred to as the direction of the ridgaection, andb is a scalar called the

threshold.a(.) is a nonlinear function. The most common exampl¢he logistic

sigmoid function i.e.

Isig(x a b) = (1)/ (1+ éa'X‘b) (3.5)

Ridge activation functions are extensively studbgdmany authors mainly
[Cyb89][Hor91][Hor93][LLPS93][Kur92][KKK97][CL92].One of the earliest works
was reported by Hecht-Nielson [HeN87*e used an improved version of

Kolmogorov's theorem which states that every camdirs function

f :[0,]]n — Rcan be written as:

2d+1 d

f(x):ZDh(ZA“lp(xK +eh)+ hj, (3.6)
h=1 k=1

where the real and the continuous monotonically increasing fiuorctyy are

independent off , the constantis a positive number and the continuous function

O,,1<h< 2d+1, depending onf .This formulation represented a three-layered

network where the h™ hidden node computes the function

2d+1

d
z(h) = ;A“w(% +&h+ h and the output nodes comper_i;Dh (z,),.

The first non-constructive proof was given by Qyke in 1988 [Cyb89] he

showed that if the ridge activation functian is a continuous sigmoid, then the set of
> " co(g x+b)is dense inC(K) where C(K) represents the set of all continuous
functions defined oK , with respect to the uniform norm. According toyf89], if

54

o be any continuous sigmoid-type function e.g(f):ll(1+e‘5), then any

continuous real-valued functio on [0,]]” (or any other compact subspace Rff)

and ¢ >0, there exists vectors,, a,,......8, ,b,¢ & ¢ and a parameterized function

Y(.ah 901" - Fsuchthatly(xahg- f(J <&, forallx0[0,1"where

Y(xahg= NN Y=Y d & % P+ « 3.7)

i=1
And aOR'& ¢ & b1 F where a=(a,a,.....3),¢=(§,6,......)and
b=(b,b,......y)". Also note thata is a dxi vector usually referred to as the

direction of the ridge function. More precisely, pwved that Neural Networks with
one hidden layer of sigmoid-activation neurons andutput layer of linear neurons
are universal function approximators i.e. they gproximate any reasonable
function to arbitrary accuracy. Since then manyagwements have been proposed in
order to facilitate convergence, or impose limitstbe network size in the terms of

number of layers and number of hidden units regluioe a particular set of problems.

Hornik [Hor91] and [Hor93] further extended the®sults. In particular, in
[Hor93] some theorems are presented which enconglassst all recent results on
FNNs with ridge functions. The theorems state thegde-layered FNNs are universal
approximators under very weak assumptions on ttieation functions, and suggest
that nonpolynomiality of the activation functiontise key property. He proves also
that the approximation can be performed by weididanded as close to ‘0’ as
required and that for some activation functionsingle threshold for the hidden layer

is sufficient.

Another approach was used by Chui and Li [CL92]ptove universal
approximation. They showed that if the ridge adtorafunctiono is a continuous

sigmoid and the direction vectd satisfies some interpolation conditions, then the

55

set of Zi“ilcia(éfﬁ b) is dense inC(K)with respect to uniform norm. They
constructed their proof by showing that it is pbksio realize polynomials as a sum

of ridge activation functions. Since polynomialge aense inC(R”), it follows that

the three-layered Neural Networks are dens@QrK) with respect to uniform norm.

One of the most elegant results on ridge activatvas presented by Leshno
et al. [LLPS93]. They relaxed the condition for the aation function to ‘locally
bounded piecewise continuous'e(if and only if the activation function is not a
polynomial), thus embedding as special cases alalbte activation functions that
have been reported in the literature.

3.3.2 Radial Basis Functions

Radial basis function network was first introdudgdBroomhead and Lowe
in 1988 [BL88]. A Radial basis function (RBF) cam tepresented as:

g(xab)= L{Lb""j (3.8)

where g depends on a centegeand a smoothing factdy. k() is usually assumed to

be integrable onR®, and [gd k() dx# 0. The radial basis functions adopted in
applications usually depend only on the distandevéen its current value and the

center, i.e.g(x ab) = l<(|| x- 4/ l) where || denotes the usual Euclidean norm.

(1x-42 /1)

The Gaussian radial basis functigauss{ X a D): e— is a common example

of such functions [ST98].

Radial basis functions received relatively leserdion compared to ridge

activation functions. However, there has been gaiteew very promising results

56

found in literature. The most well-known result wassented by Park and Sandberg
[PS93][PS91]. They showed that if the Radial basvation function used in the
hidden layer is continuous almost everywhere, bednand integrable oiR", and

the integration is not zero, then a three-layeredrsll Network can approximate any

function in Lp(R”) with respect to theL, norm with 1< p<c. They further
extended their initial results and showed tha {ix, a b) = K| x- 4/ § is a RBF k

is integrable onR?and thatgd k(X) dx# 0; then £} is dense inL*(R®). Similar

results were also reported by [PG90][GP90] thep alsowed that RBFs posses the

universal approximation property.

Another important result on radial basis functiomss given by Chen and
Chen [CC95]. They proved that if the radial-basistivation function

gOC(R) n S(R(i.e., all those continuous functions such thag(x)s(X d>
makes sense for a0 S(R) then the set of functions,; ¢ g(| x-4|)is dense in

C(K)if and only if ‘g’ is not an even polynomial. UnékPark and Sandbergs

formulation this setting does not require radiadibafunction to be integrable;
however, it does require the activation functionb® a continuous distribution

function, which is a strong requirement. Furtherepoa norm was imposed on

(x-8), therefore, the network structure is not considecebe general enough.

Another simple, but effective technique for appmmating a continuous
function of variables with an RBF network was presd by Schillinget al.
[SCAa05]. The method uses an -dimensional raissdieotype of RBF that is
smooth, yet has compact support. The coefficiehtee@RBF network are low-order
polynomial functions of the input. More recentli§§S05] coins the idea of a new
sequential learning algorithm for radial basis tiorc (RBF) networks referred to as

generalized growing and pruning algorithm for RBEGAP-RBF). They first

57

introduced the concept gignificancefor the hidden neurons and then uses it in the
learning algorithm to realize parsimonious network®e growing and pruning
strategy of GGAP-RBF is based on linking the reegiilearning accuracy, with the
significanceof the nearestor intentionally added new neuron. Significanceaof
neuron is a measure of the average informationecordf that neuron. The GGAP-
RBF algorithm can be used for any arbitrary sangptlensity for training samples,
and is derived from a rigorous statistical pointvegw. Simulation results for bench
mark problems in the function approximation areawshthat the GGAP-RBF
outperforms several other sequential learning #lyos in terms of learning speed,
network size and generalization performance, rdgssdof the sampling density

function of the training data.

3.3.3 Recent Advancements on Function Approximatiohy Feedforward NNs

As highlighted in the introduction of this chapttre focus of research in the
filed of Function Approximation by Feedforward NelrNetworks (FNNs) has
shifted more towards development of new and efficialgorithms for function
approximation problems. A lot of research has lEeried out in this direction in the

past few years. We will summarize some of the readmancements in this section.

In [HCSO06] turned their attention to the fact thatmost Neural Network
implementations, tuning all the parameters of tleéworks may cause learning
complicated and inefficient, and it may be difficad train networks with non-
differential activation functions such as threshaoletworks. Unlike conventional
Neural Network theories, they proved, using ananeental constructive method, that
in order to let Single Layer Feedforward Neural ek (SLFNN) as universal
approximators, one may simply randomly choose hidu®les, and then only need to
adjust the output weights linking the hidden layexd the output layer. In such

SLFNNs implementations, the activation functions &mlditive nodes can be any

58

bounded non-constant piecewise continuous functiand the activation functions

for RBF nodes can be any integrable piecewise ©oatis functionsg: R - Rand
fr 9(X) dx# 0. The proposed incremental method is efficienterdy for SLFNNs

with continuous (including non-differentiable) aetiion functions but also for

SLFNNs with piecewise continuous (such as threghadtivation functions.

In [ZP08] the authors investigated function appration by using radial
basis function network and Wavelet Neural NetwdMN\(N). They used different
types of basis functions as the activation functiothe hidden nodes of the radial
basis function network and the wavelet Neural Nekwolhe performance is
compared by using the normalized square root megaars error function as the
indicator of the accuracy of these Neural Networdels. They showed that WNN
performs better in approximating a periodic funetiazshereas RBF Netwoks yields

higher accuracy in estimating exponential function.

The authors of [GTMc08] presented a model with eletvlike functions in
the functional form of a Neural Network which isedsfor function approximation.
They argued the fact that the scale parametermangly used, neglecting the usual
translation parameters in the function expansidmeylthen investigated two training
operations; first one consists of optimizing thetpoi synaptic weights and the

second one on optimizing the scale parameters hiddgde the elementary tasks.

Building upon previously published results, it wésund that if(p+1) scale

parameters merge during the learning process, ater@s of orderp will emerge

spontaneously in the functional basis. It is aleanfl that for those tasks which
induce such mergings, the function approximatiom lsa improved and the training
time reduced by directly implementing the elemgntasks and their derivatives in

the functional basis.

59

One of the most significant achievements in theemeé past is the idea of
‘Extreme Learning Machine (ELM) [HCO7][HCSO06][HZ®D which does not
require any iterations in order to learn networkapaeters, and hence considerably
reduces the network training time when comparedraalitional BP algorithm.
Although the testing performance of Standard NN e®ds better than that of the

ELM but in terms of training time it is quite arfiefent algorithm.

3.4 Neural Network Ensemble Methods

Along with other advancements in Neural NetwoANN ensemble methods
have also become very popular amongst Neural N&twesearchers in a variety of
ANN application domains. We can think of a NeuratWork ensemble as a learning
paradigm where a collection of finite number of K@WNetworks is trained for the
same task. It is well-known that the generalizatidmlity of Neural Networks, i.e.,
training many Neural Networks and then combinirgjrtpredictions are better then a

single NN model.

In general, a Neural Networks ensemble is congduin two steps, i.e.,
training a number of component Neural Networksntiiembining the component

predictions. Usingf,.......... f\s to denoteM individual NNs, a common example of

M
ensemble for regression problem i, (x) = > w f (x), wherew > 0is the weight
i=1

of the estimatorf, in the ensemble.

Neural Network based ensemble methods was ficgigsed by Hansen and
Salamon's (see [HS90]). In their work they showed the generalization ability of a
Neural Network can be significantly improved thrbugnsembling a number of
Neural Networks. Since then Neural Network Ensenmbéthods have been widely

used to improve the generalization performancéefingle learner.

60

Last decade has seen ever increasing interesisentle learning methods
for NNs. There has been much literature publisloedsing on these methods, we can
broadly classify these methods as either baggindgbaosting or stacking. There are
other popular ensemble learning techniques sucMiatures of Experts [JJ94],
Random Subspace [Hor98], Random Forests [Bre0l] Madative Correlation
Learning [LY97][LY99]. However the application ofddral Networks as ensemble
methods has been mainly studied in bagging andtingoBamework. As the main
objective of this work is to investigate approximatcapabilities of Neural Networks
therefore we will give a brief explanation of thes®& methods in the following

section.

3.4.1 Bagging

Bagging is the common term used for a popular ebkehearning method
called “Bootstrap Aggregation”. This technique svproposed by Breiman [Bre96].
This approach is based on the bootstrap statisesaimpling technique proposed by
Efron et al. [ET93], to generate diverse trainirgjssthat are used to train the
members composing an ensemble. Suppose the trasehd consists of m
instances. Each instance is assigned a probabiliy m, and the training set of a
member network, is generated by sampling with @pteent m times from the
original training setT, using these probabilities. Thus many cased iimay be
repeated several times in a member network, whitere may be left out. This
process is repeated, and each member network eyaged with a different random
sampling of the original training set. In [Bre9@ktauthor concluded that bagging is
effective on “unstable” learning algorithms. Prefbrs such as ANNs and regression
trees are suitable for bagging. There has beem wttwk in bagging [CC99][Zha99],
which studied bagging in the context of ANNs, andnauded that model

generalization ability can be significantly imprave

61

3.4.2 Boosting

Boosting has now become quite a familiar term ircim@e learning theory.
We can define boosting, or leveraging, in simplemtg as a general way of
improving the accuracy of any learning algorithntH[I00]. Historically most of the
work in the field of boosting or leveraging methdds concentrated on classification
problems see [FS97hnd related leveraging techniques [Bre98][Bre9%[H: In
comparison to regression/function approximationbfgms (i.e. the output variable

y
have been well-studied, empirically tested and hgwed theoretical bounds and

Is continuous), the application of boosting methdd classification problems

guarantees.

Boosting algorithms was first proposed by [Dru9lhey achieve improved
performance by producing a series of predictonmechwith a different distribution
of the original training data. The algorithm trathe first predictor with the original
training set, and the training set of a new predidgs assembled based on the
performance of the previous predictors. The leapatterns whose predicted values
obtained from the previous predictor differ sigcédntly from their observed values
are adjusted with higher probability of being sagdplso they will have a greater
chance of appearing in the new training set thasdhcorrectly predicted. Thus
different predictors are specialized in differerartp of the observation space. A
popular example is the AdaBoost algorithm [FHTO@hich iteratively builds a
classifier as a linear combination of the so-callezhk classifiers. At each step, a
new weak classifier is added optimizing the clasaifon error rate with a new

weighting on training samples.

62

3.4.3 Boosting for Regression Problems

Although less investigated, there have been qaiteew very promising
attempts to address the issue of boosting for ssgye/ approximation problems. Just
like boosting for classification [FHTOO] were thiest ones to come up with boosting
algorithms for regression problems. The much famAdaboost.R was the first
attempt to address this issue. The AdaBoost.R ithgor [FS97] attacks the

regression problem by reducing it to a classifaatiproblem. To fit a set of

(x, y) pairs with a regression function, where each[-1,1], AdaBoost.R converts

each (x,y) regression example into an infinite set E(fxi,z) S/J pairs, where

z0[-1,1] and y= sign(y - 2. The base regressor is given a distributover

(xi —z) pairs and must return a functidn (x) such that its weighted “error”

2

_[me(x ,2) d% is less than 1/2.

