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ABSTRACT 

This thesis concentrates on learning and identification of fuzzy systems, and this 

thesis is composed about learning fuzzy systems from data for regression and 

function approximation by constructing complete, compact, and consistent fuzzy 

systems. 

 

Fuzzy systems are prevalent to solve pattern recognition problems and function 

approximation problems as a result of the good knowledge representation. With 

the development of fuzzy systems, a lot of sophisticated methods based on them 

try to completely solve pattern recognition problems and function approximation 

problems by constructing a great diversity of mathematical models. However, 

there exists a conflict between the degree of the interpretability and the accuracy 

of the approximation in general fuzzy systems. Thus, how to properly make the 

best compromise between the accuracy of the approximation and the degree of 

the interpretability in the entire system is a significant study of the subject. 

 

The first work of this research is concerned with the clustering technique on 

constructing fuzzy models in fuzzy system identification, and this method is a 

part of clustering based learning of fuzzy systems. As the determination of the 

proper number of clusters and the appropriate location of clusters is one of 

primary considerations on constructing an effectively fuzzy model, the task of 

the clustering technique aims at recognizing the proper number of clusters and 

the appropriate location as far as possible, which gives a good preparation for the 

construction of fuzzy models. In order to acquire the mutually exclusive 

performance by constructing effectively fuzzy models, a modular method to 

fuzzy system identification based on a hybrid clustering-based technique has 

been considered. Due to the above reasons, a hybrid clustering algorithm 

concerning input, output, generalization and specialization has hence been 
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introduced in this work. Thus, the primary advantage of this work is the proposed 

clustering technique integrates a variety of clustering properties to positively 

identify the proper number of clusters and the appropriate location of clusters by 

carrying out a good performance of recognizing the precise position of each 

dataset, and this advantage brings fuzzy systems more complete. 

 

The second work of this research is an extended work of the first work, and two 

ways to improve the original work have been considered in the extended work, 

including the pruning strategy for simplifying the structure of fuzzy systems and 

the optimization scheme for parameters optimization. So far as the pruning 

strategy is concerned, the purpose of which aims at refining rule base by the 

similarity analysis of fuzzy sets, fuzzy numbers, fuzzy membership functions or 

fuzzy rules. By other means, through the similarity analysis of which, the 

complete rules can be kept and the redundant rules can be reduced probably in 

the rule base of fuzzy systems. Also, the optimization scheme can be regarded as 

a two-layer parameters optimization in the extended work, because the 

parameters of the initial fuzzy model have been fine tuning by two phases 

gradation on layer. Hence, the extended work primarily puts focus on enhancing 

the performance of the initial fuzzy models toward the positive reliability of the 

final fuzzy models. Thus, the primary advantage of this work consists of the 

simplification of fuzzy rule base by the similarity-based pruning strategy, as well 

as more accuracy of the optimization by the two-layer optimization scheme, and 

these advantages bring fuzzy systems more compact and precise. 

 

So far as a perfect modular method for fuzzy system identification is concerned, 

in addition to positively solve pattern recognition problems and function 

approximation problems, it should primarily comprise the following features, 

including the well-understanding interpretability, low-degree dimensionality, 

highly reliability, stable robustness, highly accuracy of the approximation, less 

computational cost, and maximum performance. However, it is extremely 
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difficult to meet all of these conditions above. Inasmuch as attaining the highly 

achievement from the features above as far as possible, the research works of this 

thesis try to present a modular method concerning a variety of requirements to 

fuzzy systems identification. 
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Chapter 1  INTRODUCTION 

Albert Einstein said, “Make everything as simple as possible, but not simpler.” 

  

With the development of information technology, computing technology has 

already become an important tool to help humans dealing with various kinds of 

tasks, and the relationship between computing and humans has therefore become 

an increasing issue as a result of the gradual nature of development. Being public, 

highly reliable, aggressive and efficient, data mining is the hottest subject of the 

day with a splendid future for helping humans to understand undiscovered 

knowledge and to further explore it. So far as exploring undiscovered knowledge 

is concerned, data mining is the process of extracting patterns from data, which 

plays an important role in discovering knowledge from data by machine learning 

algorithms. In addition to the fields of engineering and computer science, data 

mining has also been applied to a variety of fields because of its practical 

features of extracting useful information from data. However, the more advanced 

computing technologies develop and are applied, the more complex and larger 

size the data sets have grown. To relieve this problem interrogation of new data 

in accordance with Occam’s razor is a promising course for researchers of 

machine learning and optimisation. 

1.1 Machine Learning 

A computer program is said to learn from experience E with respect to some 

class of tasks T and performance measure P, if its performance at tasks in T, as 

measured by P, improves with experience E. (Mitchell, 1997)  

 

Machine learning is a discipline of computer science that researches into how the 

computer positively acquires precise behaviour, as well as new knowledge by the 

http://tw.knowledge.yahoo.com/question/question?qid=1406011103336
http://tw.knowledge.yahoo.com/question/question?qid=1406011103336
http://en.wikipedia.org/wiki/Occam%27s_Razor
http://en.wikipedia.org/wiki/Machine_learning#cite_note-0#cite_note-0
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learning ability of learning algorithms. Machine learning has been applied to a 

lot of fields because of its reliable performance of dataset analysis, such as 

machine perception, computer vision, natural language processing, 

bioinformatics, software engineering, and so on. Additionally, machine learning 

can be regarded as the core of artificial intelligence, playing an important role 

and it is also the significant component in making a computer “intelligent”, 

making decisions by learning from current data. The learning ability is the 

primary concept of machine learning, and it is the key feature of so-called 

intelligent systems. The learning ability of an intelligent system can be identified 

by finding embedded rules behind datasets that allows a computer to learn from 

the data, the purpose of which is to make intelligent decisions by recognising 

complex patterns. Hence, “how to precisely learn to recognise complex patterns 

from data automatically” is a rudimentary course in machine learning. So far as 

the core of machine learning algorithms are concerned, the learning algorithms 

basically emphasise the generalisations learnt from the training examples, and 

the training examples can be known as the experience of the target system. The 

behaviour of the target system can be learnt using the learning algorithms on 

training examples. Moreover, according to the desired outcome of machine 

learning algorithms, the type of machine learning algorithms can be classified 

into (Mitchell, 1997): 

v Supervised learning - Generates a function that maps inputs to desired 

outputs. In a classification problem, the learner approximates a function 

mapping a vector into classes by looking at input-output examples of the 

target function. 

v Unsupervised learning – Different from supervised learning, 

unsupervised learning models a set of inputs and seeks to summarize and 

explain key features of the data, such as clustering. 

http://en.wikipedia.org/wiki/Machine_perception
http://en.wikipedia.org/wiki/Computer_vision
http://en.wikipedia.org/wiki/Natural_language_processing
http://en.wikipedia.org/wiki/Bioinformatics
http://en.wikipedia.org/wiki/Software_engineering
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v Semi-supervised learning – Combines both supervised learning 

(labelled training data) and unsupervised learning (unlabeled training data) 

to generate an appropriate function or classifier. 

v Reinforcement learning – Learns to take action through the observation 

of the environment, and which reinforces learning algorithms by the 

feedback given by the impact in the environment.  

1.2 Pattern Recognition  

Pattern recognition is one of scientific topics highly relevant to machine learning 

and has been prevalently applied to a variety of areas of computer science such 

as computer vision, speech recognition, handwriting recognition, biometrics, and 

so on. Briefly, pattern recognition is the process of interpreting, analysing and 

recognising patterns by computers and mathematics, and pattern recognition aims 

at discovering the reasonable output for a possible input by labelling the output 

to a given input.  

 

According to the type of label output, most algorithms for pattern recognition are 

generally categorised into supervised learning and unsupervised learning. The 

difference between supervised learning and unsupervised learning is that 

supervised learning assumes that the training data and output have been labelled, 

whilst unsupervised learning assumes that the training data has not been labelled. 

Semi-supervised learning integrates the feature of supervised learning and 

unsupervised learning, making use of both labelled and unlabelled data when 

training, and typically combines a small amount of labelled data as well as a 

large amount of unlabelled data. As a whole, algorithms for solving pattern 

recognition problems can be summarised as follows: 

v Supervised learning algorithms for predicting categorical labels- 

Classification algorithms, which the interpretation of labels is given. 
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v Unsupervised learning algorithms for predicting categorical labels- 

Clustering algorithms, which they could return artificial 

(non-interpretable) class labels. 

1.3 Fuzzy Theory and Fuzzy System 

Fuzzy systems are knowledge-based or rule-based systems. The heart of a fuzzy 

system is a knowledge base consisting of the so-called fuzzy IF-THEN rules. 

(Wang, 1997) 

 

Since Zadeh proposed the concept of fuzzy sets (Zadeh, 1965), fuzzy theory has 

been structured and gradually developed, as illustrated in Fig. 1.1 (Wang, 1997). 

Moreover, the concept of the fuzzy set is one of the essential components of a 

fuzzy system, and also plays an important role in fuzzy modelling. Fuzzy sets are 

sets whose elements have degrees of fuzzy membership, and each fuzzy set is 

associated with membership values. Basically, a fuzzy set can be defined as a 

pair (A, m), where A is a set and m is a membership value, [ ]1,0: →Am . To 

define the vagueness of a data set as far as possible, the main purpose of 

membership functions is to transform a real-value data set into a fuzzy set, and 

then place it at the appropriate level of each input variable in the fuzzy system. In 

principle, fuzzy systems are developed based on fuzzy IF-THEN rules with 

discrete or continuous membership functions or by other means. Fuzzy systems 

are constructed from a collection of fuzzy IF-THEN rules. 
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Fuzzy Mathematics Fuzzy Sys tems Fuzzy
Decision-Making

Uncertainty &
Information Fuzzy Logic & AI

Fuzzy Theory

fuzzy sets
fuzzy measures
fuzzy analysis
fuzzy relations
fuzzy topology

...

multicriteria optimization
fuzzy mathematical

programming
...

fuzzy logic principles
approximate reasoning
fuzzy expert systems

...

fuzzy control fuzzy signal processing communication possibility theory
measures of
uncertainity

...

controller design
stability analysis

...
...

pattern recognition
image processing

...

equalization
channel

assignment
...

 

Fig. 1.1 Classification of Fuzzy Theory 

1.3.1 The Fuzzy IF-THEN Rule  

The Fuzzy IF-THEN rule is the essential concept of fuzzy systems, as it is 

structured on which factors (premise part - If) lead to which actions (consequent 

part - Then) within the fuzzy system. For example, for the purpose of safety, if 

the fire sensor detects the density of the smoke is higher than that normally 

present in the air, then the fire alarm works immediately. Meanwhile, the fuzzy 

IF-THEN rule of this example is described in the following form: 

IF the density of the smoke is higher than 20%, THEN the fire alarm works 

immediately 
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To carry the fuzzy IF-THEN rule out, the mechanism of the fuzzy system 

emphasises processing a factor into an action. The basic configuration of a fuzzy 

system can be described as in Fig. 1.2 (Wang, 1997). 

1.3.2 Basic Configuration of Fuzzy System 

A basic configuration of a fuzzy system includes a fuzzifier, defuzzifier, fuzzy 

rule base and fuzzy inference engine, and each component plays a role in the 

overall mechanism of the fuzzy system. As shown in Fig. 1.2, the mechanism of 

a fuzzy system consists of three stages. In the first stage, a fuzzifier transforms a 

real-value variable (x in U) into a fuzzy set according to a degree of compatibility 

of the respective fuzzy sets, and this procedure can be called fuzzification. In the 

second stage, the fuzzy system processes fuzzy rules using a fuzzy inference 

engine. In the third stage, the resultant fuzzy values are transformed again into a 

real-value variable (y in V) by a defuzzifier, this procedure can be called 

defuzzification. The detailed configuration of a normal fuzzy model will be 

introduced in chapter 2. 

Fuzzy Inference
Engine

Fuzzy Rule Base

Fuzzifier Defuzzifier

x in U y in V

fuzzy sets in U fuzzy sets in V
 

Fig. 1.2 Basic configuration of fuzzy systems 
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1.3.3 The Advantage of Fuzzy Systems 

An important contribution of fuzzy systems theory is that it provides a systematic 

procedure for transforming a knowledge base into a nonlinear mapping (Wang, 

1997).  

 

The main advantage of fuzzy systems is their well-interpretability. This 

well-interpretability is the unique merit of fuzzy systems and results from the 

good knowledge representation of fuzzy systems, which provides a reasonable 

explanation for a particular value appearing as the output from the fuzzy system. 

Due to the simplicity of the fuzzy IF-THEN rules, not only can the definition of 

the problem be represented by linguistic terms, but it is also not difficult to 

understand the detailed information represented by fuzzy membership functions 

within fuzzy systems. The advantages of fuzzy systems were summarised by 

(Vieira, 2004): 

v Capacity to represent inherent uncertainties of the human knowledge with 

linguistic variables. 

v Simple interaction of the expert of the domain with the engineer designer 

of the system. 

v Easy interpretation of the results, because of the natural rules 

representation. 

v Easy extension of the base of knowledge through the addition of new 

rules. 

v Robustness in relation of the possible disturbances in the system. 

1.3.4 The Disadvantage of Fuzzy Systems 

The main disadvantage of fuzzy systems is that the fuzzy rule base has been 

fixed and this means that the fuzzy system cannot adapt to changing situations 
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flexibly. Another disadvantage of fuzzy systems is that in order to define the 

fuzzy rules, an expert’s knowledge or instructions are required in advance. Also, 

the process of tuning the parameters of fuzzy systems often requires a relatively 

long period of time, especially if there are a large number of fuzzy rules within 

the fuzzy system. Another minor disadvantage of fuzzy systems is their lack of 

universality, as it is not possible for an end user using a fuzzy system to solve a 

wide range of different tasks, due to the complexities of the fuzzy systems. The 

disadvantages of the fuzzy systems were summarised by (Vieira, 2004): 

v Incapable to generalise, or either, it only answers to what is written in its 

rule base. 

v Not robust in relation the topological changes of the system, such changes 

would demand alterations in the rule base. 

v Depends on the existence of an expert to determine the inference logical 

rules. 

1.4 Problem Statement 

Due to the good knowledge representation of fuzzy systems, they have been used 

to construct fuzzy models to support the solution of both regression-type 

problems and function approximation problems. This thesis puts focus on dealing 

with regression-type problems and function approximation problems by learning 

and identification of fuzzy systems. Basically, function approximation is the 

process of learning algorithms acquiring only some approximation to the target 

function, and function approximation problems are required to choose a function 

among a well-defined class that approximates a target function in a task-specific 

way (Mitchell, 1997). As the need for function approximation arises in many 

fields of applied mathematics and computer science, how to deal with function 

approximation problems optimally becomes an increasingly important issue. 
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Although many efforts have been made to deal with regression and function 

approximation problems by fuzzy system identification, there are still several 

challenges which remain. Two of main research topics are discussed in this thesis 

and are described as follows. 

1.4.1 Interpretability vs. Accuracy 

As the complexity of a system increases, our ability to make precise and yet 

significant statement about its behaviour diminished until a threshold is reached 

beyond which precision and significance (or relevance) become almost mutually 

exclusive characteristics (Zadeh, 1973). 

1.4.1.1 Interpretability 

Interpretability is the capability to express the behaviour of the real system in an 

understanding way, and it has been especially considered in the linguistic fuzzy 

rule base system. The interpretability can also be recognised as compactness, 

completeness, consistency, or transparency. As the objective of linguistic fuzzy 

modelling is to acquire fuzzy systems with a good interpretability, the major 

purpose of the linguistic fuzzy rule-base system aims at providing good 

interpretability to explain the behaviour of the system in an understanding way. 

In addition to providing a clear explanation of the system by a good 

interpretability, a linguistic fuzzy rule-base system with well-interpretability may  

not result in a complex system, and this may relieve the minor disadvantage of 

fuzzy systems as mentioned before; “It is not convenient for the end user using 

fuzzy systems to solve a wide area of different tasks, as a result of the complexity 

of fuzzy systems.” 

 

The interpretability issues of fuzzy systems are a popular topic and these 

primarily put the focus on approaches to improving the interpretability of fuzzy 

systems, such as improving the interpretability with flexible rule structures, 
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complexity reduction in linguistic fuzzy models, complexity reduction in precise 

fuzzy models, interpretability constraints in TSK fuzzy rule-based systems, and 

assessments of the interpretability (Casillas et al., 2003). 

1.4.1.2 Accuracy 

Accuracy is the capability to faithfully represent the real system, and it has been 

especially considered in precise fuzzy systems. As the objective of precise fuzzy 

modelling is to acquire fuzzy systems with good accuracy, the major purpose of 

the precise fuzzy system aims at faithfully representing the modelled system. 

Without considering the problem of overfitting, the higher the accuracy of the 

model, the closer the model to the system is. In addition to obtaining high levels 

of accuracy by precise fuzzy modeling, a precise fuzzy system with good 

accuracy may effectively perform unsupervised learning, where the problem of 

overfitting is not applicable. 

1.4.1.3 Compromise between Interpretability and Accuracy 

Solving pattern recognition problems by constructing a large diversity of 

modular methods based on fuzzy system identification has also been researched. 

In particular, one of the unique features of fuzzy systems is their 

well-understanding interpretability. To get a highly estimated accuracy of the 

approximation and the well-understanding interpretability of the fuzzy system 

together, more complex methods try to achieve this by reinforcing the strength of 

existing methods. However, there still exists a conflict between the 

interpretability and the accuracy of the approximation in general fuzzy systems. 

If the degree of the interpretability increases, then the accuracy rate of the 

approximation decreases. In contrast, if the degree of the interpretability 

decreases, then the accuracy rate of the approximation increases. The study of the 

best compromise between the accuracy of the approximation and the degree of 

the interpretability in the fuzzy system is a significant research subject. 
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1.4.2 Underfitting vs. Overfitting 

Underfitting and overfitting are important concepts in machine learning, and 

examine the performance of the learner or learning algorithm. In supervised 

learning, the learner or learning algorithm has been trained using training 

examples, the reliability of which can then be examined by validating the test 

examples. 

1.4.2.1 Underfitting 

So far as underfitting is concerned, if the training accuracy is poor, then 

underfitting may occur. Underfitting generally occurs when a model is too simple, 

has insufficient parameters, or an improper mechanism. Underfitting results in 

poor predictive performance and a bad generalisation ability. 

1.4.2.2 Overfitting 

Overfitting occurs when the validation errors increase but the training errors 

steadily decrease. In other words, the situation of overfitting occurs when there is 

high training accuracy but poor validation accuracy. Overfitting generally occurs 

when a model is too complex, with too much parameters, or an overlearning 

mechanism. Overfitting results in a bad generalisation ability, acquiring good 

accuracy whilst using training examples trains the model but it then fail when 

testing the examples so invalidating the model, as illustrated in Fig. 1.3.  
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Fig. 1.3 Overfitting relations with training error and validation error 

However, avoiding the problem of underfitting is easier than avoiding that of 

overfitting. It is not difficult to construct a complex model with many parameters 

based on training examples only. It is a difficult issue to develop a learner or 

learning algorithm with a good predictive performance as well as a sound 

generalisation ability. Therefore developing a learner or learning algorithm which 

has a good predictive performance as well as a sound generalisation ability 

remains a research challenge. 

1.4.3 The Problem of “Curse of Dimensionality” 

“Curse of dimensionality” is one of the most serious weaknesses of fuzzy 

systems, and it is a general problem for fuzzy systems to deal with all 

high-dimensional approximation problems. It usually occurs in designing precise 

fuzzy systems with a required accuracy, because the number of fuzzy rules has to 

increase exponentially with the number of input variables to fuzzy systems. 

Assume that there are n input variables and m fuzzy rules are defined for each 

input variable, then the number of fuzzy rules in fuzzy systems is nm  (Wang, 

1997). Clustering algorithms are one of good approaches to overcome this 
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problem, but a grid-based clustering method may result in the problem of “curse 

of dimensionality” as well. 

1.4.4 The Cluster Analysis Issue 

The predetermined clustering technique before constructing an initial fuzzy 

model is another key issue between the interpretability and accuracy of the 

overall system. Though clustering algorithms have been always been oriented to 

solve classification and pattern recognition problems, some methods solve 

function approximation problems by constructing initial models for function 

approximation (Gonzalez, 2002). A simple clustering technique may lead to good 

interpretability but with low accuracy, and a complex clustering technique may 

acquire a good accuracy but poor interpretability. Since there is a paradox 

between the accuracy of the approximation and the degree of the interpretability 

in fuzzy systems, the balance between interpretability and accuracy is an 

interesting problem. The application of clustering techniques to increase the 

interpretability, accuracy or both, and used as a foundation to capture useful 

knowledge is another derivation problem resulting from the issue of 

interpretability and accuracy. 

1.4.5 Summary 

There are a lot of challenges to deal with regression and function approximation 

problems by learning and identification of fuzzy systems. For these challenges, 

two works are proposed in this thesis to overcome these challenges as far as 

possible. One is three-part input-output clustering-based approach for fuzzy 

system identification, and another one is similarity-base learning algorithm for 

fuzzy system identification with a two-layer optimisation scheme. So far as the 

first work is concerned, the problem of underfitting can be avoided by 

identifying the proper number of clusters and appropriate location of clusters, 

because which can make fuzzy systems more complete. So far as the second 
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work is concerned, the well-interpretability can be achieved by the 

similarity-based pruning strategy, because which can make fuzzy systems more 

transparent as well as compact. Also, a required accuracy of fuzzy systems can 

be obtained by two-layer optimization scheme, and the problem of underfitting 

and that of overfitting can be avoided by two-layer optimization scheme, which 

make fuzzy systems more precise. 

1.5 Research Objectives and Outline 

Before describing the research of this thesis, an understanding of the research 

objectives and outline are required. The motivation behind this thesis and the 

objectives of the research work, the research outline of the proposed approaches 

are described as follows. 

1.5.1 Research Objectives 

The research work mainly aims at dealing with a variety of regression-type 

problems and function approximation problems by learning and identification of 

fuzzy systems, and the development of fuzzy system identification is constructed 

using Takagi-Sugeno fuzzy models. Through modelling fuzzy system 

identification, a variety of regression-type problems and function approximation 

problems, such as static function approximation problems, time-series prediction 

problems, as well as nonlinear dynamic system identification problems, are 

expected to work smoothly. The research consists of two research topics 

presented consecutively and include a three-part input-output clustering-based 

approach for fuzzy system identification and a similarity-based learning 

algorithm for fuzzy system identification with a two-layer optimisation scheme. 

The second research topic is based on the findings of the first topic. 
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1.5.2 Research Outline 

The research consists of two topics presented consecutively in this thesis. The 

first, proposes a three-part input-output clustering approach for fuzzy system 

identification. The focus of this first topic is on constructing a well-defined fuzzy 

model by means of the clustering technique. The second research topic can be 

regarded as an extension of the first. In the second research topic, a 

similarity-based learning algorithm for fuzzy system identification with a 

two-layer optimisation scheme has been developed based on the results of the 

first research topic. The focus is on constructing either a well-defined fuzzy 

model or a highly-reliable fuzzy model by means of rule base simplification 

strategy and parameters optimisation scheme. The research outlined in this thesis 

is briefly illustrated in Fig. 1.4, and the complete outline of research is illustrated 

in Fig. 1.5. 