Yi

Experimental results have shown that Adaboost.@ @®& variants, see
[RMR99][BCPI7][FS96][Sch90] are quite effective. Wever, performance of these
models degrades due to the following two reasoirstly; the expansion of each
instance in the regression sample into many claasion instances. Although the
integral above is piecewise linear, the numberifbér@nt pieces can grow linearly in
the number of boosting iterations. Secondly, therofé function that the base
regressor should be minimizing is not (except for first iteration) a standard loss
function. Furthermore, the loss function changesfiteration to iteration and even
differs between examples on the same iterationtefbee, it is difficult to determine

if a particular base regressor is appropriate fwaBoost.R.

63

3.4.4 Gradient-based Boosting

One of the most significant works in this area vpassented in [FHTOQ].
They showed how adaptive boosting algorithms camdré/ed as gradient decent
algorithms. This approach allows all model paramset®® optimize one single
common objective function, in comparison to tramhifil boosting methods that work
by repeatedly calling weak (or base) learning métbn modified samples to obtain
different base rules. These are then combinedanteaster rule or hypothesis. The

algorithm proposed in [Bre99] used the master alyorto construct y; values for
each data-pointx equal to the (negative) gradient of the loss ofcitsrent master
hypothesis orx, . The base learner then finds a function in a clagsinimizing the

squared error on this constructed sample.

As with traditional boosting methods, this view waesll received in research
community, and many authors’ derived algorithmgeéing classification problems.
The work in [ZP01] was one of the first attemptddake advantage of this approach
and extended it to tackle regression problems. Tp@posed a novel objective
function for regression problems which lead to mpde boosting algorithm. They
also proved that their method reduces trainingrewben compared with other

regression methods.

They usedy_ = lzn exp(i c, [(f(x')-y) g rDas objective function
Nz t=1

in [ZP01], where paramete€, (combination co-efficientsand w, (model weights)

can now be derived using this objective functiolmey{ used the same objective
function in theWeakLearnprocedure, as the new hypothesis is the stepnatifin
space in the direction of steepest descent of dbjective [ZP01]. This allows

parameteiC, (combination co-efficientgnd w; (model weightsjo be derived using

64

this objective function. The constaidtis used to distinguish between correct and
incorrect responses and is chosen in problem-spetifnner. As highlighted in
[ZP01], this formulation allows each hypothesib#otrained to minimize the squared
error of a weighted distribution. This also allowse objective function to be
determined by simply re-weighting the training dimition. Another exciting fact is
that the new weights of a training example onlyedepon its old weight and error

produced in the last iteration.

This algorithm is presented with training set epbs in the form

(X, ¥,) X, .y,) WhereyOR, and the initial distribution of model parametédss
chosen according t@, (x)= p = w =L The next step in their algorithm is the call to
n

WeakLearrprocedure that produces a hypothesis) whose accuracy on the training

set is judged according to the cost functibbabove. The algorithm then repeatedly
calls theWeakLearrprocedure on modified distributions in order tanimiize J; with

distributionp;, On every call to th&/eakLearrhe algorithm checks the errof * and
accepts iff§, =Y p exp[(f(x)-¥) —r} < 1. The combination coefficier@; is

then set to minimize; usingsimple line search. In order to generate next itngin

distribution this algorithm modifies the model paters according to
w,, = w *exp(C [(f (xi)— y)2 - TD where p,,, = W,/ Z w/,, and
i

finally estimate output 'y’ on input according toy = > ¢ f (x)/>_¢.
t t

Two important facts to be noted here is the wayfich initial distribution is

chosen i.e.p, (x)= p;:vq:%and how the model parameters are updated by the

WeakLearnprocedure. In this work they used single hidderedaNeural Network

(NN) as hypothesis and backpropagation as theifeaprocedure. In fact this setting

65

has been a popular choice for regression boostgogitams due to Neural Networks

function approximation capabilities [FHTOO][DHOZ2].

3.5 Common Issues in FNNs & Problem Description

As shown in the above section, Feedforward Neuratwidrk (FNN)
architecture has been successfully applied to tfancapproximation’ problems in
many real-world application domains. However thiedel has certain limitations.
The most commonly faced situation is the problenooél minima i.e. the tendency
of the model to get trapped in undesirable localima in order to reach the global
minimum of a very complex search space. Secontynihg of FNN is very time
consuming task, due to the slow convergence of Ftdiving algorithms. Thirdly,

FNN also fails to converge when high nonlineariggsst.

It is also important to understand that these Versal approximation”
proofs are commonly used to justify the notion tiNgural Networks can “do
anything” (in the domain of function approximatiolYhat is not considered by these
proofs is that networks are simulated on compugtts finite accuracy. And the fact
that approximation theory results cannot be useéadlyl without consideration of
numerical accuracy limits, and that these limitagiaconstrain the approximation
ability of Neural Networks, see [WGG95].

In addition to these limitations; the most impattabservation with reference
to this work is the fact that almost all NN appgmation schemes proposed so far are

designed to approximation functions on continuaysut spacedJ, =[a,,5 .]i.e.

the input-vector X’ takes on continuous values [ZKO8][PG90][ZGKLO5][82):
X = (%, Xy X) OR" (3.9)

66

Another deficiency in these approximation schemesthat they are
computationally very expensive, because one ofutiderlying assumptions is the
availability of sufficiently large number of neumin hidden layer(s). It is also seen
in many practical applications that the size of hleéwork increases very fast (some
times exponentially) when it encounters new infaiorain form of new examples or
additional dimensions (inputs) or when some despegtision is to be achieved
[Bei98].

Although these schemes can be used for approximaif functions on
discrete input and mixed input spaces (i.e., sametivariables are discrete values
where other take continuous values), these schentes applying to approximate
functions on discrete or mixed input spaces, asg &fective and more complicated
than necessary due to not taking into account aptsatures of discrete input spaces
[ZKO8][ZGKLO5].

3.6 Special Features Of Functions Defined On Disde= Input

Spaces

When we say special features of discrete inputespawhat exactly do we
mean by this? This is the issue of prime importamitle regards to this research. The
most apparent of these special features is theepopf discrete variables to take on
finite number of states, or in other words the poiare isolated from each other in

some sense.

3.6.1 Flexible Hierarchical Structure Property

Another very important feature of functions defiren discrete input spaces is
their flexible (arbitrarily separable) hierarchicgttucture. As described in [ZK08],
consider the following function:

67

G(X, %, % %, %)=10sin@ x % 20(%~ 0.5y 104+ 5 (3.10)

Let g,and g,; (j =12) be

G(% ¥ %)= ¥+ %+5% g% N=sin@ x¥) g % ¥ 20(% 05 10 (3.11)

Then

G(Xs X5, X3 Xgy X5) = 03[0,1 (X1, X5), 95,5 (X5, Xy), Xs] (3.12)

That is, G(x,,X,,%;,X,,%;) can be represented as a function with a hieraathic

structure given in figure 3.1.

"1

9
Y1
/y2 \ X
5
921 92
T 1 T 1
XX X, X,

Figure 3.1 An Example Of A System With A Two L@¥élierarchical Structure.

Figure 3.1 represents a two-level hierarchicalcstre. In the same paper
[ZK08] authors also showed that, §,; is also a function with a hierarchical
structure, then further levels of hierarchical stowe are also possible. In other
words, multi-level hierarchical structure fds(x,,...,x, is)possible. Further in the

paper they proved that, for a function with hiehécal structure, its hierarchical
structure is not unique. This is illustrated asofek:

Consider the functionG(x,,X,,%;;X,,%;) given above. Ifgand g,; (j =12) are

chosen to be,
G(%)= Wt Yo A % Q=SNG %%, G4 % % B 20(>% 05 104 5 (3.13)

68

Then,
G(X0r %o, %5 Xgs X5) = Gi[951 (Xs %), G55 (%5 Xys X%6)] (3.14)
That is, G(x,X,,%;,X%,, %) can be represented as a function with a hieraathic

structure which will be different from the hieraicdl structure given in figure 3.1

The authors in [ZK08] also discussed a speciaé azsthe functions with

hierarchical structure that is, when input variabie each sub-functiong, and
d,; (J =12,...,m) are disjointed form each other. We can easilythae the input
variable sets forg,and g,; (j =12)in equation (3.12) are disjointed, therefore the
function G(Xx, X, X; X,, %) given in equation (3.12) is one with separable
hierarchical structure. On the other hand, the tingariable sets forg,and g,,

(j =12) are also disjointed. That is,G(x, X,, X; X,,%) has another separable

hierarchical structure. This shows th&(x, x,, X, X,,X. 9an be represented by

different separable hierarchical structures. Adl thcts discussed above are formally
summarized in the form of a theorem as followsapderefer to [ZKO08] for a detailed

proof of this theorem.

Theorem 1: LetG(X) be a MISO (multiple input single output) functigiven by
y =G(X) =G(x,, X,,...,.X,), where yOVOR is the output variable and
X = (X, %,,....%,) 00U =U, xU, x..xU_ OR" is the input variable vector in which
x OU;, and U, ={u,, |u, 0OR k=12..,N}, in other words, input variablex;

takes discrete values. Then, for any disjoint gnegpof the input variables
{x,%,...x;} into m+1 groups G, and G,; (j =12,...,m) satisfying the following

conditions:

G :{X.;H""’X.;D} G, :{)ﬂfzvn""’)ﬂ@*i)} j=12,....m (3.15)

n2,j

69

Where,

G G, =0,j=12..mandG,;, G,.=0 j#j', j,j'=12..m (3.16)

G G, .. Gy ={XuXpn X} (3.17)

then there exist functiong,and g, ; (j =12,....m) [in particular, g,; (j = 12,...,m)
can be as simple as linear functions or fuzzy sysfe such that
G(X) = gl[gzyl(xzyl),...,gzlm(xzym), Xl] . That is, any MISO function on discrete

spaces has the arbitrary separable hierarchicaitste.

This is a very interesting theorem and the resol$ained have some
significant implications on NN approximation schem&he most significant of them

are:

1. If G(X) can be represented as a function with the giv&n and
G,; (J =12,...,m) as its hierarchical structure is related to thisterce of
one-to-one mappings on discrete spaces. Theseoamset mappings not
only exist but also can be realized by using soarg simple functions.

2. For adiscrete spade, there exist some simple functions which form tme
one mappings fromJ to R. This is a property which holds only on

discrete spaces but not on continuous spaces.iS bescause no one-to-one
n

mapping from a multi-dimensional continuous spatk= .xl[ai 8]
=

(n>1)to R can be continuous (see [ZK08] for detailed disicugs As no

continuous function can be found to form one-to-ov@ping from a multi-

dimensional continuous spaceRoit is impossible to find a simple function
which is a one to one mapping from multi-dimensloo@ntinuous space
Uto R.

70

3.7 Summary

This chapter presents a detailed literature revidwour selected area of
research. First of all it introduces the Functigrpfoximation problem, followed by a
detailed analysis of approximation and represesmatiapabilities of Feedforward
Neural Networks. A systematic review of related kvan Universal Function
Approximation Property has been presented. Recdvargement in this field has
also been highlighted in this chapter, followed &yiscussion on Neural Network
based ensemble methods with a particular emphasisapplication of Neural
Networks in regression boosting frame work. We ehalso presented common
issues and a formal problem description in thigptdra A comprehensive analysis of
discrete nature of input spaces and ‘Arbitrarilyp&@able Hierarchical Structure
Property’ of functions defined on discrete inpuasps is also presented in this
chapter.

71

CHAPTER 4

SIMPLIFIED NEURAL NETWORK (SNN) APPROACH
AND ALGORITHMS

The special features of discrete input spacesisis&a in the previous chapter,
the capability of Feedforward Neural Networks topm@ximate any function
arbitrarily well and the lack of systematic resuttsusing on discrete input spaces,
are the main reasons behind the initiation of tegearch. The main objective of this
research is to propose more simplified algorithmaseldl on simplified NN
approximation schemes that make use of these pirepaf discrete input spaces,
without compromising on accuracy or generalizatapabilities of the existing NN

models and techniques.
4.1 The Simplified Neural Network (SNN) Approab

As we already know, the multilayer feedforward waatks are usually

arranged in many layers; input, output and one arenhidden layers. We also know
that any mapping of the formf : R" -~ R" can be computed by m mappings
f. i R" - Rtherefore it is sufficient to focus on networks lwiine output unit only

[LLPS93]. This section gives a detailed analysisswhplified NN approach and
shows how simplification is achieved with theseesoks. In the following, it is

always assumed that the input spaces are disareteie U, ={a; | j =12,....,N; }

We begin our discussion with a formal definitidnstandard Neural Network.

In line with the famous Cybenko theorem [Cyb89]eaa define a standard NN as:

72

Y=NN() =Y go(d X+ P+ 6 (4.1)

where X =(x, %,...,%)are input variable X U =U, xU,x...xU, OR" which
are input space,y R is the output variabler is the vector transposej(.) is the
activation function and the parameterg R, ¢ OR,a0R", and b OR
(i=12,...,N). As described in [ZGKLO5], the total number ofrgaeters [i.e.,
¢ OR,al0R", bOR(i=22...,N) and ¢,0R] is (n+2)N +1. For nonlinear

complex function approximation, a large N is needed very often N is subjected to
exponential growth with the increase in dimensibmo. As a result, a large number

of parameters are needed in order to achieve gome@mation accuracy.

To overcome these computational expanses new sshara required which
should be able to exploit the function approximateapabilities of Neural Networks
for discrete input spaces.

4.1.1 Simplified Neural Networks (SNN)

We can define (see [ZGKLO5] for a detailed disaussa simplified Neural
Network (SNN) as shown in equation (2.2):

y=SNN X =3 pla(a’ X A+A1+ ¢ 42)
wherec, R, ¢ OR, o, UR, S UOR (i =12,...,.N) andae OR", SOR.