1.5.3 A Three-Part Input-Output Clustering-Based 

Approach for Fuzzy System Identification 

The first area of research is concerned with the clustering technique for 

constructing fuzzy models in fuzzy system identification. As the determination of 

the proper number of clusters and the appropriate location of clusters is one of 

the primary considerations on constructing an effective fuzzy model, the task of 

the clustering technique is to recognise the proper number of clusters and their 

appropriate location. This is good preparation for the construction of initial fuzzy 

models. In order to acquire a mutually exclusive performance by constructing an 

effective fuzzy model, a modular method of fuzzy system identification, based on 

a hybrid clustering-based technique has been considered. Due to the above 

reasons, a hybrid clustering algorithm concerning the input, output, 

generalisation and specialisation has hence been used in this work. Moreover, the 

research outlined of this work is illustrated in Fig. 3.1. 
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1.5.4 A Similarity-Based Learning Algorithm for Fuzzy 

System Identification with a Two-Layer Optimisation 

Scheme 

The second area of research is an evolution of the earlier research, and two ways 

to improve the original work were considered, including the pruning strategy for 

the premise structure of the fuzzy system and the optimisation scheme for the 

initial fuzzy model. So far as the pruning strategy is concerned, the purpose of 

this is to refine the rule base by similarity analysis of fuzzy sets, fuzzy numbers, 

fuzzy membership functions or fuzzy rules. In other words, through similarity 

analysis, the complete rules can be kept and the redundant rules can be reduced 

within the rule base of the fuzzy system. The optimisation scheme can be 

regarded as a two-layer parameter optimisation, because the parameters of the 

initial fuzzy model have been fine tuned by a two phase gradation. Hence, in this 

second area of research, the focus is on enhancing the performance of the initial 

fuzzy models towards a positive reliability in the final fuzzy models. Moreover, 

the research outlined of this work is illustrated in Fig. 4.1. 

1.5.5 The Main Contribution of this Thesis 

This research puts focus on dealing with regression-type problems and function 

approximation problems by considering on learning and identification of fuzzy 

systems. The idea of the contributions of this thesis is originated from Occam’s 

Razor, because the primary research of this thesis can achieve a reliable 

performance on dealing with regression-type problems and function 

approximation problems by learning and identification of fuzzy systems without 

much complicated mechanisms and computational resource. 

 

The primary research work can positively discover the proper number of clusters 

and their appropriate location by integrating a variety of existing clustering 
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properties without much complicated mechanisms. Also, a better local minimum 

for parameters optimisation can be acquired by an optimisation scheme without 

much complicated mechanisms and computational resource as well. Additionally, 

the primary research of this thesis can avoid the problems of underfitting and 

those of overfitting.. Hence, “Make everything as simple as possible, but not 

simpler.” is the primary contribution of learning and identification of fuzzy 

systems proposed in this thesis. 

http://tw.knowledge.yahoo.com/question/question?qid=1406011103336
http://tw.knowledge.yahoo.com/question/question?qid=1406011103336
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Fig. 1.4 Brief structure of research outline 
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Fig. 1.5 Complete structure of research outline 
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1.6 Thesis Structure 

For clarity, the rest of this thesis is organised as follows:  

 

In Chapter 2, there is a comprehensive introduction to the background of fuzzy 

system identification and learning and identification of fuzzy systems are 

reviewed. Eight main themes are examined: fuzzy sets and membership functions, 

fuzzification and defuzzification, fuzzy system identification, literature reviews 

of learning and identification of fuzzy systems, cluster analysis, similarity-based 

pruning strategy, parameters optimisation, and relational database estimation. 

 

In Chapter 3, a three-part input-output clustering-based approach for fuzzy 

system identification is proposed for the purpose of constructing a sound fuzzy 

model by discovering the proper number of clusters and their appropriate 

location. 

 

In Chapter 4, a similarity-based learning algorithm for fuzzy system 

identification with a two-layer optimisation scheme is proposed for refining the 

rule base of a fuzzy system and is used to generate a reliable final fuzzy model.    

 

In Chapter 5, the work is concluded and the contributions summarised, and 

finally future research which could advance this area is put forward. 
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Chapter 2 RELATED BACKGROUND 

AND LITERATURE REVIEW 

In this chapter, a comprehensive introduction to the relevant background and a 

review of research will be described by following the essential steps involved, 

including; fuzzy sets and membership functions, fuzzification and defuzzification, 

fuzzy system identification, literature reviews of learning and identification of 

fuzzy systems, cluster analysis, similarity-based pruning strategy, and parameters 

optimisation. For each, the literature is reviewed and some existing methods are 

discussed in detail. 

2.1 Fuzzy Sets and Membership Functions 

A good representation of knowledge is a unique feature of fuzzy systems, and the 

concepts of fuzzy sets as well as membership functions are essential components 

in understanding fuzzy systems. Due to the interpretability of fuzzy sets and 

membership functions, it is not difficult to understand the detailed information 

that appears in fuzzy systems.  

2.1.1 Fuzzy Sets 

A fuzzy set is different from a crisp set which has a crisp boundary, because a 

fuzzy set is a set with a fuzzy degree. A fuzzy degree is different to a physical 

possibility, in that the fuzzy degree represents the percentage of the fuzzy set that 

possesses an action or event. Basically, each fuzzy set is associated with a 

membership value. Let U be the universe of discourse, and ( )xAµ  be the 

membership function of the fuzzy set A. Therefore, the definition of a fuzzy set A 

in U can be represented as a set of ordered pairs of a generic element x and its 

membership value by (Wang, 1997):  
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( ) }|,{( UxxxA A ∈= µ                      (2.1) 

2.1.2 The Concept of α-Cuts of Fuzzy Sets 

An α-cut of a fuzzy set A is a crisp set that αA  contains all the elements in the 

universe of discourse U that have membership values in A greater than or equal 

to α, and it can be defined as follows (Wang, 1997): 

( ) },|{ UxxxA A ∈≥= αµα                    (2.2) 

where ( ]1,0∈α . According to the equivalence relation of α, α-cut of fuzzy sets 

can be classified into two types, including α-cut and strong α-cut. The difference 

between general α-cut and strong α-cut is that the membership grade of the 

general α-cut is bigger than or equal to the value of α, but the membership grade 

of the strong α-cut is only bigger than the value of α. Therefore, a general α-cut 

of a fuzzy set can be defined by equation 2.2, and a strong α-cut of a fuzzy set 

can be defined by: 

 ( ) },|{ UxxxA A ∈>= αµα                   (2.3) 

2.1.3 Fuzzy Membership Functions 

In the procedure of fuzzification, each element or crisp set are converted to a 

fuzzy set by mapping fuzzy membership functions in the fuzzy system. So far as 

the type of fuzzy membership functions are concerned, there are two types of 

membership functions, including continuous membership function and discrete 

membership function. The differentiation between these two types of 

membership functions depends on the universe of discourse U that it belongs to. 

If the universe of discourse U is continuous, the type of the membership function 

would be the continuous membership function. In contrast, if the type of the 
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universe of discourse U is discrete, then the type of the membership function 

would be the discrete membership function. Hence, the definition of the 

continuous membership function is represented as follows (Wang, 1997): 

( )∫= U A xxA /µ                       (2.4) 

The definition of the discrete membership function is represented as follows 

(Wang, 1997): 

( )∑=
U

A xxA /µ                      (2.5) 

Another significant definition of fuzzy membership function is the complement 

of fuzzy membership function (Wang, 1997). In equation 2.9, ( )x
A

µ  is the 

complement of ( )xAµ . In other words, Ā is the complement of the fuzzy set A, 

and the sum of the value of A and Ā is 1.0. 

( ) ( ) 1=+ xx
AA µµ                     (2.6) 

( ) ( )xx AA
µµ −= 1                     (2.7) 

The relationship between A and Ā in the fuzzy membership function is illustrated 

in Fig. 2.1 (Wang, 1997). In Fig. 2.1, the definition of the relationship is A + Ā 

=1.0 absolutely. On the other hand, when Ā increases, then A decreases with the 

synchronisation. The sum of the value of A and Ā is 1.0. However, there exist 

certain exceptions when the membership functions irregularly overlap each other 

simultaneously. In order to understand how to deal with this kind of situation, the 

concept of fuzzy normalisation will be briefly introduced. 
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Fig. 2.1 The relationship between A ( ( )xAµ ) and Ā ( ( )x
A

µ )  

2.1.4 Shape of Fuzzy Membership Functions 

According to the shape of fuzzy membership functions, there are about eleven 

shapes of fuzzy membership functions, and three of these are in common use, 

including the triangular membership function, the trapezoidal membership 

function, and the Gaussian membership function. To understand the mechanism 

of these three shapes of fuzzy membership functions, they are discussed below. 

2.1.4.1 Triangular Membership Function 

Generally, there are three scalar parameters to construct a triangular membership 

function, which consists of left vertex, centroid, and right vertex of a triangular 

shape. Generally, the triplet (left vertex, centroid, right vertex) of the triangular 

membership function can be defined as ( )cba ,,  as in Fig. 2.2. Fig. 2.2 can be 

regarded as either symmetric type or asymmetric type, and the calculation of 

triplet ( )cba ,,  of the triangular membership function can be represented by: 


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

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
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where )(xAµ  presents the membership of x , a , b , and c  presents the left 

vertex, centroid, and right vertex of a triangular membership function, 

respectively. 

)(xA
        1.0

     Membership
          Grade

a b c X  

Fig. 2.2 Triangular Membership Function 

Furthermore, there is a strict definition to generate the triangular membership 

function by distinguishing the triangular membership function into symmetric 

type and asymmetric type. As illustrated in Fig. 2.3, the symmetric triangular 

membership function for the fuzzy system based on the triplet 

( )iii xcentroidx maxmin ,,  can be calculated as follows: 

( )j

m

j
iji xA∏

=

=
1

µ                        (2.9) 
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µ                         (2.13) 

where iµ  is a membership value of the antecedent part, min
ix  is the value of 

the minimum unit or datum of each partition, max
ix  is the value of the maximum 

unit or datum of each partition, ija  is the centroid of the triangular membership 

function, ijb  is the width of the triangular membership function, iy  is the 

system output, and iw  is the weight associated with each rule. 
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Fig. 2.3 Symmetric triangular membership function 

As illustrated in Fig. 2.4, in the asymmetric triangular membership function, 

there are two widths ijb  and ijc  to be calculated, and which can be represented 

by: 

( ) ( )
ij

ijj
jijijjijij b

ax
xAaxba

−
+=≤≤− 1:             (2.14) 



 43

( ) ( )
ij

ijj
jijijijjij c

ax
xAcaxa

−
−=+≤≤ 1:             (2.15) 

0,others                                               

where ijb  is the antecedent-part width, and ijc  is the consequent-part width. 
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Fig. 2.4 Asymmetric triangular membership function 

2.1.4.2 Trapezoid Membership Function 

In the trapezoidal membership function, there are four scalar parameters to 

construct a triangular membership function, which consists of left vertex, upper 

length starting point, upper length terminal point, and right vertex of a 

trapezoidal shape. Generally, the quaternion (left vertex, upper length starting 

point, upper length terminal point, right vertex) of the trapezoidal membership 

function can be defined as ( )dcba ,,,  as in Fig. 2.5, and the calculation of 

quaternion ( )dcba ,,,  of the trapezoidal membership function can be 

represented by: 
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where )(xAµ  represents the membership of x , a , b , c , and d  represents 

the left vertex, upper length starting point, upper length terminal point, and right 

vertex of a trapezoidal of a trapezoidal membership function, respectively. 
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Fig. 2.5 Trapezoidal Membership Function 

2.1.4.3 Gaussian Membership Function 

In a Gaussian membership function, there are two parameters, which consist of 

the centre and the width of the Gaussian membership function. Generally, the 

centre and the width of Gaussian membership function can be defined as ( )σ,v  

as in Fig. 2.6, and the calculation of the twosome ( )σ,v  of a symmetric 

Gaussian function can be represented by: 

( )









 −−
=

2

2

2
exp)(

σ
µ vx

xA                       (2.17) 
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where )(xAµ  represents the membership of v  and σ  represents the centre 

and width of the Gaussian membership function, respectively. 

)(xA
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Fig. 2.6 Gaussian Membership Function 

2.2 Fuzzification and Defuzzification 

Fuzzification and defuzzification are important components relating to the 

fuzzifier and the defuzzifier in fuzzy models, which take the responsibility of the 

front door and rear door in fuzzy systems respectively. In order to understand the 

concept of fuzzification and defuzzification, they will be described below. 

2.2.1 Fuzzification 

As mentioned before, fuzzification is the process of converting crisp inputs or 

numeric inputs into a fuzzy set using fuzzy membership functions stored in a 

fuzzy rule base. The crisp values of )(tk℘ , .,...,2,1 rk =  are transformed into 

fuzzy set i
kA  with membership function kkA

Uui
k

∈)(µ . 

 

Moreover, the fuzzification of a singleton fuzzifier can be called singleton 

fuzzifiction, and any fuzzy set produced by singleton fuzzification is called a 

singleton. The advantage of singleton fuzzification is that lots of computational 
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costs and time can be saved, but contrarily the disadvantage is that the 

recognition performance is not good enough as a result of insufficient diversity 

of the fuzzy sets. A fuzzy set i
kA  with a membership function kkA

Uui
k

∈)(µ  

can be defined by: 



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
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kAi
k ,0

)(,1
)(µ                    (2.18) 

2.2.2 Defuzzification 

As mentioned before, defuzzification is the process of converting output fuzzy 

sets to crisp values Ry∈) . Before the crisp value has been produced by 

defuzzification, all of the fuzzy outputs are aggregated with a union operator. 

Therefore, the overall output can be obtained as the union of fuzzy outputs by 

( ))(xiiA µµ U= . So far as the methods for defuzzification are concerned, there is 

a variety of defuzzification methods which have been developed recently based 

on different mechanisms. Below three popular defuzzification methods are 

introduced, including the centre of gravity method, the mean of maximum 

method, and the weighted average method. 

2.2.2.1 Centre of Area Defuzzification Method 

The centre of area method (COA) is the most applied method of weighted 

average in defuzzification, and the COA method also can be called the centre of 

gravity method (COG) or centroid method. The main feature of the COA method 

is that it considers the entire possibility of membership functions to calculate the 

defuzzified values. Due to this feature, lots of computational costs may be 

incurred during the procedure of defuzzification, especially for the continuous 

domain. According to the type of fuzzy set, the equation of the method can be 

represented by a continuous type or discrete type. If the membership function is 
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defined as a continuous type, the calculation of defuzzification can be 

represented by: 

∫
∫

⋅

⋅
=
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Y
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ydyy
y

)(

)(

µ

µ)                       (2.19) 

where ∫  is algebraic integration, COAy)  is the defuzzified output by the COA 

method, y  is the output variable, and )( yµ  is the aggregated membership 

function. However, if the output fuzzy set is defined as a discrete type, the 

calculation of defuzzification can be represented by: 
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where COAy)  is the defuzzified output, iy  is the output variable, and )( yiµ  is 

the aggregated membership function.  

2.2.2.2 Mean of Maximum Method 

The mean of maximum (MOM) method is usually used for discrete fuzzy sets, 

and a crisp output y)  in this method is chosen to represent the mean value of all 

elements whose membership in K  is the maximum. In other words, the 

defuzzified result represents the mean value of all elements whose membership 

functions reach the maximum. The calculation of defuzzification can be 

represented by: 

∑
=

=
K

i

i
MOM K

y
y

1

)                          (2.21) 

where MOMy)  is the defuzzified output by the MOM method, iy  is the element 
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whose membership function reaches the maximum, and K  is the cardinality of 

iy  

2.2.2.3 Weighted Average Method 

In the weighted average method, the defuzzified output is obtained by weighting 

each membership function in the output by its respective maximum membership 

value. The weighted average method is generally valid for symmetric output 

membership functions. Though the representation of formula of the weighted 

average method is very similar with that of the centre of area method, the 

weighted average method is less computationally intensive. The calculation of 

the weighted average method can be represented by: 

∑

∑ ∗

=
)(

)(

y

yy

yWA

µ

µ
)                       (2.22) 

where WAy)  is the defuzzified output by the weighted average method, )( yµ  is 

the output membership function of each rule, and y  is the weight associated 

with each rule.  

2.2.2.4 Summary 

As a whole, there is no systematic procedure or absolute criterion for choosing a 

good defuzzification scheme, because the selection of defuzzification methods 

most depends on the properties of the models or problem-oriented. So far as a 

sound defuzzification scheme is concerned, a good quality defuzzification 

approach should include continuity, non-ambiguity, plausibility, and 

computational simplicity (Wang, 1997). 
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v Continuity, a small change in the input should not result in a large change 

in the output. 

v Non-Ambiguity, defuzzification methods should always result in a unique 

value without any ambiguity. 

v Plausibility, the defuzzified value should represent the output of fuzzy 

systems from an intuitive point of view. 

v Computational Simplicity, less computational costs is important for the 

procedure of defuzzification, especially for a real-time system. 

2.3 Fuzzy System Identification 

When fuzzy systems are used as a class of models for system identification, the 

process is called “fuzzy system identification” (Takagi & Sugeno, 1985) 

 

Since Zadeh proposed the concept of fuzzy sets in 1965, fuzzy theory has hence 

been structured and developed gradually. As a result of the reliable representation 

capability of fuzzy systems, solving the system identification problem by the 

development of fuzzy system identification has extensively researched. Briefly, 

the purpose of fuzzy systems aims at dealing with the problem of system 

identification, the process of which is called “fuzzy system identification.” 

Further, if fuzzy system identification is modelled as a black box, the structure is 

entirely estimated from data. However, if fuzzy system identification is modelled 

as a grey box way, the structure is provided by experts. 

 

Takagi and Sugeno (1985) have proposed a rudimentary approach and relevant 

applications to fuzzy system identification. With the development of fuzzy 

system identification, lots of relevant methods have been proposed to solve 

identification problems. Generally, there are four types of major approaches 

including inductive learning approaches and neural-network-based approaches. 
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Inductive learning approaches can be reviewed in the work of Wang and Mendel 

(1992), Delgado and Gonzalez (1993), Hall and Lande (1996) and Hong and Lee 

(1996), where fuzzy rules from training examples based on inductive learning 

were generated. So far as neural-network-based approaches are concerned, the 

approaches can be classified into three categories (Ishibuchi, 1996); 

fuzzy-rule-based systems with learning ability, fuzzy systems represented by 

network architectures, and neural networks for fuzzy reasoning. Also, in the 

category of neural-network-based approaches, several papers can be reviewed on 

trainable fuzzy systems (Nomura et al., 1992), fuzzy adaptive learning control 

networks (Lin et al., 1995), and neural network driven fuzzy reasoning with 

learning function (Hayashi et al., 1992). 

2.3.1 Fuzzy Models 

Fuzzy logic provides actions or decisions by simulating human thinking with a 

fuzzy degree, the feature of which is that each action is not absolutely positive or 

negative. The process of a system modelled by fuzzy logic is fuzzy modelling. 

Fuzzy models are mathematical models based on fuzzy logic and which has been 

developed and proposed for a variety of purposes (Mamdani, 1974; Sugeno, 

1985; Lee-1, 1990; Lee-2, 1990; Aoki et al., 1990; Tong et al., 1980; Miyamoto 

et al., 1986; Gupta et al., 1986). The configuration of a normal fuzzy model 

involves six components (Hellendoorm & Driankov, 1997), includes scaling, 

regressor generator, linguistic database, fuzzifier, fuzzy inference engine, and 

defuzzifier.  

v Scaling can be regarded as a component to simplify the data )(tz  in 

magnitude to )(t℘ , and that ( ) ( )θθ || tyty s
)) =  

v Regressor generator, the task of which is to provide a static map from 

rRt ∈℘ )(  to ( ) Rty ∈θ|)  



 51

v Linguistic database is the heart of a fuzzy model, and a collection of 

fuzzy IF-THEN rules are stored in a fuzzy rule base. 

v Fuzzifier, maps the crisp values of )(t℘ into a fuzzy set. 

v Fuzzy inference engine, produces fuzzy sets in the output y, the fuzzy set 

is interpreted by the fuzzy inference engine mapping fuzzy rules in the 

fuzzy rule base. 

v Defuzzifier is the last step of the procedure, which converts the output 

fuzzy sets to a crisp value ( ) Rty ∈θ|) . 

 

The structure of a fuzzy model (Hellendoorm & Driankov, 1997) can be 

illustrated as in Fig. 2.7, where the thin arrows indicate the computational flow 

and the thick arrows indicate the information flow. 

Fuzzy Inference
Engine

Linguistic Variables

Linguistic Connectives

Fuzzy Rule Base

Fuzzifier Defuzzifier

ScalingScaling

Regressor
Generator

Fuzzy sets in Fuzzy sets i n

Data Cri sp

Crisp Cri sp

rUu ∈ Yy∈

)(tz ( )θ|tys
)

rRt ∈℘ )( ( ) Rty ∈θ|)

 

Fig. 2.7 The procedure of fuzzy system identification 

So far as the type of modelling is concerned, the fuzzy system can be modelled 

either by linguistic rules or by a relation matrix. A fuzzy system modelled by 
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linguistic rules, is represented as a rule-based form and is called a rule-based 

fuzzy model (Sugeno, 1985; Sugeno & Kang, 1988). However, a fuzzy system 

modelled by a relation matrix, is represented as a relation-based form and is 

called a relation-based fuzzy model (Pedrycz, 1983; Pedrycz, 1984;.Graham & 

Newell, 1988). 

2.3.1.1 Rule-Based Fuzzy Model 

In rule-based fuzzy models, the structure and parameters are identified by 

modelling. A rule-based fuzzy model consists of two parts, the structure 

identification and the parameter identification (Sugeno & Kang, 1988; Takagi & 

Sugeno, 1985; Pedrycz, 1983; Pedrycz, 1984; Czogola & Pedrycz, 1981; Graham 

& Newell, 1988). Moreover, according to the essential framework of a fuzzy 

system, the framework is organised as a premise part and a consequent part. 

Hence, the structure identification can be decomposed into premise structure 

identification and consequent structure identification, and the parameter 

identification can be decomposed into premise parameters identification and 

consequent parameters identification. 

 

The entire identification of a rule-based fuzzy model consists of the premise 

structure identification, the consequent structure identification, the premise 

parameters identification, and the consequent parameters identification. The task 

of the premise structure identification is to determine the premise structure by 

finding the most simplified fuzzy subspaces, by the fewest variables with an 

optimal performance. The task of the premise parameter identification is to adjust 

the parameters by minimising the error of the criterion ( ) ( )θθε |)(| tytyt )−= , 

where )|( θε t  is an error between desired output and the model output, )(ty  is 

desired output, and ( )θ|ty)  is the model output. The task of the consequent 

structure and parameter identification is to determine the consequent structure 
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and calculate the model outputs. Further, a rule-based fuzzy model for 

identification can be represented by: 

iI : IF 1x  is iA1 , 2x  is iA2 ,…, nx  is i
nA  

THEN n
i
n

iii
i xcxcxccy ++++= ...12110                  (2.23) 

where iI  means the i-th rule, 1<i<m, i
jA  is the j-th fuzzy variable of the i-th 

rule, jx  means the input variable, 1<j<n, iy  means the output from the i-th 

rule, and i
jc  means a consequent parameter.  