Let z=L(X)=a' X+ 4.3)
andy=NN,(3= 3 ¢o(a; 2 4)+ 6 (4.4)

Then the proposed SNN given in (4.2) can be resvritts follows:
SNN(X) = NNJL(X)] (4.5)

73

In other words, the proposed SNN can be preseagedcomposition function

of a linear function L(X)given in (4.3), and one dimensional standard NN
NN, (2) given in (4.4). The difference between the abowvepsfied NN from the
standard NN is that it uses a common linear functi@X +b rather than
aX +b (i =12,...,N), which results in significant reduction of paraerstrequired

for the model. Such a simplified NN benefits thrbube following advantages:

1. A simplified NN requires approximately (3N + n ¥y Zarameters in most of
the cases.

2. SNNs are more effective in overcoming the modetrditting which is
often the case with standard NN models. This is tduthe fact that in the

standard NNs, adding a new neuron [i.e., add am d¢e(a’ X +b)in (4.1)]

means addingn + 2 parameters. As a result, it is an often facedasdua in

NN modeling, that adding one neuron causes ovedithut without adding
results in underfitting, especially in the case wha is large but only a
limited training data available. However, in SNMdgding a new dimension

or neuron in hidden layer means adding an i®a(a,z+ 8 whjch only

adds three parameters. As a result, SNNs allowr fexdding model
parameters to overcome the model overfitting ardetfitting, especially in
the high dimension (i.e. large) case.

3. More simplified learning algorithms can be deyeld. For example, in some
cases, multi-dimension NN learning problem can tamsformed to one
dimensional NN learning problem and then the cqoading learning

algorithms can be much simpler.
In the light of the above discussion, and advasdagf simplified NN, we

propose two algorithms which can be used with discinput spaces for function

approximation problems. As described in [ZGKLO5S}yalgorithm developed under

74

the assumptions discussed above have the univeggpabximation property and are
general enough to approximate arbitrarily well &myction defined on discrete input
spaces. These facts are formally derived fromdHeviing two theorems.

Theorem 2: LetG(X)be a function defined on discrete spdde= F]Ui . Then for
i=1

N
any giveng >0, there exists a simplified NM= NN(X) =Z(;,a(a'x +b) + ¢, such
i=1

that, |[G—NN |E max, IGX) NN(XX¢.

Remark 1:The above theorem shows that SNNs can approxiamgtdunction on a
discrete space to any degree of accuracy. In otloeds, SNNs, in spite of their
simplified formula, reserve the universal approxiomproperty of standard NNs and
therefore are generally applicable for functionragpnmation in discrete spaces. This
theorem is very important with reference to thisrkydherefore a detailed proof of
this theorem as appeared in [ZGKLO5] is also inetlds appendix-C. Following the
discussion in section 3.5 we can now introducddhewing Lemma:

Lemma 1: Given a discrete input spade= |_1|Ui , there exists a linear function
a' X +bwhich is one to one mapping 0n= |_| U .

=1
Theorem 3: LetG(X)be a function defined on discrete spate= |_1|Ui and

L(X)=a X +b is any one to one mapping defined on= [|U, . Then for any

givene >0, there exists a simplified NN using X) =a' X + bas the common linear
N

function such that the simplified NM= SNN X)=Z m[a X)j+ L satisfies,
i=1

IG=NN [F max,, IGX) NN(X){e.

Remark 2: The above theorem shows that, for any given oneorie linear

functionL(X), simplified NN can be constructed based lofX) to form universal

approximators.

75

What follows is a detailed description of thesgoathms, whereas the

derivation of backpropagation algorithm for thesmpdified algorithms is also

presented in the following section.

4.1.2

Simplified NN Algorithm-I

1. Initialisation:

2.

a. ldentify a one to one linear mappirzg= L(X) = a'X +bon the input

space that is both one to one and onto.
b. Training data transformation:
Transform the training da# y(t), X(1)];t =12,...,M} to

{[y®t),z(O)];t =12,...M}byusingz=L"(X)=a' X +b;

c. By using the optimisation algorithm such as gradasscent algorithm]
or other algorithms in order to identify,

y=NN(2=Y cola 2 4)]+ g

Notice that this is a single variable function apximation
d. Form the initial simplified NN as :

y=NN(2=Y cola 2 4)]+ ¢

Iterations: Using the back-propagation algorithm to updatentioelel.

X1
X2

Xn

L

!

\ Z=L(X)
L(X) = a'x+b

Figure 4.1 Architectural representation of Sim@diNN Algorithm-I

76

4.1.3 Simplified NN Algorithm-II

1. Input S=(x,, y).....{x, ,y,)whereyOR, and training iteratiorns.
2. Initialize: The initial distribution of model parameteps(x') is chosen

according top, (x') = p, = v :%.

a. Compute the linear approximation= L' (X) =a'X +b;
b. Training data transformation:
Transform the training da W 9, X(3]; t=1,2,..., M} to

{[y®t),z();t =12,...M}byusingz=L(X)=a' X +b;
c. By using the optimisation algorithm such as gradéascent algorithm]
in order to identify,

y=NN(2= E q;a[m z+/3i)] + g. Notice that this is a single variable
i=1

function approximation;

d. Form the initial simplified NN as :
N
y=NN(3 =2 eofoi(d X+ D+a]+ ¢

3. lterations:Using the back-propagation algorithm to updatentiogel.

g N

Figure 4.2 Architectural Representation of Sim@tdfNN Algorithm-I|

77

The basic difference in both the algorithms idrtir@tialisation conditions.
Algorithm-I uses a simple linear mapping to tramsfothe input space in to a
unidirectional one, this is a very simple methodbgsusing the one-to-one linear

mapping L(X), the approximation problem is transformed to apsmlearning

problem of a single variable NN, figure 4.1 givesaachitectural realisation of such a
SNN. The first algorithm is based on the proof dfedrem 2 (See Appendix-C)

which includes two steps; the first step is to fiadone-to-one linear mapping
L(X)from UtoRand then one dimensional functiong(z)=G[L™"(2)] or
g[L(X)]=G(X)can be defined; the second step is using the @lailadata
{(X,,y,)|t=12,...,N} to get a set of training data for functiog(z) as
{(z,y,)]z =L(X,),t=12,...,N}and then, forg(z), apply the learning algorithms
of the standard NN to find one dimensional NN agpratorNN,(z)with the
required approximation accuracy. Finally the SNIgragimator can be obtained by
SNN(X) = NN,[L(X)]. Theoretically, this is a very simple method asussing the
one-to-one linear mapping(X), the approximation problem is transformed to a

simple learning problem of a single variable NN.

In the case where the number of input variables the possible values of
each input variables are small, then this is a galgdrithm in practice due to its
simplicity. However, this method is not suitable Fagh dimension (i.e., many input
variables ornis large) with each input variable having many gassvalues (i.e.,
N, is large). The is mainly due to the fact that; las total number of all possible

n

values of input vectoX = (x, x,,...,X,) are |_|I\| , it means that the total number of the
1=l

possible function values of one-to-one mapping L(X)is |_| N, . When n and
=1

N, (i=12...,n)are large, this is impossible as all these possialees are beyond

the representation accuracy of float numbers imytsdcomputers. Therefore, in the

78

case whenn and N, (i =12,...,n Jare large, the implementation of this algorithm,

requires more specialised methods e.g. use of BeteSimplified Neural Networks
(ESNN) as described in [ZGKLO5]. The use of ESNNdoch modeling problems is

not discussed any further and remains a furthexares objective.

The second algorithm begins with initialising mbdparameters to

p(x)=p=w= %; the training data is then transformed
{{ Y9, X(Y; t=1,2,..., M}tof[y(t), z(t)];t = 12,...,M} into single dimension by using
a linear approximationz=L (X)=aX+b. However, unlike algorithm-1, two
additional parameters (see figure 4.2) are addedhé¢oone-dimensional Neural
Network SNN(X) = NN,[L(X)]. The second step in the algorithm is the appbeati
of the gradient descent optimisation algorithms taminimise,
T
E :%Z[yt - SNN X)|”, where SNN(X)is given in algorithm-Il step 1.d, with the
t=1
parameters{G ,a,,5.,a,5,G,|i =12,...N} to be identified. In this algorithm, it is not
required thatz= L(X) =a’X + £ is a one-to-one mapping (noticing that one-to-one
mapping is a sufficient but not the necessary dmmji rather parameterg and S

are tuned by the learning algorithm to meet ther@pmation requirement. This
algorithm is more complicated than the first ong bkely it will handle high
dimensional modeling situation [ZGKLO5]. Architectuof such a SNN resembles
the figure 4.2.

In the standard NNs we use to have weight conmregti.e.g; , coming from

each individual input to every hidden layer nodewsver, in the case of SNN of
algorithm-11 we transform the input vectoX into one dimension using a linear
function (a' X + b). The result of this setup is a scalar weight magpresenting the

hidden layer weight connections rather than a vaeforesenting all the hidden layer

79

weights. The architecture shown in figure 4.2 alspresents a one dimensional
Neural Network because now we don’'t have to upditéhe hidden layer weights
associated with each neuron; instead only two pet@nper neuron will be updated

in the hidden layer i.e. the common weight conmectind the bias attached to it.

An exciting fact to be noted here is the way théads transformed into one
dimension using the linear approximationl (X)=aX+b. Such a linear

approximation can also be found by applying mudtipegression techniques. A

multivariate or least squares fit model of the d@&ausually represented as

Z=0pXgta Xt a,%.....a, X. Therefore we have to solve for unknown

coefficients ay,a ,Q;,....... a,, , by performing a least squares fit. We can them us

these estimates to initialize network parametersaisform the training data before
passing it on to our one dimensional NN. Howeveraigorithm-1l, we have not

adopted this approach since in standard NN modeldawmnot perform any such data
pre-processing and therefore the comparison of Hmthmethods may be biased.
Instead we will look at this approach i.e. use oiitiple regression methods for data

transformation in regression boosting frame woee section 5.

The Algorithm-II presented above can be easilyeedéd to be viewed as a

regression boosting method for functions defined discrete input spaces i.e.

X OU = I_nl u, - With similar error bounds and convergence guaesas presented

in [HZ09]. Based on these exciting facts we propaseew simplified approach to
regression boosting for functions defined on digciaput spaces. We will refer to
our approach as Simplified Regression Boosting (SRB discrete input spaces.
Following is a step by step description of this raggh for functions defined on

discrete input spaces.

80

4.2 Backpropagation Algorithm for Simplified NNs

In-line with the definition and architectural repentations of Simplified

Neural Network algorithms, we can now define oungified network parameters as:

X =(X,..-,X,)are input variable, X OuU = ﬁui which are input space,"R is

the output variableém’ is the layer index and denotes output layer, tigex of the

layer just below output layer will ban-1' and ‘m-2’ and so on.q;are the

connection weights associated with input layeritmén layer and in the Simplified

o
a,

NN case it will be represented gg,, = ' (4.6)

a .,

Notice the change in definition of this networkrgmaeter; in the case of
standard NN this parameter waslhd vector where as in simplified case it is replaced

by a scalar parameter.

B is the bias attached to hidden layer neurons, evhsrc, & G, are the

connection weight and bias from hidden layer tgattayer respectively.c ' is the

1
1+exp* ’

activation function and in the case of sigmoidalnoas it will be g(x) =

and in the case of linear neurons it willd) = x. The output of hidden layer

neuron j in the layerm-21can therefore be computed as;
N ~ N .

=y olaz+)],y =2 ola@ X+ D+ A) (4.7)
1= i=1

The net input to our hidden layer neurons will be:

81

net™ :ZN:a[ai z+)], net™ :iaﬁ(a' X+ B+4 (4.8)

The output of the last layer will be the same asdt input since the output layer uses
the linear neurons. So the output of neuron ‘ithe layer ‘m’ (which is last layer)

will be:
y" = Z c” 0'(yj”*l) +q" (4.9)
i=1

where y™*can be computed as in equation (4.7)

4.2.1 Performance Index:

We know that our training set is of the form:

{ Xy, t{ X, o} { X, &}, (4.10)
where X is the input vector and s the corresponding target value and k = 1....p

represents thith’ iteration or pattern. LéW’ denote all the network parameters i.e.

W=[ai,ﬁ,a,bp,g]. Our objective is to minimize the cost function the error

measure i.e. sum of squared errors over wholeré@rig set/ patterns which can be
defined as:

TE(W) =52 (K- y(R) (4.12)
And in the vector case we can define the above as:
va):z[éézz[(t— Y (t } (4.12)

Where €’ is the sum of squared errors over all the trairpagerns. Therefore the

approximate mean square error over a single safkpleould be:

E7(X) =€ (R € k=t~ y() (K- %K) (4.13)

82

4.2.2 Updating Model Parameters:

We can define the approximate steepest desceyeraralised delta rule for

MLP’s as follows:

W™= WA W (4.14)

where the parameters of our SNN ae=[a;,3,a,b ¢, ¢] and,

AW = _naIGEVV(W) (4.15)

where ‘i’ is the learning rate In the vector case we cateviine equations (4.14) and

(4.15) altogether as :
o=
Oow

w (k+1)=w (k)-7 (4.16)

where'k’ represents thié&th’ iteration or pattern.

4.2.3 Gradient Calculation

Now we have to compute the gradiedg - |9E" 0E" 0E" 0E dE 0E | py

l) ’)

ow 0 0co Oa; 0B, da 0b

using the chain rule of differentiation as follows:
98" _ 0" onef” and OF = OF pj0net (4.17)
oc; One™ 0¢G 0C, Onef™ 0¢,

A A a m-1 A A a m-1
0" _ OE 0 net; and 0" _ OE 0 netj (4.18)
da; Onet"™ Og 0B; Onet!™ 0B

A A m-1 N N m-1
OE" _ OE Onet] and OE” _ 0E Onet| (4.19)
da Onef™ Oa Ob Onef™ 0b

Note that our initial simplified networks are oktform:

y= NN(z)=i cola z)]+ ¢

83

y= NN(2)=Z, cofa (d X+ b+)]+ ¢

This gives rise to two different scenarios as ckepi above. We can proceed

in two ways:

0" O0E
a. Following NN definition in (algorithm-I) computeekgradlentT ﬁ
|

b. Following NN definition in (algorithm-Il) also congpe the gradients
0" OE"
da Ob

The effect of computations in step ‘b’ will be tpeovision of two extra parameters

for network tuning.

4.2.4 Computing Error Signals

Let aa—im =s™™, be the sensitivity or error signal for the outpuid
net

hidden layers respectively. From the network diéfin above we can see that we
have to compute the following gradients inline while eqns. (4.17) (4.18) & (4.19)

Onef" _ 0 [m-1 } Onet" _ 0 [m-1 J
i - ¥ + and 1 = > + therefore
0c; 0C; ECI yj 0 aCO aCO i yj °
m m
Onet] - yrjn_l and Onet =1 (4.20)
0Ci aCO
Similarly,
net™ 9 Onetf™ _ 9
=—| Y aiz+ and — ——[Z iZ+ }
da; Oai [= g } 05 05 =i 8
Onet™L Onet™1
net] _7 and netj -1 (4.21)
aaj 6ﬁ|
And

84

Onet™

e :i[%(a-mb)m} and (4.22)
Oa a i

Onet!™ 9 [N

=% Y m@X+h)+a 4.23

- Sa@xnes (4.23)
Therefore,

Onet™ Onet™

O =y and U= (4.24)
da ob

Now we can re-write our steepest descent rule lasnfs:

1. For output layer weight and bias values:

ci(k+1)=¢ (K)-n7s"y"™ , colk+1)=co(k) =77 4" (4.25)
2. For hidden layer weight and bias values:

ai(k+D)=a;j(K)-nsPz , Bi(k+1) =5 (K)-nsP™ (4.26)
and:

a(k+l)=a (k)-7s2x , b (k+1)=b(k)-7s]? (4.27)

4.2.5 Back-Propagating The Error Signal

N

= mml
m, m-1 I
anetiyj

The only thing left to be computed are the serisés i.e.

This is the process which gives the name of backggation to this algorithm. Note
that the sensitivities are computed by startinthatlast layer, and then propagating

backwards through the network to the first layer.

ie.S™ . S™ . g% 8. % For the last or output layer this sensitivity or
error signal (i.e. how the error at the outputfieaded by the net input’) can be

easily computed as follows:

oe” 0 1n p m)
] 2 RORTAL 4.28
anetim 0 ne]_m|:2i§1 kZ::l (tl (k) y| (k) :| ()

si"=

85

= =(t; (k) -y; (K) ay‘(k), where the terrgw is actually the derivative of our
Onet™ Onet™
. Oa(net™
activation function i.e: Oy _Jotnen) _ f'(net™ (4.29)
Onet™ 0 nef”

Note that in the case of Sigmoidal neurons it willbe:

0 1 eXp_X 1 1
= =1- =(1-x ’
a(x)L+eXp—x} o) [s exp_xMH exﬁx} (1-%)%

and in the case of linear neurons it will g%(x) = X. (4.30)
X

Therefore we can see that the sensitivity/ ergmadifor output layer will be,

s ==tM-y™ f '(net") (4.31)

From here we can now compute the sensitivity ofhildeen layer. Note that the error

at hidden layer is not a direct function of its gdi and bias; instead it is an

accumulation of error from the layer just aftesttso, we need another application of
chain rule of differentiation to compute this ersagnal.

oe" _ O0E" Onet"
Onet™™ 0 nef™0 nef™*

m-1—
Sj

(4.32)

Note that we have already computed the first tegnlﬁ_:l—m =g in equation (4.28).
net;

Therefore, we are left with,

Onet™) [n . } oy
= oy = 4.33
Onet™ 0 nef™ ElCI Vit Te] =6 0 nef™ (4.33)
ay™r do(net™?
990 | et (4.34)

Onet™ dnef™?
* f'(netM™) " is the derivative of activation function and che computed following

the derivation depicted in eqns. above (4.29) dmgly).
By combining (4.32) and (4.33) we get,
sT=gMg f'(nef™) (4.35)

86

We can now obtain the updated weight and bias saliee our network by
substituting the sensitivities/ error signal ob&minn equation (4.31) and (4.35) into
(4.17) (4.18) & (4.19) respectively.

4.3 SNN Extension To Regression Boosting

As discussed above we can see that Simplified pi¥cach has its distinct
advantages over traditional NN approximation scler&specially when it comes to
dealing with function defined on discrete inputcg®m In order to investigate wider
implications of SNN approach we will extend our eggeh to regression boosting,
which will target the regression problems for owlested domain i.e. function
approximation problems in high dimension-low sangases where the model inputs

constitutes of a significant number of discretdalales.

The algorithm-II presented above can be easilgrede¢d to be viewed as a

regression boosting method for functions defined discrete input spaces i.e.
XDU=|ﬁ1U, . With similar error bounds and convergence guaemts presented in

[HZ09]. Based on these exciting facts we proposeew simplified approach to
regression boosting for functions defined on disciaput spaces. We will refer to
our approach as Simplified Regression Boosting (SRB discrete input spaces.
Following is a step by step description of this raggh for functions defined on

discrete input spaces.
4.3.1 Simplified Regression Boosting (SRB):

Let G(x) be an objective function we wish to mimmthis cost function, this

could be any objective function such as one presenn [ZPOl] or e.g.

G (x) = Zn Z (hi (k)- yl(k))z . In traditional regression boosting settinggk)

i=1 k=1

N | P

87

is referred to as the hypothesis generated bWeaklLearnProcedure. The accuracy
of this hypothesis on the training set is then mess according to cost function

G(x). As highlighted before many regression baastimethods used Neural

Networks as base regressoMdeakLearrprocedure to generate a hypothesig) at

every iteration In such situations the output or hypothesis gdadray a standard
N

Neural Network can be representedik) = NN(X) = Z co(@ X+ B+ g, where
i=1

X = (X, X%,..., %)are input variable,X JU =U, xU, x...xU O R" which are

input space, yOR is the output variabler is the vector transposes(.) is the

activation function and the parameterg R, ¢ OR,a 0OR', and h OR

(i=12,..N). In the following section we propose a new singtifversion of the

WeakLearnprocedure to boost functions defined on discrefaiti spaces; we will

refer to this simplified version as ‘SimplifiaileakLearh

Based on this approach we can derive algorithnnsbémsting regression
problems for function defined on discrete inputcgsa These will be a lot faster and
simpler in architecture when compared to existigression boosting models using
Neural Networks a¥VeakLearnprocedure. In fact, this approach can be useld wit
any existing regression boosting algorithms usireyfdl Networks asVeakLearn
procedure by simply replacing the StandaikeakLearnwith the ‘Simplified
WeakLearhdiscussed above. We can prove the convergernctnifo algorithm by
following the approach used in [ZP01] and is ineélddat the end of this thesis as
appendix-D.

88

4.3.2 Simplified Regression Boosting Algorithm-I1lI

1. Input
+ Training set examples=(x,, y).....(x, ,y)whereyOR, training
iterationsr .
* Simplified WeakLearrA learning procedure that produces a
hypothesisnj(x)
2. Identify a best linear approximatian= L (X) = a' X + bwhich can be found

by the least square algorithm;

(Note that we can represent a multivariate or lestgiares fit model of the data
as: Z=0pX ta; X +a,%.....a, X. Therefore we have to solve for unknown

coefficientsa,, a ,Q,....... a,, , by performing a least squares fit i.e. multivétia
regression)
3. Initialize: Initialize the model parameters using,a ,aQ,....... a,

4. lterate:

» Call Simplified WeakLearn-minimize cost functionxpith initial
model parameters. (accept §f = g (h.* (ki) -y)2 -r7<1
k=1\" |

« Set combination co-efficient,to minimize G(x)

* Modify model parameters using gradient descentralgo in order to

identify, i (X) =i¢0[ai(d X+ B+B]+ ¢

5. Estimate Output:&/ =>ah (XD ¢
t t

In line with definition of a simplified NN presesd in [HZ09] we define our
N
'Simplified WeakLearhas h (X =Y ¢ola (a X+ B+4]+ ¢ wherec OR,a OR’,
i=1

b OR((i=12,...N)andc, 0R. This SimplifiedWeakLearnapproach will differ

89

on two main aspects: the initialisation criteriadathe total number of model
parameters for th&/eakLearnprocedure. This algorithm will first identify a $te
linear approximation, then use these initial estésao initialize the network weights,
combining at a summing junction before the hiddayet neurons; then Call the
Simplified WeakLearnprocedure in order to minimize cost functi@(x). This
approach has many distinct advantages. Firstlyjnglescommon objective function
is both used by the weak learning procedure to ymedypotheses and determines
the other parameters in the algorithm. Secondbky diktribution of examples is used
to control the generation of hypotheses and eagothgsis is trained to learn the
same underlying function. Since the SimplifidteakLearruse simplified NN as the
base learner, it also reduces the model paramaterenhances the performance. As
highlighted section 4.1.1 the result of such a sdianefits in two ways; firstly in
forward pass we have a good initial estimate aspesed to individual inputs only
and in backward pass we have two additional pammmetssociated with each input
for further fine tuning of the initial estimates the best linear approximation
coefficients. This approach results in significaeduction of model parameters. As
described in [HZ09], the total number of parametergiired is 3N+n+2 as compared
to a standard NN where the total number of parametequired for function
approximation problems is (n+2)N+1, (n = numbenefwork inputs, N= number of
hidden layer neurons). Another distinct advantaigthis approach is that when we
add neurons in the hidden layer, we only add thp@emeters per neuron; this
gradual increase in parameter helps in avoidingahoder-fitting, a commonly faced

situation in standard NN models.

4.4 Summary

The first part of this chapter is the introductimfisimplified NN schemes and
corresponding learning algorithms. A derivation Bdckpropagation algorithm for
these simplified NN algorithm is also outlined ietail. The simplified NN schemes

90

and algorithms are mathematically analysed andrehitactural representation of
these algorithm is also presented in this chapteletailed analysis of approximation
capabilities of simplified NN algorithms is alsacinded in this chapter. This chapter
also contains a discussion on the wider implicatiohthe simplified Neural Network
approach, and gives an overview of how simplified Apbproach can be applied to
regression boosting. We have given a brief intrtidado regression boosting in this
chapter, and discussed how a simplified regredsomting scheme can be developed
using simplified NN approach. We also propose a ragorithm for regression

booting on functions defined on discrete input ggda this chapter.

91

CHAPTER 5

IMPLEMENTATION AND EVALUATION
OF THE SNN ALGORITHMS

There are many tools and applications availablsirralate Neural Network
based models for evaluating their performance.rtfeioto assess the performance of
our proposed simplified NN algorithms, and to conmapihe results with standard NN
models, we have implemented these algorithms inldda?.0. The reasons for
choosing Matlab are: its familiarity in researchmzounity, success in recent years

and availability of a range of learning and optiatisn algorithms for NNs.

5.1 Data Collection

One of the most significant aspects in the sucoésany Neural Network
application is the quality and availability of datéhe availability of sufficient
training data plays a very important role in susce$ a NN based model. As
highlighted before unavailability of sufficient ineng data in certain application

domains makes it difficult for standard NN modelsithieve the desired results.

In order to analyse the performance of simplifieliral Networks (SNN)
we first produced some dummy data sets and traine@NN on these datasets. The
dummy data sets are functions of varied complexit two or three input variables
as shown in table 5.1 and 5.2. For the dummy exesi?h (see table 5.1) and 40 (see
table 5.2) cases of discrete values have beenaedeindependently each of which

92

uniformly distributed over [0,1]. The values of ttagget variable Y was then

computed using the equations shown in tables 55&h

The obvious advantage of using dummy data setdias we have prior
knowledge of underlying function and we can easilynitor the performance of our
proposed algorithms, as both the dependent andoémdient variables are under

experimental control.

Once the performance of our network is verifiedtbese dummy data sets,
we identified some benchmarking examples to shawttie proposed algorithms are
general enough for any kind of approximation proifdetaking on discrete values.
Selection of benchmarking data was a tedious tasle ur algorithms represent a
special case of standard NN, therefore we needelatdéhat can meet the following

criteria;

* All or at least a significant number of independematriables should be
discrete. (Any continuous variables remaining ie thata sets can be later
rounded off to make it a discrete variable i.e. éaperimentation purpose
only).

» The number of independent variables should be large

* The variables should be independent of each other.

» Availability of data is limited i.e. there are neough examples for training a
standard NN.

As argued earlier, most of the NN approximatiohesoes proposed so far
consider the NNs to take on continuous inputs ofiliierefore most of the
benchmarking datasets have continuous values @dtigrnatively, if there are any
datasets available that has discrete values, tleeg used for classification problems

instead.

93

There are many well known resources of experinhetgta available for use
with NNs e.g. UCI Machine Learning Repository, Ritit University function
approximation repository, statlib data archives &elve data sets etc. We have
selected three different benchmarking examples fiBitkent University Function
Approximation Repository’. For the Pyrimidines daset, the task consists of
Learning Quantitative Structure Activity Relatioish (QSARS) i.e. The Inhibition
of Dihydrofolate Reductase by Pyrimidines. For Thmzines Dataset, the problem is
to learn a regression equation, rule or tree tdiptehe activity from the descriptive
structural attributes. A detailed description bé tselected data sets and their past

usage is given in Appendix-B.

5.2 Data Pre-Processing And Partitioning

Once the data is selected the next step is perdome data pre-processing. In
practice, it is nearly always beneficial, sometimatcal, to apply pre-processing to
the input data before they are fed to a networker&hare many techniques and
considerations relevant to data pre-processing sigple filtering, principle
component analysis and many others , please se@7|fis95][Mas93]. However,
the aim of these pre-processing techniques is tgubk same i.e. transformation of
the data into a form suited to the network inpatdection of the most relevant data
and reducing the number of inputs to the network.

In order to compare the performance of these gl algorithms with
standard NN models, we have used the method oé thesy splits, and partition the
data into training sets, validation sets, anddet. As defined earlier, validation sets
are used to decide the architecture of the netwaalqging sets are used to actually
update the weights in a network and test sets aedl U0 examine the final

performance of the network. The crucial point iattla test set, by the standard

94

definition in the NN literature, is never used tmose among two or more networks,
so that the error on the test set provides an gabi&stimate of the generalization
error (assuming that the test set is representafitke population, etc. Any data set
that is used to choose the best of two or more av&is, by definition, a validation
set, and the error of the chosen network on thielat&n set is optimistically biased
[Sar97].