2.3.1.2 Relation-Based Fuzzy Model 

In the relation-based fuzzy model, the relation matrix is identified by modelling, 

and can be regarded as finding the fuzzy relation from the greatest and least 

boundaries of the relation matrix. A relation-based fuzzy model for identification 

can be represented by: 

Rux o=                                 (2.24) 

Ruuux N oLoo 21=                          (2.25) 

where o  is the composition operator, and Nu  is the universe of discourse, and 

R the relation. 

2.3.2 Mamdani-Type Fuzzy Model 

According to the inference type of the consequent part of the fuzzy model, there 

are generally two types of fuzzy models. One is the Mamdani-type fuzzy model 

(Mamdani, 1974; Mamdani, 1977) and other is the Takagi-Sugeno fuzzy model 

(Takagi & Sugeno, 1985). The Mamdani-type fuzzy model was the first 
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rule-based fuzzy model developed by Mamdani and Assilian (1973) for the 

purpose of a control system. The form of a Mamdani-type fuzzy model is 

composed by a collection of parallel rules: 

iR : If x  is iA , then y  is iB               (2.26) 

where pRx∈  is the antecedent variable, Ry ∈  is the consequent variable, iA  

represents the linguistic term defined by the fuzzy sets [ ]1,0:)( →P
A Rx

i
µ , and 

iB  also represents the linguistic term defined by the fuzzy sets 

[ ]1,0:)( →Ry
iBµ , n is the number of variables relating to the i-th rule, and 

ni ,...,2,1= .  

 

Research based on a black-box identification of Mamdani-type fuzzy models can 

be reviewed in the works of Cordon and Herrera (1995; 1996), and that of 

Delgado, Vila, and Gomez-Skarmeta (1994). Work based on a grey-box 

identification can be reviewed in the work of Lindskog (1996). 

2.3.3 Takagi-Sugeno Fuzzy Model 

The Takagi-Sugeno (TS) fuzzy model was proposed by Takagi and Sugeno 

(1985). Compared to Mamdani-type fuzzy models, TS fuzzy models are more 

effective in dealing with complex and multi-dimensional systems because of 

their more objective formulation of the consequent part of the fuzzy rules. TS 

fuzzy models can be categorised into three types based on the inference type of 

the consequent part; affine TS fuzzy model, homogeneous TS fuzzy model, and 

singleton fuzzy model. The concepts of these models are as follows: 
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2.3.3.1 Affine Takagi-Sugeno Fuzzy Model 

The affine TS fuzzy model combines a global rule-based description with a local 

functional description which in the context of black-box identification is chosen 

as a linear regression model (Hellendoorm & Driankov, 1997). 

 

The form of an affine TS fuzzy model can be represented by 

iR : If x  is iA , then i
T
ii bxay += , ki ,...,2,1=        (2.27) 

where PRXx ⊂∈  is a crisp input vector, Ry i ∈  is the output of the i-th rule, 

iA  is a fuzzy set [ ]1,0:)( →Xx
iAµ , P

i Ra ∈  is a parameter vector and ib  is 

a scalar offset, and k is the number of rules in the rule base. 

 

For black-box identification, the antecedent part of an affine TS fuzzy model 

defines a fuzzy region of the regressor and in most cases the consequent part of 

which is an autoregressive model with an exogenous input (Hellendoorm & 

Driankov, 1997). Research based on black-box identification of affine TS fuzzy 

models can be reviewed in the works of Babuska and Verbruggen (1994; 1995). 

2.3.3.2 Homogeneous TS Fuzzy Model 

A homogeneous TS fuzzy model occurs at the offsets 0=ib , ki ,...,2,1= , and 

the form of a homogeneous TS fuzzy model can be represented by: 

iR : If x  is iA , then xay T
ii = , ki ,...,2,1=            (2.28) 

where PRXx ⊂∈  is a crisp input vector, Ry i ∈  is the output of the i-th rule, 

iA  is a fuzzy set [ ]1,0:)( →Xx
iAµ , P

i Ra ∈  is a parameter vector, and k is 

the number of rules in the rule base. 
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The homogeneous TS fuzzy model is only applicable for a certain class of 

systems, as all the consequent models contain the origin. 

2.3.3.3 Singleton Fuzzy Model 

As the parameter of the consequent part ib  in the affine TS fuzzy model is 

constant without the parameter vector ia , the fuzzy model is called a singleton 

fuzzy model. As the output level of this fuzzy model is constant, this fuzzy model 

is also called a zero-order TS fuzzy model. The form of a singleton fuzzy model 

can be represented by: 

iR : If x  is iA , then ii by = , ki ,...,2,1=          (2.29) 

where PRXx ⊂∈  is a crisp input vector, Ry i ∈  is the output of the i-th rule, 

iA  is a fuzzy set [ ]1,0:)( →Xx
iAµ , the constants ib  are the consequents, and 

k is the number of rules in the rule base. 

2.3.3.4 Summary 

Basically, the fuzzification process of the antecedent part of Mamdani-type fuzzy 

model and Takagi-Sugeno fuzzy model is the same, and the key difference 

between these two models is the representation of output membership functions 

of the consequent part. The output membership functions of Mamdani-type fuzzy 

models are constant, but those of Takagi-Sugeno fuzzy models are either linear or 

constant. When the output membership functions of Takagi-Sugeno fuzzy models 

are linear, this Takagi-Sugeno fuzzy model can be called an affine Takagi-Sugeno 

fuzzy model and when the output membership functions of a Takagi-Sugeno 

fuzzy model are constant, this can be called a zero-order Takagi-Sugeno fuzzy 

model or fuzzy singleton model. 
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2.4 Learning and Identification of Fuzzy Systems 

Literature Reviews 

Literature reviews of learning and identification of fuzzy systems are chosen to 

describe as follows. 

2.4.1 ANFIS: Adaptive-Network-Based Fuzzy Inference 

Systems 

Adaptive-Network-Based Fuzzy Inference Systems (ANFIS) was proposed by 

Jang (1993). The architecture of ANFIS can identify a feasible set of parameters 

by a hybrid learning rule combing the backpropagation gradient descent and the 

least-squares method, as illustrated in Fig. 2.8. For instance, the ANFIS 

architecture of a first-order TS fuzzy model contains two rules: 

iR : If X is iA  and Y is iB , then iiii ryqxpf ++= , .2,1=i  
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Fig. 2.8 The architecture of ANFIS 

According to Fig. 2.8, the fuzzy reasoning mechanism of ANFIS architecture 

consists of five layers. The detail of these five layers is described as follows 
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(Jang, 1994): 

Layer 1: Each node in this layer generates a membership grade of a linguistic 

label by bell-shaped membership function. The node function of the i-th node can 

be calculated by: 

( )
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where x is the input to node i, iA  is the linguistic label associated with this node, 

( )iii cba ,,  is the parameter set that changes the shapes of the membership 

function, and parameters in this layer are referred to as the premise parameters. 

Layer 2: Each node in this layer calculates the firing strength of each rule by 

multiplication: 

( ) ( ) .2,1,2 =×== iyxwO
ii BAii µµ            (2.31) 

Layer 3: The i-th node of this layer calculates the normalisation of the i-th rule’s 

firing strength by: 

.2,1,
21

3 =
+

== i
ww

w
wO i

ii               (2.32) 

Layer 4: Each Node i in this layer with a node function by: 

 ( )iiiiiii ryqxpwfwO ++==4              (2.33) 

where iw  is the output of layer 3, and ( )iii rqp ,,  is the parameter set, and 

parameters in this layer will be referred to as the consequent parameters. 
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Layer 5: The single node in this layer computes the overall output as the 

summation of all incoming signals by: 

∑
∑∑ ===

i i

i ii
i

i
ii w

fw
fwoutputoverallO 5          (2.34) 

Final: The overall output f can be expressed as a linear combinations of the 

consequent parameters by: 

( ) ( ) ( ) ( ) ( ) ( ) 2222221111112211 rwqywpxwrwqywpxwfwfwf +++++=+=   (2.35) 

ANFIS applies two techniques to update parameters. For premise parameters, the 

membership functions are defined, and ANFIS applies the gradient descent 

method to fine-tuning parameters. For consequent parameters, the coefficients of 

each output equations are defined, and ANFIS applies the least-squares method 

to identify parameters. 

2.4.2 A Two-Phase Approach to Fuzzy System 

Identification 

This approach puts focus on identifying fuzzy systems for both the function 

approximation and classification type of systems. This approach for fuzzy system 

identification consists of two phases, including Phase One – baseline design as 

well as Phase Two – Fine Tuning (Hung et al., 2003). The first phase generates a 

baseline design to identify a prototype fuzzy system from a collection of 

input-output data pairs by the subtractive clustering algorithm (Chiu, 1994) and 

the fuzzy c-means clustering algorithm. The second phase is processed to tune 

the parameters identified in the baseline design by the steepest descent method 

and the recursive least-squares estimation method. Moreover, the structure of 

two-phase approach to fuzzy system identification is illustrated in Fig. 2.9. 
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Fig. 2.9 The structure of two-phase approach to fuzzy system identification 

Phase One – Baseline Design: 

Two clustering techniques, the subtractive clustering method and the fuzzy 

c-means clustering algorithm, are used to determine the number of rules and the 

parameters of membership functions. 

Phase Two – Fine Tuning: 

The fine tuning process is an iterative process, and the steepest descent method 

as well as the recursive least-squares estimation method are used for fine tuning 

the parameters of membership functions. Also, the recursive least-squares 

estimation method is used to determine the parameters of the first-order 

polynomial functions in the THEN parts. 

 

By combining the subtractive clustering method and the fuzzy c-means clustering 

algorithm, the determination of the number of clusters becomes straightforward 
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for the optimisation-based fuzzy clustering algorithms and the computational 

effort is therefore kept small.  

2.4.3 An Input-Output Clustering Method for Fuzzy 

System Identification 

The purpose of input-output clustering (IOC) algorithm is to determine both the 

correct number of clusters and their appropriate location by considering both 

inputs and outputs (Wang et al., 2007). To achieve the above objective, IOC 

consists of three stages of clustering: rough clustering, refined clustering, and 

parameter refined training. The task of each stages can be described as follows: 

l Rough clustering: determination of output partition 

l Refined clustering: determination of the number of sub-clusters and their 

location within each output constriction 

l Parameter refined training: parameters optimisation by the gradient descent 

method 

 

In the stage of rough clustering, the output space is evenly partitioned based on 

hard interval partition. Consider ( )nxxxfy ,...,, 21= , where [ ]βα ,∈y . The 

output space is evenly partitioned by m, then [ ]mmy αααα ,[...), 110 −∈ UU , where 

αα =0  and βα =m . Each interval based on the above definition can be 

recognized an output constriction, and the training data are roughly grouped 

based on this output partition to obtain a set of clusters. 

 

In the stage of refined clustering, fuzzy c-means clustering algorithm is used to 

obtain a set of sub-clusters in each output constriction. In order to find the 

optimal number of sub-clusters, a criterion of separability is used for 
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automatically find the optimal number of sub-clusters in each constriction after 

the fuzzy c-means clustering algorithm is completed. Moreover, the criterion of 

separability rS  is defined by: 
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where j is the j-th sub-cluster within the r-th output constriction, rN  is the total 

number of data located within the r-th output constriction, and ( )cr mm  is the 

number of sub-cluster within the r-th(c-th) output constriction. 

 

A large value of rS  indicates a better separability, and which means the data 

within the r-th output constriction can be well separated from the remaining data. 