5.3 Simulation Results for SNN Algorithms | &Il

Once the data pre-processing tasks are perforthedetworks are ready for
training. The selected data sets (i.e. dummy aabwerld examples) are first used
for training of a standard Neural Network. The chje is to set a standard for
evaluation against our simplified algorithms. Thestandard NNs are actually
feedforward Neural Networks of three layers i.guit) hidden and output layer.
According to the conventional setup, the hiddemitactivation function is chosen to
be sigmoid, whereas the output layer activatiorction is pure linear. With these
initial parameters in place, we can now train ttemdard NN for approximation on
the selected data sets. The same data sets araigbdnfor training of proposed
simplified NN models. The results obtained are samimed in (see tables 5.1-5.4),
followed by comparative graphs (see figures 5.2pshowing performance of these
simplified NNs against standard NNs over testintadsets; where total number of

training iterations or epochs are recorded on s-ard mean squared error on y-axis.

95

ANN SNN-I SNN-II
MSE No. of No. of MSE No. of No. of MSE No. of No. of
Data Set iterations parameters iterations parameters iterations parameters
(n+2)N+1 3N+n+2 3N+n+2
Dummy1l 0.080659 100 (2-4-1) 0.494222 100 (1-4-1) 0.465661 100 (1-4-1)
(2X1+X5?) 17 15 15
Dummy2 0.360283 100 (2-4-1) 0313595 100 (1-4-1) 0.4626 100 (1-4-1)
(2X1+2%%) 17 15 15
Dummy3 042679 100 (2-4-1) 0.0709674 100 (1-4-1) 0.0686217 100 (1-4-1)
(Sin(X1+X2)) 17 15 15
Pyrimidines 0.0919559 300 (14-6-1) 0.0119983 300 (1-10-1) 0.0236143 300 (1-8-1)
97 33 27
Triazines ~ 0.436261 300 (18-8-1) 0.0159458 300 (1-10-1) 0.0428223 300 (1-12-1)
161 33 39

Table: 5.1 Performance Comparison of Standard NBISihplified NNs

96

Squared Error

0.5+

2.5

=
al
:

[N
T

0 20 40 60

Epoch

80 100

ANN
SNN1
SNN2

Figure 5.1 Performance of Standard NNs Vs SingaliNINs over Test Set

45

40

Squared Error

(Dummy 1)

100
Epoch

150

ANN
SNN1
SNN2

Figure 5.2 Performance Of Standard NNs Vs Simglifi&ls over Test Set

(Dummy 2)

97

| ANN
gl 1 SNNL
SNN2

Squared Error

0 20 40 60 80 100
Epoch

Figure 5.3 Performance of Standard NNs Vs Simpliié&s over Test Set

(Dummy 3)
9
ANN
8 B SNN1
{ SNN2
7t '
6 -

Squared Error

0 50 100 150 200 250 300
Epoch

Figure 5.4 Performance of Standard NNs Vs Simpliié&s over Test Set
(Pyrimidines)

ANN
4.5¢] SNN1
SNN2

35 b

25 i

|

Squared Error

15

0.5 ,\\ i

0 50 100 150 200 250 300
Epoch

Figure 5.5 Performance of Standard NNs Vs Simpliié&s over Test Set

(Triazines)

The initial experimental results obtained with doyndata sets do not
reflect any significant improvement in terms ofalohumber of parameters. The
reason for that is we are only using two independanables, and therefore the
effect of simplification is not apparent. Howevéng results of benchmarking
datasets show a significant reduction in the tatahber of parameters. These
results supports our claim that simplified NNs araversal approximators for
functions defined on discrete input spaces; sinedave achieved approximately
the same or in some cases even better accuracyth significantly less
parameters. Although the performance of the simeglifalgorithms was quite
promising on the selected datasets, one may atgeiesitmplicity of dummy
datasets mainly consisting of two variables. Werdfoge extended our
experiments to use more complicated dummy datavaétsvarying complexity
and number of variables. We then used these datdseexperiment with
simplified algorithm-II which yielded even betteeniormance then before; please

refer to table 5.2 and comparison graphs (figuée5510). The experiments were

99

initially performed with 100 training iterations rfalummy datasets and 300

iterations for real world examples; in order toifyewhether the performance of

these models degrade upon increasing trainingtivesa Hence, increasing the

number of iterations actually does not affect od ahy value to the initial

performance of our simplified NNs, we re-evaluatbé performance of our

algorithms against standard NN with no data pregseing for both the models,

we also reduced the number of training iteratiomggicantly (i.e. 25) for

Pyrimidines and Triazines datasets, see table B3 54 with corresponding

comparison graphs as shown in figures 5.11 and 5.12

Standard NN

Simplified NN-I|

Data Set
No. of No. of No. of No. of
MSE iterations parameters MSE iterations parameters
(n+2)N+1 3N+n+2
Dummy 4
SIN(2X+4X57) 0.146185 100 17 0.074572 100 16
Dummy 5
2X X, H+LOG(Xy) 0.126166 100 21 0.011201 100 16
Dummy 6
N/
&r(ﬁz XX, J +05x; | 0.210441| 100 31 0.058809 100 28
Pyrimidines 0.079214 100 88 0.00356[L5 100 47
Triazines 0.035513 100 187 0.011004 100 74

Table: 5.2 Performance Comparison of Standard N8&ISihplified NNs for
(SNN-I1)

100

2.5

Squared Error
=
o

-
L
-

05} -

Figure 5.6 Comparison Graph, Standard NN Vs SinggliNN over Test Sets for

SNN-II (Dummy 4)
Legend:
Standard NNz - - - - - = - = =

35
\
3 J‘ i
\
\\
250]
\
\
. \
e 2f | 1
A1} | \
he} \
o \
5 | \
3 15¢ N 7
[%2) \
‘ \
\ AN
1 1 N N -
05) el]
\ T~
\ S
N ~
0 T S Y T N | | | |
0 10 20 30 40 50 60 70 80 90 100
Epoch

Figure 5.7 Comparison Graph, Standard NN Vs SinggliNN over Test Sets for
SNN-II (Dummy5)

101

55

4.5

N

Squared Error
w

05 1 1 1 1 1 _
0

Figure 5.8 Comparison Graph, Standard NN Vs SineoliNN over Test Sets for

SNN-II (Dummy 6)
Legend:

Standard NNz - - - - - = = = ————-

3.5

250

15 !

Squared Error

0.5- AN

B e e N S
0 10 20 30 40 50 60 70 80 90
Epoch

100

Figure 5.9 Comparison Graph, Standard NN Vs SiiieoliNN over Test Sets for
SNN-II (Pyrimidines)

102

o
=)

Squared Error
o o o o o
w E ol o ~

o
o

©
-
Y
/
/
/
)

Figure 5.10 Comparison Graph, Standard NN Vs SfiredINN over Test Sets

for SNN-II (Triazines)
Legend:

Standard NNz - - - - - = - - ————

The experimental results show that these simplifietivorks have the
ability to approximate functions defined on diserehput spaces to arbitrary

accuracy by employing less number of parametersoagpared to standard NN

approximation schemes. The simplified algorithmsvehashown to be

computationally inexpensive and simpler in architiez. Based on theses findings
we decided to proceed with formal publication of aark.

One crucial point to be noted here is the fact thlaen comparing our
results with standard NN models, we have not usgddata pre-processing with
standard NN models. For this particular reasoneitlger have to omit the data
pre-processing stage from the simplified NNs andiairse the network
parameters with random weights as in standard NNelor do similar data pre-

processing for standard NN model for a fair congmari We have adopted the

103

first approach and eliminated the data pre-proogssiage from simplified NNs.
With this setup in place, we re-evaluated the perémce of our proposed
simplified algorithms against standard NN model.obpanalysis of results
presented above we can also see that the diffeienperformance of standard
and simplified NNs is more apparent during initiedining iterations. Hence,
increasing the number of iterations actually doesadd any value to the initial
performance of our simplified NNs. For these reasave re-evaluated the
performance of our algorithms against standard Ntk wo data pre-processing
for both the models, we also reduced the numbertraining iterations

significantly (i.e. 25) for Pyrimidines and Triaeis datasets.

For illustration, consider the example of Pyrimigs data set, which
consists of 74 instances, 27 explanatory variabtes 1 response variable. With
five hidden layer neurons and over a set of 2&itens, the performance of a
standard NN in terms of mean squared error wasrdedoto be 0.2764 by
employing a total of 146 parameters according #2JN+1 (i.e. n = number of
network inputs, N = number of hidden layer neurofi$)e same data are then
used for training of our simplified NN. We obtainad accuracy of 0.0292 over
25 iterations by employing 47 parameters in totaloading to 3N+n+2. We have
also achieved better accuracy in terms of meararedierror. Also note that SNN
has not only achieved similar accuracy but it hdseved that in relatively fewer
training iterations or cycles, e.g. see the consparigraph for Triazines dataset,
where similar accuracy is achieved in very fewarning cycles. These results
support our claim that simplified NNs are univerapproximators for functions
defined on discrete input spaces, since we havie\aah approximately the same

or in some cases even better accuracy with sigmifig less parameters.

104

Pyrimidines

MSE !\lo. . of No. of
iterations parameters
Standard
NN 0.2764 25 146
Simplified
NN 0.0292 25 47

Table 5.3 Pyrimidines Data set - Performance Camspa Over Testing Data

for 25 lterations

Standard
7| —— Simplified

Squared Error

Epoch

Figure 5.11 Pyrimidines Data set - Performance Cangon over Testing Data
for 25 Iterations

105

Triazines

MSE !\Io. . of No. of
iterations parameters
Standard
0.1032 25 311
NN
Simplified
0225 25 77
NN

Table 5.4: Triazines Data set - Performance Congmriover Testing Data for

25 lterations

0.7
0.6}

0.5+ ‘x

Squared Error

Standard

—— Simplified

Figure 5.12 Triazines Data set - Performance Corngmar over Testing Data for

15 20
Epoch

25 lterations

106

5.4 Simulation Results For Simplified Regression Bxsting
Algorithm-11I

In order to evaluate the performance of the SRBoAthm-IIl we have
chosen three different benchmarking datasets: Ryines and Triazines which
are already used for evaluating simplified NN perfance and a third example

named F1 datasety=10sin(7m% %)+ 24 %~ .5°+ 10¢+ B¢ This first

appeared in [Fri91] and then in [ZPO1]. Since oocuk is on function
approximation problems for functions defined disen@put spaces, therefore we
have not used standard data for this problem,ishieecause their input variables
are continuous. Instead we have generated dummylsanfior all the five
explanatory variables which constitute discreteigal A total of 100 instances is

produced and then partitioned into training, valmaand test sets as per standard

practice. For a fair comparison with [ZP01] we haged Neural Networks as the
hypotheses and backpropagation as the learningguoe to train them. However
our algorithm uses a simplified/eakLearninstead of a standaM/eaklLearnas
used in [ZPO1]. Each network had a layer of thteesig’ activation functions
between the input units and a single linear outy\é.used early stopping with a

validation set in order to reduce over fitting e thypotheses.

Performance of this algorithm is compared with lighdly modified
version of the algorithm presented by Zimmel & #&&it which appeared in
[ZPO1]. The first step in the simplified regressitmoosting algorithms is
identifying a best linear approximation from theadable data. The aim is to
provide our Simplfied WeakLearn procedure. This t@nachieved easily by
applying multiple regression. In Matlab this cam done by using back-slash
operator (“/”). We may refer to Matlab Neural Netwdoolbox help section for

further details on specific implementation relaiesties.

107

The results were consistent for all the three gtasiand the training error

was reduced steadily. Please refer to the compagsaphs (see figure 5.13-5.15)
which show the performance of these examples tweteist sets.

35

2.5

Squared Error

0.5r N

0 10 20 30 40 50 60

70 80 9 100
Epoch

Figure 5.13 Performance Comparison of Simplifiedjlession Boosting Vs

Standard Regression Boosting over Test Sets (Rlines dataset)

0.8

0.7

Squared Error
o o o o o
N w = [4)] [e2]
) i |
-

o
-
T

/
/

Figure 5.14 Performance comparison of SimplifRfression Boosting Vs

Standard Regression Boosting over Test Sets (haaziataset)
Legend:

Standard Regression boosting: - - - - - - - -----

Simplified Regression boosting:

108

25

Squared Error
.
(62}

[
L

-

I

05F | S~

Epoch

Figure: 5.15 Performance comparison of SimplifiesjRession Boosting Vs

Standard Regression Boosting over Test Sets (Fke@t

Legend:
Standard Regression boosting: - - - - - - - -----

Simplified Regression boosting:

Data Set Standard Regression Boosting using Simplified Regression Boosting
Z&P Algorithm
MSE No. of No. of MSE No. of No. of
iterations parameters iterations parameters
(n+2)N+1 3N+n+2
Pyrimidines 0.079212 100 88 0.0035615 100 38
Triazines 0.035513 100 187 0.011004 100 71
F1 0.310441 100 22 0.208809 100 16

Table 5.5: Performance comparison of Simplifiegriession Boosting Vs

Standard Regression Boosting over Test Sets

109

Performance comparison of simplified and standegiession boosting is
summarized in table 5.5. On comparison of the abthiresults we can see that
the Simplified Regression boosting algorithm hashieed lower or
approximately similar MSE on all the three exampkas instance, see the results
obtained for F1 data set. We can see that we hakieved almost similar
accuracy in terms of MSE. However, the number ohpeters required for the
model has been reduced to 16 from 22 in standgmssion boosting algorithm.
For F1, dataset reduction in parameters is notgsofisant due to the fact that F1
data set has only five inputs but if we compareghmmeters required for both
algorithms over Traizines and Pyrimidines datase#s,can see the effect of
significant reduction in model parameters. For eplamn Traizines dataset we
have achieved much better MSE by employing onlparameters as compared to

187 required for standard regression boosting model

5.5 Summary

This chapter of the thesis discusses the implemtient details of the
simplified NNs. As illustrated earlier, these aligfoms are implemented in Matlab
7.0 using Neural Network tool box functions. Thé&gosithms are first
implemented and then their performance is evaluagdinst standard NN
approximation schemes. The data collection andppreessing tasks are also
discussed briefly. The proposed algorithms araaihjttested on three dummy
data sets, in order to understand the effectsla®ktalgorithms in detail, and then
on two real world examples from Bilkent Universifunction Approximation
repository. The experimental results are showménform of tables and graphs. A
comparison of training, validation and test sets dth data sets are presented.
Separate graphs showing the approximation anddstieg performance of these
simplified NNs against standard NN scheme, on s$e$$, are also presented.
Similarly, the implementation and evaluation detadf simplified regression
boosting algorithm are also given in this chapiée performance evaluation and
results for simplified regression boosting algaritinave been reported on three

benchmarking datasets.