Therefore, the optimal number of sub-cluster rm  with the largest value of 

separability rS  is the key point to find the correct number of sub-clusters for 

each output constriction. In other words, the largest value of rS  indicates the 

optimal number of sub-cluster rm  within the r-th output constriction. The 

optimal number of sub-cluster rm  can be calculated by: 
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In the stage of parameter refined training, the parameters of Gaussian 

membership functions for the obtained fuzzy system are fine-tuned by the 

gradient descent method. 
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2.5 Clustering 

The process of grouping a set of physical or abstract objects into classes of 

similar objects is called clustering (Han & Kamber, 2006) 

 

Clustering, can also be called cluster analysis or data segmentation, and means 

assigning a set of observations or data into subsets or clusters. The observations 

or data located in the same subsets or clusters possess certain similar 

characteristics to each other as well as sharing certain properties. The task of 

clustering is to learn a classification from observations or data, and the purpose 

of cluster analysis is to recognise similar and dissimilar observations or data. 

Similar observations or data will be clustered in the same subsets, but dissimilar 

observations or data will be clustered to different subsets. In other words, the 

observations or data assigned to the same subset or cluster are more closely 

related than observations or data assigned to different subsets or clusters. 

 

So far as the learning types are concerned, clustering algorithms can be 

recognised as unsupervised learning methods predicting category labels. 

Clustering can be used for the purpose of exploratory data analysis and 

generalisation, and it is a prevalent technique for statistical data analysis applied 

in machine learning, pattern recognition, and data mining. In order to understand 

the properties of clustering, a brief introduction follows.  

2.5.1 Properties of Clustering 

Clustering algorithms have a variety of properties, consisting of hierarchical, flat, 

hard, soft, iterative, and disjunctive. Among these properties, certain properties 

can be included together in a clustering algorithm, but others are excluded. 

v Hierarchical Clustering. As implied by the name, a hierarchical 

clustering algorithm creates a hierarchy of clusters of decreasing 
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generality, and a series of partitions take place by an agglomerative 

scheme or divisive scheme in the procedure of hierarchical clustering 

algorithms. As the framework of hierarchical clustering algorithms is a 

hierarchical structure, the specialisation ability of hierarchical clustering 

algorithms is better than that of flat clustering algorithms. Therefore, the 

advantages of hierarchical clustering algorithms are providing detailed 

data analysis and more information than flat clustering algorithms. 

Further, hierarchical clustering algorithms includes single linkage 

clustering algorithm, complete linkage clustering algorithm, average 

linkage clustering algorithm, average group linkage clustering algorithm, 

and Ward’s hierarchical clustering algorithm. 

v Flat Clustering. Different from hierarchical clustering algorithms, flat 

clustering algorithm creates a flat set of clusters without any explicit 

structure relating clusters to each other. Flat clustering algorithms are 

efficient for dealing with large data sets in clustering. Therefore, flat 

clustering algorithms usually have better generalisation ability than 

hierarchical clustering algorithms. The k-means clustering algorithm and 

the fuzzy c-means clustering algorithm are the most used methods of flat 

clustering algorithms. 

v Hard Clustering. In hard clustering algorithms, each observation or data 

is assigned to exactly one cluster. Hierarchical clustering algorithms and 

the k-means clustering algorithm belong to hard clustering algorithms. 

v Soft Clustering. In soft clustering algorithms, each observation or data is 

assigned to a cluster based on the probability of belonging to a cluster. In 

other words, each observation or data has fractional membership in 

different clusters. The fuzzy c-means clustering algorithm belongs to soft 

clustering algorithms, as each observation or data carries a different 

membership value to different subsets or clusters. 
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v Iterative Clustering. Iterative clustering algorithms start with an initial 

data set of clusters and assign each data set to the appropriate cluster with 

the iterative procedure until the algorithms entirely converge. The 

k-means clustering algorithm and the fuzzy c-means clustering algorithm 

are the most used clustering algorithms of iterative clustering algorithms. 

v Disjunctive Clustering. In disjunctive clustering algorithms, an 

observation or data can belong to more than one cluster. The fuzzy 

c-means clustering algorithm can be regarded as a kind of disjunctive 

clustering algorithm, as each observation or data carries a different 

membership value to different subsets or clusters. 

 

To sum up, each clustering property or clustering algorithm has its own niche. 

There is no absolute clustering property or clustering algorithm, because different 

clustering algorithms are suitable for different problems or applications. The 

more clusters generated cannot reach a better performance for clustering 

purposes, because a large number of clusters cannot guarantee both the correct 

number of clusters as well as the appropriate location for which have been 

determined. By other means, the correct number of clusters as well as the 

appropriate location of the clusters is the primary requirements when justifying a 

positive clustering technique. 

2.5.2 Clustering Techniques for Classification Problems 

and Function Approximation Problems 

Clustering techniques have been used to solve classification and pattern 

recognition problems. To date, a great diversity of clustering techniques have 

been developed, one of which is to apply clustering techniques to construct initial 

models for function approximators. Before applying clustering techniques to 

work on function approximation problems, there are certain concepts between 
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classification problems and function approximation problems which need to be 

(Gonzalez et al., 2002). 

v In classification problems, the output variable is discrete and takes values 

in a finite label set which is defined a priori. 

v In function approximation problems, the output variable is continuous 

and takes any of the infinite values within an interval of real numbers. 

 

As the values of the output variable for function approximation problems is 

different to the values of the output variable for classification problems, the 

system output values may be accepted if the system output values are 

“sufficiently close” to the desired output values. However, this behaviour is not 

desirable for classification problems, because the values of a discrete output 

variable may not be related by any numerical values in a classification problem. 

Clustering techniques do not take the interpolation properties into account, 

because it is not necessary when dealing with discrete variables present in 

classification problems (Gonzalez et al., 2002). 

 

The following sections will introduce the most used clustering algorithms, 

including the k-means clustering algorithm, the fuzzy c-means clustering 

algorithm, and the average group linkage clustering algorithm. 

2.5.3 K-Means Clustering Algorithm 

The k-means clustering algorithm is an algorithm that is simultaneously a flat, 

hard, as well as an iterative clustering property based on Euclidian distance, 

which assigns observations or data to subsets or clusters by iteratively calculating 

the shortest distance between each data and the corresponding cluster centroid. 

Basically, the k-means clustering algorithm groups data based on its attributes 

into K number of groups. K is an integer whose value is equal to or greater than 
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1.0. The grouping determines the value of K first, and then selects the best cluster 

centroid by minimising the sum of squares of distance between data and the 

corresponding cluster centroid iteratively, until the best cluster centroid of each 

group is selected. The brief procedure of the algorithm of k-means clustering can 

be described as follows: 

l Step 1: Determine the number of the partition “K”. 

l Step 2: Determine the initial cluster centroid of each cluster. 

l Step 3: Calculate the distance between each data and the corresponding 

cluster centroid by Euclidean distance. 

l Step 4: Determine the best cluster centroid by minimising the sum of 

squares of distance between data and the corresponding cluster centroid. 

l Step 5: Keep performing the procedure until no data needs to move groups. 

l End: The entire algorithm converges. 

 

Also, the complete procedure of the k-means clustering algorithm can be 

illustrated in Fig. 2.10 (Teknomo, 2004): 

Number of Cluster K

Distance objects to centroids

Grouping based on minimum dustance

Centroid

 YES

Data

No object move
group? End

NO

 

Fig. 2.10 The system of the algorithm of K-Mean Clustering 
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As the entire procedure converges, the following properties are present: 

l The number of K cluster(s) has been generated. 

l The best cluster centroid of each cluster (K cluster) has been calculated. 

l The distance between each data set to the corresponding cluster centroid is 

the minimum distance in the whole topology. 

 

Finally, according to the proposition of Kardi Teknomo, the weakness of k-means 

Clustering can be described as follows (Teknomo, 2004): 

v When the numbers of data are not so many, initial grouping will 

determine the cluster significantly. 

v The number of cluster, K, must be determined beforehand. 

v We never know the real cluster, using the same data, if it is inputted in a 

different way may produce different cluster if the number of data is a few. 

v We never know which attribute contributes more to the grouping process 

since we assume that each attribute has the same weight. 

v A less value of K may result in the problem of underfitting, and an 

excessive value of K may result in the problem of overfitting 

2.5.4 Fuzzy C-Means Clustering Algorithm 

Fuzzy Clustering algorithms can be regarded as a well-identified family of rule 

induction techniques, which organise and categorise data into homogeneous 

groups, and each partition or group represents a rule associated to each cluster 

(Guillaume, 2001). Meanwhile, fuzzy c-means is one of the essential fuzzy 

clustering algorithms, and allows data to belong to more than one cluster. The 

fuzzy c-means clustering algorithm was developed in 1973 by Dunn, and 

improved by Bezdek in 1981. The concepts of the fuzzy c-means clustering 
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algorithm represents the mechanism of fuzzy logic, which regards each cluster as 

a membership function respectively, and each datum is bound to each cluster by 

means of a membership function. After the iterative process has been finished, 

the datum will be considered to be located at the highest degree among all the 

clusters.  So far as the basic mechanism of fuzzy c-means clustering algorithm 

is concerned, the clustering algorithm possesses several properties of clustering, 

including soft clustering, flat clustering, iterative clustering, and disjunctive 

clustering. In addition to the properties described above, the fuzzy c-means 

clustering algorithm is based on minimisation of the following criterion 

(Matteucci, 2003): 

 ∑∑
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ji
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ijm cxJ

1 1

2
µ , ∞<≤ m1                (2.38)                    

where m is a real parameter greater than 1.0, uij is the degree of membership of xi 

in the cluster j, xi is the i-th of d-dimensional measured data, cj is the d-dimension 

centre of the cluster, and ||*|| is any norm expressing the similarity between any 

measured data and the centre. 

 

Generally, there is no specific value of the parameter m of equations 2.38. The 

value of the parameter m of equations 2.38 is usually set equal to 2.0, because 

this is equivalent to normalising the coefficient linearly to make their sum 1.0. 

When the value of m is close to 1, then the cluster centre closest to the point is 

given much more weight than the others. Based on the iterative process of 

equation 2.38, the update of membership iju  and the cluster centre jC  can be 

calculated as follows: 
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The iteration keeps performing until either the algorithm perfectly converges or 

the termination criterion has been reached. Meanwhile, the termination criterion 

can be determined as follows: 

 { } εµµ <−+ )()1(max k
ij

k
ijij                       (2.41) 

where ε  is a termination criterion between 0 and 1.0, and k are the iteration 

steps.  

 

The value of ε  is determined according to the requirements, such as a higher 

accuracy or lower computational cost, and the above equation 2.41 converges to 

a local minimum or a saddle point of mJ . Generally, the smaller values of ε  

indicates a higher accuracy with increased computational cost, and the bigger 

values of ε  indicates a lower accuracy with less computational cost. 

2.5.5 Average Group Linkage Clustering Algorithm 

The average group linkage method is one of the hierarchical clustering methods, 

and calculates the distance between clusters in hierarchical cluster analysis. 

Therefore, it is a kind of distance-based clustering with hierarchical clustering 

analysis. In this method, the clusters are represented by the mean value of each 

variable, and thus the distance between clusters is calculated by the average 

values or mean vector of clusters. As the distance between two clusters is the 

minimum, these two clusters will be merged into a single cluster. In other words, 

the new cluster has the minimum average distance between the data points it 

contains. The equation for the average group linkage method can be represented 

by: 
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))(),((),( nmnm CMeanCMeanDCCD =               (2.42) 

where ),( nm CCD  is the distance between cluster mC  and cluster nC , and 

))(),(( nm CMeanCMeanD  is the distance between the mean vectors of these two 

clusters. Also, Cluster mC  and Cluster nC  are merged when ),( nm CCD  is 

minimum. 

 

The procedure of the average group linkage clustering algorithm can be 

summarised as follows: 

l Step 1: Associate each data to a separate cluster 

l Step 2: Calculate every possible distance between clusters 

l Step 3: Merge the clusters with the minimum distance to each other to a new 

single cluster. 

l Step 4: Calculate every possible distance between the new cluster and all of 

other clusters. 

l Step 5: Keep repeating Step 3 and Step 4 until no clusters are required to be 

merged. 

The advantage of the average group linkage clustering algorithm is the inherent 

similarity between data and the detailed information of the a priori knowledge 

which may be positively discovered by the property of the hierarchical clustering 

of the average group linkage clustering algorithm. 

2.6 Similarity-Based Pruning Strategy 

The application of similarity analysis has evolved from the concept of similarity 

relations. The rudimentary concept of similarity relations between fuzzy sets, 

fuzzy numbers or fuzzy membership functions were proposed by Zadeh (1971). 
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Zadeh introduced the concept of similarity relations to indicate the degree of 

similarity between elements in a universe of discourse for concretising the utility 

of the theory of fuzzy sets, and the theory of relations to fuzzy sets has therefore 

been considered as an extension of the theory of fuzzy sets. With the positive 

significance of similarity analysis, several methods have applied the concept of 

similarity relations by calculating the degree of similarity between fuzzy sets, 

fuzzy numbers or fuzzy membership functions, and the rudimentary development 

of the relevant research is outlined by Pappis and Karacapilidis (1993), Chen and 

Chen (1995), Hsieh and Chen, (1999) and Lee (1999). 

2.6.1 Three Types of Basic Similarity Measures of Fuzzy 

Values 

In 1993, Pappis and Karacapilidis presented three types of basic measures of 

similarity of fuzzy values, including a measure based on the operations of union 

and intersection, a measure based on the maximum difference, and a measure 

based on the difference as well as the sum of grades of membership.  

2.6.1.1 Measure Based on the Operations of Union and 

Intersection 

So far as the measure based on the operations of union and intersection is 

concerned, the degree of similarity BAM ,  of the fuzzy sets A and B can be 

defined by: 

( )
( )iii

iii
BA ba

ba
M

∨

∧
=
∑
∑

,                       (2.43) 

where ba ∧  denotes ( )ba,min , ba ∨  denotes ( )ba,max , and ia  as well as 

ib  are the values of fuzzy set A and B respectively. Moreover, 10 , ≤≤ BAM , 
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ABBA MM ,, = , and A and B are identical if and only if 1, =BAM . A larger value 

of BAM ,  indicates a higher degree of similarity between fuzzy sets.  

2.6.1.2 Measure Based on the Maximum Difference 

So far as the measure based on the maximum difference is concerned, the degree 

of similarity BAL ,  of the fuzzy sets A and B can be defined by: 

( )iiiBA baL −−= max1,                    (2.44) 

Moreover, 10 , ≤≤ BAL , ABBA LL ,, = , and A and B are identical if and only if 

1, =BAL . A larger value of BAL ,  indicates a higher degree of similarity between 

fuzzy sets.  

2.6.1.3 Measure Based on the Difference and the Sum of Grades 

of Membership 

So far as the measure based on the difference and the sum of grades of 

membership is concerned, the degree of similarity BAS ,  of the fuzzy sets A and 

B can be defined by: 

( )∑
∑

+

−
−=

iii

iii
BA ba

ba
S 1,                     (2.45) 

Moreover, 10 , ≤≤ BAS , ABBA SS ,, = , and A and B are identical if and only if 

1, =BAS . A larger value of BAS ,  indicates a higher degree of similarity between 

fuzzy sets. 
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2.6.2 Similarity Measure Based on the Distance between 

Fuzzy Numbers 

Based on the work proposed by Pappis and Karacapilidis (1993), Chen and Lin 

(1995) extended the work and applied the concept of similarity to fuzzy risk 

analysis. In the work of Chen and Lin, the calculation of the degree of similarity 

is based on the distance between fuzzy numbers, and the criterion of the degree 

of similarity )
~

,
~

( BAS  between fuzzy numbers A
~  and B

~  can be calculated by: 

n

ba
BAS

n

i
ii∑

=

−
−= 11)

~
,

~
(                    (2.46) 

where ),...,(
~

2,1 naaaA = , ),...,(
~

2,1 nbbbB = , and n is the number of vertex of the 

fuzzy number. As n is 3, the shape of the fuzzy number is triangular and the type 

of membership function is a triangular membership function, where 

),(
~

32,1 aaaA = , ),(
~

32,1 bbbB = . In cases where n is 4, the shape of the fuzzy 

number is trapezoid and the type of membership function is a trapezoid 

membership function, where ),,(
~

432,1 aaaaA = , ),,(
~

432,1 bbbbB = . Moreover, 

the value of )
~

,
~

( BAS  is between 0 and 1, and a larger value of )
~

,
~

( BAS  

indicates a higher degree of similarity between fuzzy numbers. 

 

To facilitate the computation of the aggregation method for fuzzy opinions of 

group decision making, Lee (1999) proposed a new criterion to measure the 

degree of similarity for fuzzy numbers for the purpose of simple computation and 

the identification of disjointed fuzzy numbers. Meanwhile, the degree of 

similarity )
~

,
~

( BAS  between fuzzy numbers A
~  and B

~  can be calculated by:   

plp n
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where ),...,(
~

2,1 naaaA = , ),...,(
~

2,1 nbbbB = , n is the number of vertex of the 

fuzzy number, pl  metric is defined as pp
n

i
iilp

baBA
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∑
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−=− , the default 

value of p is 1, U is the universe of discourse, and )min()max( UUU −= . As n 

is 3, the shape of the fuzzy number is triangular and the type of membership 

function is a triangular membership function, where ),(
~

32,1 aaaA = , 

),(
~

32,1 bbbB = . In cases where n is 4, the shape of the fuzzy number is trapezoid 

and the type of membership function is a trapezoid membership function, where 

),,(
~

432,1 aaaaA = , ),,(
~

432,1 bbbbB = . Moreover, the value of )
~

,
~

( BAS  is 

between 0 and 1, and a larger value of )
~

,
~

( BAS  indicates a higher degree of 

similarity between fuzzy numbers. 

2.6.3 Similarity Measure Based on Graded Mean 

Integration Representation Distance 

The work proposed by Hsieh and Chen (1999) was different to those described 

above as it applied a graded mean integration representation distance to measure 

the degree of similarity between fuzzy numbers. The degree of similarity 

)
~

,
~

( BAS  between fuzzy numbers can be calculated by:  
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where the distance of the graded mean integration representation can be defined 

to be )
~

()
~

()
~

,
~

( BPAPBAd −= , and )
~

( AP  as well as )
~

(BP  are the graded 

mean integration representation of the fuzzy numbers A
~  and B

~ .  

 

The definitions of the graded mean integration representation of fuzzy numbers 
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are different based on the different shape of the fuzzy numbers, and can be 

triangular and trapezoid types. So far as the triangular fuzzy number is concerned, 

the definition of fuzzy number ),(
~

32,1 aaaA =  and ),(
~

32,1 bbbB = can be 

defined as follows: 

6
4

)
~

( 321 aaa
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++
= , 

6
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)
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( 321 bbb
BP

++
=             (2.49) 

So far as the trapezoid fuzzy number is concerned, the definition of fuzzy 

number ),,(
~

432,1 aaaaA =  and ),,(
~

432,1 bbbbB = can be defined as follows: 
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Moreover, 1)
~

,
~

(0 ≤≤ BAS  as well as )
~

,
~

()
~

,
~

( ABSBAS = , and a larger value of 

)
~

,
~

( BAS  indicates a higher degree of similarity between fuzzy numbers. 

2.6.4 Similarity Measure Based on Centre-of-Gravity 

Point 

In order to make fuzzy numbers more clear, Chen (1985) put the membership 

value as the essence of fuzzy numbers for recognising the normal fuzzy number 

or not. In principle, Chen’s work defined the generalised trapezoidal fuzzy 

number A
~  as );,,(

~
~432,1 A

waaaaA = , where 
A

w ~  presents the maximum 

membership value of fuzzy number A
~ , 10 ~ ≤<

A
w , and }|{ Raa ii ∈ . Basically, 

the maximum membership value of a normal fuzzy number is 1.  Though the 

shape of the generalised fuzzy number is defined as a trapezoidal fuzzy number 

based on 4321 aaaa ≠≠≠ , the type of the fuzzy number can be altered by 

adjusting the relationship between the essences of fuzzy numbers. Since a normal 

fuzzy number has been defined as ),,(
~

432,1 aaaaA = , a rectangular fuzzy number 
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can be recognised by 21 aa =  and 43 aa = ; the triangular fuzzy number can be 

recognised by 32 aa = ; and the crisp value is defined as 4321 aaaa === . 

2.6.4.1 Centre-of-Gravity Point of Fuzzy Numbers 

According to the definition of generalised fuzzy number as defined by Chen 

(1985) Chen’s later work (2000) proposed a method with which to calculate the 

centre-of-gravity (COG) point for handling the fuzzy ranking and the 

defuzzification problems based on the concepts of geometry. The formula for 

calculating the centre-of-gravity (COG) point ( )** , yx  of a trapezoidal fuzzy 

number );,,(
~

~432,1 A
waaaaA = , ( ) ( )*

~
*

~ ,
~

AA
yxACOG = , can be represented as 

follows: 
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2.6.4.2 Calculation of Similarity Measure Based on COG Point 

In order to acquire a more precise degree of similarity between fuzzy numbers, 

Chen & Chen (2001) further investigated the previous work by Chen (1985), 

Chen and Lin  (1995) and Chen and Chen (2000) and integrated them into one 

method. In Chen (2001), the COG points COG ( ) ( )*
~

*
~ ,

~
AA

yxA =  of fuzzy number 

A
~  and COG ( ) ( )*

~
*

~ ,
~

BB
yxB =  of fuzzy number B

~  are obtained using equations 

2.51 and 2.52 respectively, and the degree of similarity between the trapezoidal 
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fuzzy numbers A
~  and B

~  can be calculated by: 
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where [ ]1,0)
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A
S ~  and 

BS ~  are the bases of the 

generalised trapezoidal fuzzy numbers A
~  and B

~  respectively, and which can 

be defined as  14~ aaS
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Moreover, 1)
~

,
~

(0 ≤≤ BAS , )
~

,
~

()
~

,
~

( ABSBAS = , and A
~  and B

~  are identical if 

and only if 1)
~

,
~

( =BAS . A larger value of )
~

,
~

( BAS  indicates a higher degree of 

similarity between fuzzy numbers. Based on equation 2.53, the degree of 

similarity between the triangular fuzzy numbers A
~  and B

~  can be calculated 

by adjusting the essences of the trapezoidal fuzzy number );,,(
~

~432,1 A
waaaaA =  

to 32 aa = . 

2.6.5 Similarity Measure Based on Overlapped Area 

In addition to the above methods, the methods  of Lin (1995) and Dubois and 

Prade (1982) measure the degree of similarity by calculating the overlapping area 

between fuzzy sets, fuzzy numbers, or fuzzy membership functions, and the 



 79

fuzzy similarity measure between fuzzy set A and fuzzy set B can be defined as 

follows:  

)()()(
)(

)(
)(

),(
BAMBMAM

BAM
BAM
BAM

BAS
∩−+

∩
=

∪
∩

=           (2.54) 

where � denotes the intersection of fuzzy sets A and B, � denotes the union of 

fuzzy sets A and B, and M(�) is the size of a fuzzy set. 

 

Moreover, 1),(0 ≤≤ BAS , ),(),( ABSBAS = , and A and B are identical if and 

only if 1),( =BAS . A larger value of ),( BAS  indicates a higher degree of 

similarity between fuzzy sets, fuzzy numbers, or fuzzy membership functions.  