110

CHAPTER 6

CONCLUSION

Function approximation capabilities of feedforwaidural Networks have
been widely investigated over the past couple achdes. However, use of these
NN models is restricted due to complex computatiattached with them. Over
the years many improvements have been suggestewpdrticular attention has
been paid to the nature of input spaces, the ntyjofithe research undertaken
ignores the fact the by focusing on distinguishemtires of discrete input spaces
more simplified and robust algorithms can be dgwetb The main focus of this
thesis is a special case of function approximaparblems that take on discrete

variables only.

6.1 Summary of Thesis

A survey of results on universal approximationgperties followed, by a
detailed analysis of simplified NN approach, alanitgh a discussion on special
features of discrete input spaces, provides usreiieal basis for further work.
We then proposed simplified Neural Network algamth and II for function
approximation in our selected domain i.e. functiaeined on discrete input

spaces with high dimensional-low sample case.

Experimental analysis, evaluation and comparisbrthese simplified
Neural Network based algorithms have shown thagetlagorithms work well in

the following situations:

» Limited availability of training data is the mairason for choosing SNN

over standard NNs because any networks performaiacely depends on

111

the number of training examples. Therefore, in ahsence of adequate
training data, it is hard for standard Neural Netwo show high level of
accuracy, which ultimately justifies the use ofsasimplified methods.

* When the input variables are independent of ealsérpit is easier to use
aggregation methods, described in simplified athors. This will result
in good initial starting solution which is the maibjective behind using

aggregation methods.

In order to investigate wider implications of treemplified Neural
Network approach, we extended our approach to segne boosting problems.
After a detailed analysis of existing regressiordtimg schemes, a simplified
regression boosting approach was introduced. Basetie simplified regression
boosting approach, we proposed algorithm-Ill, whish used for boosting

regression problems in our selected domain.

6.1.2 Some Limitations

Like any other algorithms, these simplified altjoms have some
limitations as well. Application of these algoritento benchmarking data and
examples have shown that it is hard to achieveretbsesults if the independent
variables have too much variation, there are vasalwhich take on continuous
values, the number of values a discrete variabietaiee on is very large, and the

input variables are not independent of each other.

The transformation phase of these algorithms mayse independent
discrete variables to be continuous; thus requinroge parameters to achieve the
desired approximation accuracy. Therefore speeia s required while selecting
a linear map that transforms multiple inputs todinectional data. Selection of an
appropriate mapping, which can achieve desiredracguis a trivial task and
hence proves the fact that functions defined orcrelis input spaces have
arbitrarily separable hierarchical structure whishmot unique. Algorithm-II is

not prone to this phenomenon, since each inpwtast deparately.

112

The algorithms were implemented and their perforteawas compared
with standard Neural Network models. Experimergalits obtained so far, show
that these schemes work in practice and have shimwachieve sufficient
approximation accuracy. In most of the cases we laahieved approximately the
same accuracy or even better by employing muchpassmeters as compared to

standard NN models.

6.2 Future work

The results obtained in this research have matgnsions which can be
explored in order to carry out future research. Ohlne most obvious extensions
is to extend our selected application domain tduche mix input variables i.e.
some inputs are discrete and some inputs are cantin This extended simplified
approach has already been discussed in [ZGKLO5¢ iflea is to use certain
inputs as groups, and rather than having a simgletiNeural Network model, use
more inputs, each representing separate groups.cakefurther extend this
simplified approach to replace the lower level sgstwith fuzzy systems or rule

based system i.e. simplified neural fuzzy systeses,[ZK08][ZGKLO5].

As highlighted in chapter 4, the simplified Neukstwork approach uses
ridge activation functions in the hidden layer. fehe@re many other types of
activation functions available for use in hidderyela especially radial-basis
activation functions, which have recently becomeyveopular. The simplified
Neural Network approach can therefore be invesihawith other activation
functions. Neural Network based ensemble methode tEso become very
popular mainly due to the fact many Neural Netwaonkdels can generally
produce better results than a single model. As shiavour simplified regression
boosting scheme this approach can be applied toaNRetwork based ensembles
models. There are many other ensembles that camvestigated for application

of these simplified methods.

113

Success of any Neural Network based model largelyends on the
availability and reliability of training data. Hower, availability of data for
certain application domains is always limited foffedent reasons e.g. LMCP
modeling, QSAR modeling and many other. These seBecan be applied to
many other application domains, where we are lidniig the availability of data
due to different reasons. One such example is ¢adtthcare data, especially in
United Kingdom, where access to patient relatedrimétion is very restricted due
to strict data protection rules. Health informatitself, is a vast field and the
opportunities for inter-disciplinary research enyahg these simplified methods
for developing decision support systems, are imeens

6.3 Published Work

The outcomes of this research work have been imedh and have

appeared in following paper:

* Syed Shabbir Haider, Xiao-Jun Zeng, Simplified ldedetworks
algorithm for function approximation on discretgut spaces in high
dimension-limited sample applications, NeurocomuytVolume 72,
Issues 4-6,January 2009, Pages 1078-1083.

6.4 Summary

This chapter is a brief summary of the researcltkwandertaken. It
includes a detailed discussion on advantages amthilions of these simplified
Neural Networks. We have also highlighted futursesech directions in this field,

followed by enlisting our published work.

114

Bibliography

[AB99] M. Anthony, P.L. Bartlett, Neural Networksehrning: Theoretical
foundations, Cambridge University Press, 1999.

[AP97] J.G. Attali & G. Pagés. Approximations of nfttions by a
multilayer perceptron: A new approach. Neural NekspVol 10,
No. 6, pp. 1069-1081, 1997.

[Ara93] M. Arai. Bounds on the number of hiddemits in binary valued
three-layer neural networks. Neural Networks, \@I.No. 6, pp
855-860, 1993.

[Bar93] A.R. Barron. Universal approximation bosrfdr superpositions of
a sigmoidal function. IEEE Trans. Info. Theory, V89, No. 3, pp.
930-945, 1993.

[Bau88] E.B. Baum. On the capabilities of multilayeerceptrons. Journal
of Complexity, Vol. 4, pp. 193-215, 1988.
[BCPI7] A. Bertoni, P. Campadelli, M. Parodi, A Istiag algorithm for

regression. In W. Gerstner, A. Germond, M. Hasé&rd J.-D.
Nicoud (Eds.), Proceedings ICANN'97, Int. Conf. @utificial
Neural Networks Berlin: Springer. Vol. V of LNCSpp343-348,
1997.

[Bei98] Valeriu Beiu, On Kolmogorov's Superpositso and Boolean
Functions. 5th Brazilian Symposium on Neural Nekso(SBRN
'98), 9-11 December 1998, Belo Hoizonte, Brazil. §p-60, 1998.

[Bis95] C.M. Bishop, Neural Networks for PatteRecognition, Oxford
University Press, 1995.

[BL88] D.S. Broomhead, D. Lowe, Multivariable fura interpolation
and adaptive networks. Complex Systems, Vol. 2,3#1-335,
1988.

[BreO1] L. Breiman. Random forests. Machine LeagniNol. 45, No. 1,
pp. 5-32, 2001.

[Bre96] L. Breiman, Bagging predictors, Mach. Leagj Vol. 24, pp. 123—

115

[Bre9s]

[Bre99]

[CCO5]

[CC99]

[CCLO5]

[Cyb89]

[CLO2]

[DHO2]

[Dru97]

[ETO3]

[FHTOO]

140, 1996.

L. Breiman, Arcing classifiers. The Ansaf Statistics, Vol. 26,
No.3, pp. 801-849,1998.

L. Breiman, Prediction games and arcingoatgms. Neural
Computation, Vol. 11, pp. 1493-1517, 1999.

T. Chen and H. Chen, Universal approximati@n nonlinear
operators by neural networks with arbitrary actoatfunctions
and its application to dynamical systems. IEEEn$a&tions on
Neural Networks, Vol. 6, No. 4, pp. 911-917, 1995.

J. G. Carney, P. Cunningham, The NeuralBA{gor&hm:
Optimizing generalization performance in baggedralenetworks,
in Proceedings of the 7th European Symposium otifichal
Neural Networks, pp. 35— 40, 1999.

T. Chen, H. Chen and R.W. Liu. Appnm&tion capability in
C(R") by multilayer feedforward networks and relatedhpems.
IEEE Trans Neural Networks Vol. 6, pp. 25-30, 1995.

G. Cybenko, Approximation by superpositioms sigmoidal
function, Mathematics of Control, Signals and Syst¥ol. 2, pp.
303-314. 1989.

K. Charles, X. L. Chui, Approximation by ge functions and
neural networks with one hidden layer, Journal pphoximation
Theory, Vol. 70, No. 2, pp. 131-141, 1992.

Nigel Duffy, David Helmbold Boosting Methoder Regression,
Machine Learning, Vol. 47, pp. 153-200, 2002.

H. Drucker, Improving regressors usibgosting techniques. In
Proceedings of the Fourteenth International Confare on
Machine Learning, pp. 107-115), 1997.

B. Efron, and T. J. Tibshirani, An Introdion to the Bootstrap,
Chapman and Hall, New York, 1993.

Jerome H. Friedman, T. Hastie, and R. Titashh Additive logistic
regression: a statistical view of boosting (Witlsadission and a

116

[FMO8]

[Frio1]

[Friod]

[FS96]

[FS97]

[GBOO]

[GP90]

[GTMc08]

[Hay96]

[HCO7]

[HCSO06]

rejoinder by the authors). Annals of Statistics.\28, No. 2, pp.
337-407. 2000.

Y. Fukuoka, H. Matsuki, A Modified Bagkopagation Method to
Avoid Local Minima, Neural Networks, , Vol. 11, pd059-
1072,1998.

J. H. Friedman, Greedy function approation: A gradient
boosting machine. Annals of Statistics, 2001.

J. H. Friedman, Multivariate Adaptive Regseén Splines, Annals
of Statistics Vol. 19, pp. 1-82. 1991.

Y. Freund, and R. E. Schapire, Experimenth & new boosting
algorithm, in Proceedings of the Thirteenth Intéiorel
Conference on Machine Learning, pp. 148— 156, 1996.

Y. Freund, R. E. Schapire, A decision-thdorgeneralization of
on-line learning and an application to boostingurdal of
Computer and System Sciences, Vol. 55, No.1, pp-139, 1997.
H. Altay Guvenir and I. Uysal, Bilkent Unikgty Function
Approximation Repository, See URL.:
http://funapp.cs.bilkent.edu.tr, 2000.

F. Girosi and T. Poggio Networks and thet bsgsproximation
property. Biological Cybernetics Vol. 63, pp. 16861 1990.

Leila Ait Gougam, Mouloud Tribeche, FawZiéekideche-Chafa,
A systematic investigation of a neural network flamction
approximation, Neural Networks, Vol. 21, No. 9, A811-1317,
2008.

S. Haykin Neural Networks-A Comprehensiveoufdation,
Macmillan College Pub., New York. 1996.

G.B. Huang, L. Chen, Convex incremental exte learning
machine, Neurocomputing Vol. 70 (16-18), pp. 3092%23 2007.
Guang-Bin Huang, Lei Chen, Chee-Kheong Sidwiiversal
Approximation Using Incremental Constructive Fesdfard
Networks With Random Hidden Nodes, IEEE transastion

117

neural networks, Vol. 17, No. 4, 2006.

[HDB96] Martin Hagan, Howard Demuth and Mark Be&leural Network
Design, (Oklahoma State University), 1996.

[HDJO2] M. Hagan, H. Demuth, O. De Jesus, An Inticicbn to the Use of
Neural Networks in Control Systems, Internationaurdal of
Robust and Nonlinear Control, Vol. 12, No. 11, $39-985, 2002.

[HeN87] R. Hecht-Nielsen Kolmogorov’'s mapping neduratwork existence
theorem. In: Proceedings Int Conf on Neural NekspiEEE
Press, New York, Vol. 3, pp. 11-13, 1987.

[HG92] C.M Higgins, R.M Goodman, Learning fuzzy ethased neural
networks for function Approximation International oidt
Conference on Neural Networks, IJCNN 7-11, Volpp, 251 —

256, 1992.

[Hor91] K. Hornik, Approximation capabilities dflultilayer Feedforward
Networks, Neural Networks, Vol. 4, pp. 251-257, 199

[Hor93] K. Hornik, Some new results on neural natwapproximation,
Neural Networks, Vol. 6, pp. 1069-1072, 1993.

[Hor98] K. Hornik, The random subspace method famstructing decision

forests. IEEE Transaction on Pattern Analysis andchihe
Intelligence, Vol. 20, No. 8, pp. 832-844, 1998.

[HS90] L. K. Hansen and P. Salamon. Neural netwemkembles. IEEE
Transactions on Pattern Analysis and Machine Igtsiice, Vol.
12, No. 10, pp.993-1001, 1990.

[HSSO05] G. B. Huang, P. Saratchandran, Narasimhand&argn,, A
Generalized Growing and Pruning RBF (GGAP-RBF) MNeéur
Network for Function Approximation, IEEE transacts on
Neural Networks, Vol. 60, No.1, pp 57-67, 2005.

[HSW89] K. Hornik, M. Stinchcombe, and H. Whitdultilayer feedforward
networks are universal approximators, Neural Nekaolol. 2,
pp. 359-366. 1989.

118

[HZ09] S. S. Haider, and X. Zeng, Simplified neungtworks algorithm
for function approximation on discrete input spadas high
dimension-limited sample applications. Neurocompywol. 72
(4-6), pp. 1078-1083, 2009.

[HZSO06] G.B. Huang, Q.-Y. Zhu, C.K. Siew, Extrerfearning machine:
theory and applications, Neurocomputing, Vol. 7p, #89-501,
2006.

[JJ94] M. I. Jordan and R. A. Jacobs. Hierarchmixttures of experts and
the em algorithm. Neural Computation, Vol. 6, Nppp.181-214,
1994.

[Kas96] N. K. Kasabov, Fonundation of Neural Netkmrfuzzy systems
and knowledge engineering, Massachusetts Instifutechnology,
1998.

[KKK97] V. Kurkova, P.C. Kainen & V. Kreinovich. Hsnates of the
number of hidden units and variations with respgedbalf spaces.
Neural Networks, Vol. 10, No. 6, pp.1061-1068, 1997

[KP99] S. V. Kamarthi, S. Pittner, AcceleratihNgural Network Training
using Weight Extrapolations, Neural Networks, VI, pp. 1285-
1299, 1999.

[KS04] F.O. Karray and C. De Silva, Soft Compgtiand intelligent
systems design, pp. 236 Addison Wesley 2004.

[KS96] B. Krdse, Patrick V.D. Smagt, An Intradion to Neural Network.

8" Edition, The University of Amsterdam, 1996

[Kur92] V. Kurkova. Kolmogorov's theorem and mudtyler neural
networks, Neural Networks, Vol. 5, No. 4, pp. 500651992.

[LLPS93] M. Leshno, V. Y. Lin, A. Pinkus, S. Schen, Multilayer
feedforward networks with a nonpolynomial activatifunction
can approximate any function. Neural Networks, \&INo. 6, pp.
861-867, 1993.

[LMBO3] Fei-Long, Li You-Mei XU and Zong-Ben, L simultaneous

approximation by neural networks with one hiddeyeta Journal

119

[LY97]

[LY99]

[Mas93]

[Med98]

[MHO7]

[MVAQ9]

[PG90]

[Pin9g]

[PS91]

[PS93]

[RCgO5]

of Software, Vol. 14, No. 11, pp. 1869-1874, 2003.

Y. Liu and X. Yao. Negatively correlated mal networks can
produce best ensembles. In Australian Journal délligent
Information Processing Systems Vol.4 (3/4), pp.-186, 1997.

Y. Liu and X. Yao. Ensemble learning via ragiye correlation.
Neural Networks, Vol. 12, No. 10, pp.1399-1404,9.99

T. Masters, Practical Neural NetworkciRes in C++. Academic
Press, Inc., 1993.

David A. Medler, A Brief History of Connggnism, Neural
Computing Surveys Vol. 1, pp. 61-101, 1998.

H.N. Mhaskar, Nahmwoo Hahm, Neural Networks function
approximation and System Identification, Neural @oamation Vol.
9, pp. 143-159, 1997.

G. D. Magoulas, M. N. Vrahatis, and G. Adroulakis Improving
the Convergence of the Backpropagation Algorithmings
Learning Rate Adaptation Methods, Neural Computatiol. 11,
pp. 1769-1796, 1999.

T. Poggio & F. Girosi. A theory of netwarfor approximation and
learning, Networks for approximation and learnifypoc. IEEE
(Special Issue on Neural Networks), Vol. 78, No.pp, 1481—
1497, 1990.

Allan Pinkus, Approximation theory of MLP adel in Neural
Networks, Acta Numerica, pp. 143-195. 1999.

J. Park and I. W. Sandberg, Universal appratton using radial-
basis function networks, Neural Computation, \Blpp. 246-257,
1991.

J. Park & I.W. Sandberg. Approximation aadial-basis function
networks. Neural Computation, Vol. 5, No. 3, pp53816, 1993.
Fabrice Rossi and Breuc Conan-Guez Furatianulti-layer
perceptron: a non-linear tool for functional datelgsis , Neural
Network, Vol. 18, No.1, pp. 45-60, 2005.

120

[Rip96] B.D. Ripley, Pattern Recognition anduxed Networks. Cambridge
University Press, 1996.

[RJ99] R.D. Reed and Robert J. Mark, Neural tBimg: Supervised
Learning in Feedforward Artificial Neural Network3he MIT
Press, 1999.

[RMR99] G. Ridgeway, D. Madigan, & T. Richardso Boosting
methodology for regression problems. In D. Heckermé& J.
Whittaker (Eds.), Proc. Artificial Intelligence ar@tatistics, pp.
152-161, 1999.

[RSO3] M Ananda Rao, J. Srivinas, Neural NetworR$gorithms and
Applications, 2nd Edition, 2003.

[Sar97] W.S. Sarles, Neural Network FAQ, perigaasting to the Usenet
newsgroup see comp.ai.neural-net, see URL:

ftp://ftp.sas.com/pub/neural/FAQ.html, 1997.

[SCAa05] Robert J. Schilling, James J. Carroll, AdmF. Al-Ajlouni,
Approximation of Nonlinear Systems with Radial BaBunction
Neural Networks IEEE Transactions on Neural Neksp¥ol. 12,
No. 1, January 2001.

[Sch90] R. E. Schapire, The strength of weskrability, Mach. Learning,
5, 197-227, 1990.

[SH96] R. Salomon, J. L. Hemmen, Accelerating Backpropagahrough
Dynamic Self-Adaptation, Neural Networks, Vol. §.®H89-601,
1996.

[SLO2] Ratsko R. Selmic and Frank L. Lewis, Neurbletwork

Approximation of piecewise continuous functions:pfipation to
Friction compensation, IEEE transactions on Neuatworks,
Vol. 13, No. 3, pp. 745-751, 2002.

[SMO02] Jeff Schneider, Andrew Moore, Active Learyim Discrete Input
Spaces, Auton Paper, 2002. See URL:
http://www.autonlab.org/autonweb/papers/y2002/1 4.

[Spro7] D.A. Sprecher. A numerical implemerdatiof Kolmogorov’'s

121

superpositions, Neural Networks, Vol. 10, No. 3, gg7— 457,
1997.

[SS96] Christos Stergiou and Dimitrios Siganos Meetworks-Online
Technical Report. Department of computing, Impedallege of
Science technology and Medicine, Surprise, Vol996.

[ST98] Franco Scarselli & AH Chung Tsoi, Univers&pproximation
using Feedforward Neural Networks: A survey of somxesting
methods, and some new results, Neural Networks, ¥hl No.1,
pp. 15-37, 1998.

[Sti99] M.B Stinchcombe, Neural Network approxinoatiof continuous
functionals and continuous functionals on compmetiions,
Neural Networks, Vol. 12, pp. 467-477, 1999.

[TKGO3] D. Tikk, L.T. Koczy, T.D. Gedeon, A survegn the universal
approximation and its limits in soft computing tatfues
International Journal of Approximate Reasoning,.\Z8, No. 2,
pp. 185-202, 2003.

[WagO02] W. P. Wagner, Daily Peak Load Electricitprécasting using
Artificial Neural Networks.2002. See URL:
http://hsb.baylor.edu/ramsower/acis/papers/wagintmy.

[Wal90] S. F. Walker. A brief history of connectiem and its

psychological implications. Al & Society, Vol. 4pp17-38, 1990.

[Wat80] G. A. Watson, Approximation Theory and Nuroal Methods,
New York, John Wiley and Sons, 1980.

[WGG95] Jonathan Wray, G. Gary, R. Green, Neural networl
approximation theory, and finite precision compiotat Neural
Networks, Vol. 8, No. 1, Pages 31-37, 1995.

[Ya099] Xin Yao, Evolving Atrtificial Neural Network Proceeding of the
IEEE, Vol. 87, N0.9, pp.1423-1447, 1999.

[ZGKLO5] Xiao-Jun Zeng, John Yannis Golermas, JéhrKeane and Panos
Liatsis, Approximation capabilities of HierarchicBleural-fuzzy
systems for function approximation on discrete epac

122

[Zha99]

[ZKO05]

[ZKO8]

[ZPO1]

[ZP08]

International Journal of Computational Intelligen®®l. 1, No.1,
pp. 29-41, 2005.

J. Zhang, Developing robust non-linear nederough bootstrap
aggregated neural networks, Neurocomputing, Vo(1-25), pp.

93-113. 1999.

Xiao-Jung Zeng, John A. Keane, Approximatioapabilities of
hierarchical fuzzy systems, IEEE Transactions omziFuSystems
Vol. 13, No. 5, pp. 659-672, 2005.

Xiao-Jun Zeng and John A. Keane, Hierarahitizzy systems for
function approximation on discrete input space$ wipplication,

IEEE Transactions on Fuzzy Systems, Vol. 16, Nopf, 1197-

1215, 2008.

R. S. Zemel, T.A Pitassi, Gradient-Based ®mg Algorithm for

Regression Problems Advances In Neural InformaRoocessing
Systems, No0.13, pp. 696-702. 2001.

Zarita Zainuddin and Ong Pauline. Functigpraximation using
artificial neural networks. WSEAS Trans. Math. Vé|.No. 6, pp.
333-338, 2008.

123

Appendix-A: Backpropagation Algorithms for Standard
Neural Network Models.

We can define a standard Neural Network for fumcapproximation problems as
shown in equation (1.1). Note that it has been guoand widely accepted that
Neural Networks with one hidden layer of sigmoidhaation neurons and an
output layer of linear neurons are universal fuorcthpproximators i.e. they can
approximate any reasonable function to arbitrarguescy. More precisely,

according to the definition of famous (Cybenko, @ptheorem as:

“let o be any continuous sigmoid-type function (extf) = 1/ (1+&)). Then any
continuous real-valued function ‘f on [01](or any other compact subspace of
R") and¢ >0, there exists vectors;, @.......... a, , b, ¢gcoand a parameterized
function Y(', a, b, ¢) : [0, R such that:

IY(x,a,b,s—fK)| <& foralxO [0,1]
Where,
N
Y=(xahd= NN X=)> oo & % pt g (1.1)
i=1
Anda R &ci, ¢ &b U R, where a = (8ay...... , &), ¢ =(c,co...... , @) andb
= (by,bo..., k)", Also note that ‘ais‘d x 1’ vector usually referred to as the

direction of the ridge function.

Deriving The BP Algorithm For MLPs

Let,
« X= ()(l,...,>§,)are input variable.
* vy, ORisthe output variable, ‘m’ is the layer index afehotes output

layer, the index of the layer just below outputdaywill be ‘m-1’ and ‘m-

2’ and so on.

124

a;; is the connection weight going from inpilt to hidden layer neuron

‘' . And can be represented in matrix form as shoviovbe

all a12 al
aZl a22 aZ
aji =
[Aip Q2 i

b, is the bias attached to hidden layer neuron 7,

Where asG & G, are the connection weight and bias from hiddean&y

output layer respectively.

O is the activation function and in the case of sigial neurons,

o(x) = ;_ , and in the case of linear neurons it willdie) = x.
1+exp”

Since
The output of hidden layer neurgnin the layerm-1" will be;

y=Y o(a,x +) (1.2)

j=1

Where the subscript ‘I’ represents the ith inputalale x’.

In vector/ matrix form this can be seen as:

The net input to our hidden layer neurons will be:
N

net"™ =) o(a;x +h) (1.3)
i=1

The output of the last layer will be the same ssdt input since the
output layer uses the linear neurons. So the owtpoeuroni’ in the

layer'm’ (which is last layer) will be:

yim: zclm yjm—l+ QJm (14)
i=1

where y]“‘lcan be computed as shown in equation (1.2).

125

Performance Index:

We know that our training set is of the form:

{X1, tH Xos t2}eeee e, { X tid (1.5)

WhereXis the input vector anti is the corresponding target value and k = 1....p

represents thié&th’ iteration or pattern.

Let ‘W’ denote all the network parameters W= [aﬂ b, ¢, g} . Our objective

Is to minimize the cost function or the error meadie. sum of squared errors

over whole the training set/ patterns which cauléned as:

new)=33 3 (4 (k)= v (K)) Q-
And in the vector case we can define the above as:
(W)=Y [ee] = X[(t-y) (t-y)] (1.7)

Where &’ is the sum of squared errors over all the traipatierns. Therefore the

approximate mean square error over a single safkp¥eould be:

es(x)=e" (e(9=(t(k)-y(k)) (t(k)- v(K)) (1.8)

The Generalised Delta Rule/ Approximate Steepest Beent For Weight/ Bias
Update:

We can define the approximate steepest descemnaralised delta rule for

MLP’s as follows:

=W AW, whereW =| g, b, ¢, 6| (1.9)
And,
AW = _,7‘95\;\/(\’\’) , where 77" is the learning rate (2.0)

In the vector case we can write the equations @nél)(2.0) altogether as:

126

oE"

w(k+1) = w(k)-7 (2.1)
ow
where ‘K’ represents the ‘kth’ iteration or pattern
Gradient Calculation
O] 0
Now we have to compute the gradie%%sr: oE ,aE ,aED ,aED , by
ow oc 0 03 adb

using the chain rule of differentiation as follows:

O O O O
OE" _ OE Danef" and OE” _ OE Danei;"‘ 2.2)
oC. odnef” 0GC 0C, onef" 0G

0 o onet™ . o onet™
0E” _ aE_1D t" and2E_ = aE_lD g (2.3)
da; onef" 03 ob dnet’ b

0E” o . ,
Let W =g, be the sensitivity/ error signal for the outpotdidden
J

layers respectively. From the network definitidooae we can see that we have

to compute the following gradients inline with tbgns. (2.2) and (2.3) above :

GCi GCI i=1 aCo a(:o i=1

M: m-1 andﬂzl (R.4
oC, . oG,

Similarly,

onet™ 9 | Q. onet™ 9 | .

= i d =— ;

%a, 0g [;a"“b} SR PIL LA
-1 -1

onet” _ x and onet” 1 (2.5)

da. db

1Ll

Now we can re-write our steepest descent rule uaton (2.3) as follows:

127

1. For output layer weight and bias values:

m m1 m
ck+h=ck-715Yy . Ck+D)=c,(K)-7g (2.6)
2. For hidden layer weight and bias values:

a,k+D=a,00-78"x . bk+D=ph K-8 2.7)

Computing The Sensitivities (Back Propagation Of Eiror)

aED m, m-1

The only thing to left to be computed is the sevisis i.e. onep™ =S
y

This is the process which gives the name of bacgagation to this algorithm.

Note that the sensitivities are computed by stgrinthe last layer, and then

propagating backwards through the network to tre Eayer. i.e. $> S*>

For the last/ output layer this sensitivity or ersggnal (i.e. how the error at the

output is affected by the net input ‘i") can beigasomputed as follows:

e e A (9 ()

i=1 k=1

ay, (k
=-(t (k) -y, (k))an—;m) (28)
(K
Where the terr%/'% is actually the derivative of our activation fureti
ne
e %Y =20(el) = ¢ (pen (2.9)

onei’ onef

Note that in the case of sigmoidal neurons it bl

0 1 _ exp” _ |- 1 1
0(X)| 1+exp™ - (1+exp‘x)2 - I+ exp* || ¥ exp

=(1-%) % and in the case of linear neurons it will be:

——(¥)=x (3.0)

9
o(x)

128

Therefore, we can see that the sensitivity or esigmal for output layer will be,
Sm:_(tim_yim) f (nep) B

From here we can now compute the sensitivity oftiidelen layer. Note that the
error at hidden layer is not a direct function tf weight and bias. It is an
accumulation of error from the layer just aftersthiSo, we need another
Application of chain rule of differentiation to cqmte this error signal.

o= OE" _ 9E” odnef"
' onet™ odnef'd net”

(3.2)

O

Note that we have already computed the first t%?’-llqzqﬁ =§" in equation (3.1).
ne

Therefore, we are left with,

onet" 0 [oy

et aneﬁl{;qy;“ ¥ q)} e (3.3)
oyt aa(neﬁ"‘l) L .

el onep” = f'(net™) (3.4)

f'(neﬁ"‘l)’ is the derivative of activation function and da& computed

following the derivation depicted in equations {Za@d (3.0).

By combining (3.3) and (3.4) we get,

S™=8"¢ f(nq’t*l) (3.5)
We can now obtain the updated weight and bias sdlueour network by

substituting the sensitivities or error signal atea in equation (3.1) and (3.5)

into (2.6) and (2.7) respectively.

Jacobian Matrix

: . one .
Note that the vector/ matrix representation oftédren 3 1}:1 computed in
net
]

equation (3.3) is of the form:

129

[onet" dnef’ d nefl" |
onet™ odnef™ 0 nef
onety dnef’ 0 nef’
onet™ odnef™ d nef™
oney” _ =c”‘=f'(net,."”)
onet™
onet” dnef’ 0 nef’
| Onet™ onef™ 0 nef™ |
9o (net™
(ET) 0 . 0
onet™
do(net™
o) 0
onet,”
Where as f'(nef™) =
0
do(net™
0 0 .. (T’n:)
i onet™
net” m-1
Therefore———=c¢" = f (net
erefore—— s ()

(3.6)

(3.7)

130

Appendix-B: Description of Data Sets

The Pyrimidines and Triazines data sets are takamn fJCI Machine Learning
Repository. A brief description of their past usagel original sources is given
below.

A. Title of Database: Pyrimidines
1. Sources: Luis Torgo

http://lwww.ncc.up.pt/~ltorgo/Regression/DataSeisl
2. Relevant Information: The task consists of LeaynQuantitative Structure
Activity Relationships (QSARSs). The Inhibition ofiliydrofolate Reductase by
Pyrimidines. The data and methodology are desciitned
- R. D. King, S. Muggleton, R. A. Lewis, M. J. Stberg, Drug Design by
machine learning: the use of inductive logic progmang to model the structure-
activity relationships of trimethoprim analoguesnding to dihydrofolate
reductase. Proceedings of The National Academyc@nges , Vol. 89, Issue 23,
Pages 11322-11326, 1992.
5. Number of Instances: 74
6. Number of Attributes: 27 + 1 Response varialdedctivity

7. Missing Attribute Values: None

B. Title of Database: Triazines
1. Sources: Luis Torgo

http://lwww.ncc.up.pt/~ltorgo/Regression/DataSeisl
2. Relevant Information: The problem is to learmegression equation, rule or
tree to predict the activity from the descriptiteustural attributes. The data and
methodology is described in detail in:
- Ross D. King, Jonathan D. Hirst and Michael BEernberg, A comparison of
artificial intelligence methods for modelling QSAR<Applied Artificial
Intelligence, Vol. 9, Issue 2, Pages 213-233, 1995.
- Jonathan D. Hirst, Ross D. King and Michael J3ernberg, Quantitative
Structure-Activity Relationships by Neural Networkand inductive logic

131

programming. I. The inhibition of dihydrofolateductase by triazines. Journal of
Computer Aided Molecular Design, Vol. 8, Issue dg&s 405-420, 1994.

3. Number of Instances: 186

4. Number of Attributes: 60 + 1 Response varialgedctivity

5. Missing Attribute Values: None

C. Title of Database: F1

1. Sources:

(a) Original owners of database:

This is an artificial data set used by J.H. Friadn(i1991) for MARS.

-BREIMAN, L. (1996): Bagging Predictors. Machinedrning, Vol. 24, Issue 3,
Pages 123-140. Kluwer Academic Publishers.

-FRIEDMAN, J. (1991): Multivariate Adaptive Regsssn Splines. Annals of
Statistics, Vol. 19, Issue 1, Pages 1-82.

2. Relevant Information: The cases are generateg tise following method:
Generate discrete values of 5 attributes,. X, X independently each of which
uniformly distributed over [0,1]. Obtain the valakthe target variable Y using

the equation below:

y =10sin(mx %) + 20 % - §° + 104+ 5

3. Number of Instances: 100
4. Number of Attributes: 5

5. Missing Attribute Values: None

132

Appendix-C: Proof of Theorem 2

For the given input spade , based on Theorem 1 in [ZGKLO5], there exists a

linear function:z=L(X)=w, + > wXx (C.1)

i=1

which is one to mapping frotd to R. For every

Xty = (U Upgg ooty JOU = XU, wherek =12,.N, 1=12,..n (C.2)
Define:
Loty ~ L(Xklkz..kn) (C.3)

That is, z,, , is the function value ofL.(X)at X,, , and the set of all such
values is denoted as :

V={ Vi i |k =12,00N, i = 12,0}, (C.4)
which is the output variable space of functidutX . As L(X)is one-to-one

mapping, then all elements of are different to each other. Therefore, for

everyz[]V , there exists only one elemeit in U such thatz=L(X) Further,

asU is a discrete space with finite elements, theems a discrete space with finite

elements.

Now define functiong £ dnV as follows: For everye[1U , let X be the unique
element in U such that=L(X .)'hen define the value ajat z as follows:

9(2) =G(X) (C.5)
For the functiong defined in the above, it can be proved by the s/grocess
that for all X JU .

G(X) = g[L(X)] (C.6)

As g(z2)is a function on finite discrete spat¥ewhich is bounded, based
on [Wat80] it can extended to be a continuous fonctg(X) on \7:[_22]

(wherez =min,, z, z= max,, 2) inthe sense that:

133

g(X)=g(X) andzOV. (C.7)
As ((X)is a continuous function o , then it is implied immediately from the

universal approximation property of standard NNsoomtinuous spaces that
there exists a NNNN, (z) on U such that
1§ = NN, |l.=max,; | §(2) -NN,(z) < ¢ (C.8)

Now define a SNN aSNN(X) = NN,[L(X)], then (C.6), (C.7) and (C.8) imply
that, for anyX OU ,

| G(X) = SNN(X) [H g[L(X)] = NNy[L(X)]]

< maxy, | 9(2) = NN,(2)|

<max_; |9(2) -NN,(2)|< ¢
which leads td|G - NN|Fmax, |G(X) —NN(X)|<& and hence complete the

proof.

134

Appendix-D: Proof of Convergence Algorithm-lI|

By following the same approach as in [ZP01] we peove the standard boosting

property for our simplified regression boostingalthm in the case where all

combination coefficientg, =1. Let pl =w /Z';:lV\{ and & denote the error that
hypothesist makes on its distribution§, =>_ p| [(h (x,)- y‘)2 = r} :

i=1
Theorem: Assume that for ai<T hypothesist makes error & on its

distribution. If the combined outputg/is considered to be in error iff

B 2
(y— yj > 1 then the output of the boosting algorithm (affestages) will have

error at mosté where, & = P{(y- yj > r] < |I|Et :
t=1

Proof: The proof presented below is based on the appriatiappeared in [78]
and then followed by [ZPO01]. It is shown that tluensof weights at stageis

bounded above by the product of tfes , while at the same time, for each input

that is incorrect, its corresponding Weigddlt at stageT is significant.
n .) . i\2) T

D =k (1 ()= y) -1] =& T w=[] 4

i=1 i i t=

The second equality holds becau&es (th [(h (x)- y-)z - r}/z V\'IJ
Now

let ;/_‘ =>rh (xi)/T, then the weight of exampiet timet is:

o =(z[(n*(xi)—y‘)z—r}j:;[((ﬁ(xi)—‘yf}(‘y; i 'yjjz—r}

135

N2
The last in equality holds because/ar (h* (x')) :]/th(h* (x')- yfj . Now
consider an example inputhat produce an error, then we have

_ 2
(y.‘ - y’j >7= w =1, if & is the total error rate of the combination output,

then) w =¢. Thus we have§ <> w,,, = ﬁft :
i t=

One important fact to be noticed that there aragsumption about error rafeof

individual hypothesis. Also if alf, <1=A,where A <1,then & <A .

136

Appendix-E: Matlab Implementation for Simplified NN
Algorithms

1. Importing data into Matlab:

The first step in experiments is to import the dadts in Matlab Work Area,;
Matlab does support many formats; we have got #te ith Excel format with all
the independent and dependent variables in onevititethe last column having

target values.

1.1 Initialisation:

Note: Matlab provides inbuilt functions to find thest linear approximation i.e.
the task of finding a line or tangent plane thatliés the given data (Simple or
Multiple Regression). Matlab represents a multat&rior least squares fit model

of the data as:

V=aptaXgt+taXyt.......... + &y Xn

We have to solves for unknown coefficiengsaa & and @ , by performing a
least squares fit. For this we have to construdtsaive the set of simultaneous
equations by forming the regression matrix, X, aalding for the coefficients
using the backslash operator.

Step 1: Input Independent and dependent variables
a) Set x = [observations for all the independent variables x 1....n]’
/I a transpose operator is used to later set thiglgan in matrix

form //

137

b) Set y= [target values for each input pattern]’
/I a transpose operator is used to later set thiglgan in matrix

form //

Step 2: Solve for the least square fit model efdhta (i.e. to Find the best

Linear approximation z = L*(X) = a’X + b using Leasjuares algorithm)
c) Construct the regression matrix ‘X’ by using Mattammand
X = [ones(size(¥) X1 Xo....... Xnl;
/I This will generate the matrix ‘X’ with all th@dependent
variables appearing as columns with an extra colafames in the
beginning so that we can have the constant vajie‘the
equation above.//
d) Using backslash i.e. ‘A = X\y’ to solve forkmown coefficients;

/Il X = A\B Denotes the solution to the matrix eqoatAX = B //

Step 3: Training data transformation: Transforenttfaining data
{{y@®, X(0)];t=22,...,M} to{[y(t), z(t)];t =12,...,M } by using
z=L(X)=aX +b;

e.1l) Inthe case of algorithm 1 Set P = [X] * [A]

// multiplying the Input variables matrix ‘X’ witthe regression
equation calculated in step 2(d) //

138

e.2) Inthe case of algorithm 2 Set net.iw {1,1p<i.e. a & &..)&
net.b{1} = &
/I this will set the weights & bias for the addital layer before the
one dimensional NN to be the same as the coefieigithe

regression equation computed in step 2.d.//
N
Step 4: Forming the initial simplified NN as= N(2) =) ¢, olaz+ p)]+c,
i=1

f) SetP=P’

/I Setting the resultant ‘P’ from step 3(e) as megependent
variable //

g) Set T = [target values for each inpgt P

h) Now creating the feedforward network with one hiddseyer of
sigmoid activation units and linear activation r@uat the output (i.e
to be consistent with the conventional FF NNs uUsedunction

N
approximation).y = NN(2) = ZCi J[a(a' X +b)+ ﬁ)] +C,.
i=1
The matlab command below will be used to createathbitecture as

above
net=newff(minmax(P),[Hid_N, Out_N],{'tansig’,'pure},'traingd");

// Hid_N = number of neurons in hidden layer & ONt=
number of neurons in output layer; always one in@ase. The
function minmax is used to determine the rangé@inputs to
be used in creating the network.//
1.2 Iterations:
Step 5: The network will be trained using tramhal back-propagation
(gradient descent) algorithm to identify and updbhteweight and bias

values for our network as depicted in Matlab comdnianstep 4(h),

139

a) Use the Matlab command as below to train the/ordt

[net,tr]=train(net,P,T)

Note: To allow for more flexibility with experimatibn we may wish to
change some of the default parameters associatidnetwork training
prior to training i.e. training progress record (heainParam.show),
choice of number of training iterations (net.tragr@m.Ir), learning rate
(net.trainParam.epochs) & training goal i.e. desiraccuracy

(net.trainParam.goal).

Step 6: The network can now be simulated to chisclesponse for the input

1.3

patterns.

a) By using following command

a = sim(net,p)

Forecasting:

Step 7: Once the network has been fully traeedi performance goal for the

d)

training session has been achieved, we can pithéictutputs for any

new input pattern as below.

a) Set = [input pattern to be forecasted, f=1....n]

b) F = [ones(sizef)) f1 fa....... fol;

c) SetP =[F]*[A]
// multiplying the Input variables matrix ‘f’ witthe regression
equation calculated in step 2(d) //
Repeat step 6 (a) to obtain your forecast.

140