2.6.6 Similarity Measure Based on Six Cases by Leng’s 

Work 

In order to decrease the complex of the neuro-fuzzy system, as well as to 

improve the overlap between membership functions, Leng et al. (2009) proposed 

a pruning strategy based on similarity analysis to eliminate redundant 

membership functions and merge similar membership functions into a new 

membership function. According to equation 2.54, Leng’s work performed the 

similarity analysis by finalising six different cases based on triangular 

membership functions. These six different cases totally cover all possible 

similarity relationships based on triangular membership functions, and are 

classified into: 

l Case 1: One membership function is the subset of the other membership 

function, ( )BM  is the subset of ( )AM , ( ) ( )AMBM ⊆ ;  

l Case 2: There is no intersection between membership functions ( )AM  and 
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( )BM , ( ) ( ) 0=∩ BMAM ;  

l Case 3: Two membership functions ( )AM  and ( )BM possess single 

intersection point;  

l Case 4: Two membership functions ( )AM  and ( )BM  possess two 

intersection points between the both side of membership function ( )AM  

and the left side of membership function ( )BM ;  

l Case 5: Two membership functions ( )AM  and ( )BM  possess two 

intersection points between the right side of membership function ( )AM  

and the both side of membership function ( )BM ;  

l Case 6: Two membership functions ( )AM  and ( )BM  possess three 

intersection points between the both side of membership functions ( )AM  

and ( )BM . 

 

Basically, these six different cases based on the relationship of triangular 

membership functions can be illustrated by Fig. 2.11-2.16. If the degree of 

similarity between two fuzzy sets ( )111 ,, γβαA  and ( )222 ,, γβαB  exceeds the 

threshold value λ , λ≥),( BAS , where 10 ≤< λ , the fuzzy memberships can 

be merged into one new fuzzy set ( )γβα ,,C . In addition to the similarity 

analysis, Leng’s work also provided the calculation of the new fuzzy set or 

triangular membership function. 
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Case 1: 

In case 1, illustrated in Fig. 2.11, the membership function ( )BM  has been 

included in the membership function ( )AM , ( ) ( )AMBM ⊆ , and ( )AM  as well 

as ( )BM  possess the same centre 21 ββ =  with no intersection, where 

( ) 11γαPAM ∆= , ( ) 22γαPBM ∆= , and ∆  means the triangle area. Based on 

equation 2.54, the degree of similarity between fuzzy sets ( )111 ,, γβαA  and 

( )222 ,, γβαB  is ( )BMBAM =∩ )( , and a new fuzzy set ( )γβα ,,C  merged 

by fuzzy sets ( )111 ,, γβαA  and ( )222 ,, γβαB  can be calculated by:  

( )21 ,min ααα = , 21 βββ == , ( )21 ,max γγγ =          (2.55) 

21 ββ =

BA

1α 2α 2γ 1γ

P

 

Fig. 2.11 Case 1 of Leng’s work, ( )BM  is the subset of ( )AM , 

( ) ( )AMBM ⊆ . 

Case 2: 

In case 2, illustrated in Fig. 2.12, there is no intersection between the 

membership functions ( )AM  and ( )BM . Therefore, the intersection of ( )AM  

and ( )BM  is 0)( =∩ BAM , and the degree of similarity for case 2 is 

0),( =BAS . As 0),( =BAS , there is no combination required in this case. 
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1β1α 1γ 2α 2β 2γ

A B

 

Fig. 2.12 Case 2 of Leng’s work, ( )AM  and ( )BM  with no intersection, 

( ) ( ) 0=∩ BMAM . 

Case 3: 

In case 3, illustrated in Fig. 2.13, the membership functions ( )AM  and ( )BM  

possess single intersection point at ( )hs, , and the degree of similarity between 

membership functions ( )AM  and ( )BM , ),( BAS , can be calculated by: 

2211

21

αββγ
αγ

−+−
−

=h                     (2.56) 

( )hBAM 212
1

)( αγ −=∩                    (2.57) 

( ) )(
2
1

)( 2211 BAMBAM ∩−−+−=∪ αγαγ          (2.58) 

 

Moreover, if λ≥),( BAS , the new fuzzy set ( )γβα ,,C  merged by fuzzy sets 

( )111 ,, γβαA  and ( )222 ,, γβαB  can be calculated by: 

( ) .,
2
1

, 2211 γγβββαα =+==                (2.59) 
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BA

( )hs,

1β1α 2α 2γ1γ 2β  

Fig. 2.13 Case 3 of Leng’s work, ( )AM  and ( )BM  with one intersection 

point at ( )hs, . 

Case 4: 

In case 4, illustrated in Fig. 2.14, the membership functions ( )AM  and ( )BM  

possess two intersection points at ( )11 , hs  and ( )22 , hs  between both sides of 

membership function ( )AM  and the left side of membership function ( )BM , 

and the degree of similarity between membership functions ( )AM  and ( )BM , 

),( BAS , can be calculated by: 

( ) ( ) ( ) ( ) ( ) ( )[ ]{ }2111111121
2
211

2
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where 
1122

21
1 βααβ

αα
−+−

−
=h , 

1122
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2 βγαβ

αγ
−+−

−
=h ,        (2.61) 

and ( ) )(
2
1

)( 2211 BAMBAM ∩−−+−=∪ αγαγ .         (2.62) 

 

Moreover, if λ≥),( BAS , the new fuzzy set ( )γβα ,,C  merged by fuzzy sets 

( )111 ,, γβαA  and ( )222 ,, γβαB  can be calculated by: 
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( ) .,
2
1

, 2212 γγβββαα =+==                 (2.63) 

( )11,hs

A B

1β1α2α 2γ1γ2β

( )22 ,hs

 

Fig. 2.14 Case 4 of Leng’s work, ( )AM  and ( )BM  with two intersection 

point at ( )11 , hs  and ( )22 , hs . 

Case 5: 

In case 5, illustrated in Fig. 2.15, the membership functions ( )AM  and ( )BM  

possess two intersection points at ( )11 , hs  and ( )22 , hs  between the right side of 

membership function ( )AM  and both side of membership function ( )BM , and 

the degree of similarity between membership functions ( )AM  and ( )BM , 

),( BAS , can be calculated by: 

( ) ( ) ( ) ( ) ( ) ( )[ ]{ }2221222221
2
222

2
1222

1

)(

hhhhhh

BAM

βγαβαγβγαβ −+−−−++−+−

=∩
(2.64) 

where 
2211

21
1 αββγ

αγ
−+−

−
=h , 

2211
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2 γββγ

γγ
−+−

−
=h ,     (2.65) 

and ( ) )(
2
1

)( 2211 BAMBAM ∩−−+−=∪ αγαγ .      (2.66) 

Moreover, if λ≥),( BAS , the new fuzzy set ( )γβα ,,C  merged by fuzzy sets 
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( )111 ,, γβαA  and ( )222 ,, γβαB  can be calculated by: 

( ) .,
2
1

, 1211 γγβββαα =+==              (2.67) 

( )11, hs

( )22, hs

A B

1β2α1α 1γ2γ2β  

Fig. 2.15 Case 5 of Leng’s work, ( )AM  and ( )BM  with two intersection 

point at ( )11 , hs  and ( )22 , hs . 

Case 6: 

In case 6, illustrated in Fig. 2.16, the membership functions ( )AM  and ( )BM  

possess three intersection points at ( )11 , hs , ( )22 , hs and ( )33 ,hs , and the degree 

of similarity between membership functions ( )AM  and ( )BM , ),( BAS , can 

be calculated by: 

( ) ( ) ( ) ( ) ( ) ( )[ ]
( ) ( ) ( ) ( ) ( ) ( )[ ]}2

{
2
1

)(

213222221111232

1112132231
2
222

2
111

αααββγαβαγ

αβαααββγαβ

+−−−−−−−−++

−−+−−++−+−

=∩

hhhhh

hhhhhh

BAM

(2.68) 

where 
1122

21
1 βααβ

αα
−+−

−
=h , 

2211

21
2 γββγ

γγ
−+−

−
=h , 

2211

21
3 γββγ

αγ
−+−

−
=h (2.69) 

and ( ) )(
2
1

)( 2211 BAMBAM ∩−−+−=∪ αγαγ .       (2.70) 

Moreover, if λ≥),( BAS , the new fuzzy set ( )γβα ,,C  merged by fuzzy sets 
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( )111 ,, γβαA  and ( )222 ,, γβαB  can be calculated by: 

( ) .,
2
1

, 1212 γγβββαα =+==               (2.71) 

A B

( )11,hs ( )22 ,hs
( )33 ,hs

1β1α2α 1γ2γ2β  

Fig. 2.16 Case 6 of Leng’s work, ( )AM  and ( )BM  with three intersection 

point at ( )11 , hs , ( )22 , hs , and ( )33 ,hs . 

Moreover, in the above cases, the intersection point between two triangular fuzzy 

membership functions, ( )11 , hs , ( )22 , hs , and ( )33 ,hs , can be calculated by 

straight-line equation. 

2.6.7 Further Issue 

There are certain reviews of earlier research works of similarity measure based 

on overlapped area mentioned in the Appendix I and Appendix II, including 

Chao’s work (1996) and Jin’s work (1999). According to the work proposed by 

Lin and Lee (1992), the Gaussian membership functions can be approximately 

transformed into the isosceles triangular membership functions for decreasing the 

computational cost or the sake of computational simplicity. In Jin et al. two 

Gaussian membership functions ( )11 , wcA  and ( )22 , wcB , where ic  and iw  

are the centre and the width respectively, can be transformed into the triangular 

membership function as πiii wca −= , πiii wcb +=  and 2,1=i . In 
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addition to case 4, the transformed membership functions can be applied to case 

1, 2, and 3, but in case 4 based on Gaussian membership functions this does not 

happen for the isosceles triangular membership functions. 

2.7 Parameters Optimisation 

Since the initial model of fuzzy system identification has been constructed, the 

parameters of the initial fuzzy model will be fine-tuned for refining the model as 

the final fuzzy model. Generally, in the later procedure of system identification, 

the parameters of the initial model will be fine-tuned by optimisation methods, 

such as the genetic algorithm, Newton’s method, the Quasi-Newton’s method, 

the gradient descent method, and so on. So far as the types of optimisation 

method are concerned, the methods can be categorised into two types, the global 

minimum type and the local minimum type. In global minimum methods, such as 

genetic algorithms, this method aims at finding the global minimum by 

iteratively picking out the best chromosome. In local minimum methods, such as 

the gradient descent method, this method aims at finding the local minimum 

point of the objective function by iterative steps. 

Gradient Descent Method 

The concept of the gradient descent method, also known as the steepest descent 

method, was proposed by Cauchy (1847). The gradient descent method is a 

first-order optimisation algorithm, and its purpose is to converge towards a local 

minimum of the objective function by taking proportional steps to the negative of 

the gradient of the function from the initial point. Therefore, the steps of the 

gradient descent method taking iterations to converge towards a local minimum 

can be described by 

l Determine the descent direction, the negative of the gradient of the function 

from the initial point. 
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l Determine the size of the step. 

l Keep taking iterations to converge towards a local minimum. 

 

Further, the equation of gradient descent method can be represented by: 

)(1 nnnn XFXX ∇−=+ γ  , 0≥n  , γ >0.               (2.72) 

where X is the point required to be tuned by the method, )( nXF∇  is the 

gradient of objective function at nX , and nγ  is the size of step. In equation 

2.72, the objective function )(XF  should be absolutely defined and be 

differentiable, and the size of γ  can be changed at every iteration. 

 

The gradient descent method has the advantage of finding the local minimum on 

univariate, because it can effectively reach the local minimum with less 

computational cost. The gradient descent method also can find the local 

minimum on multivariate by following the steepest descent path, and that is why 

the gradient descent method is called the steepest descent method as well. 

Moreover, the determination of the size of the step γ  is also a key point to 

determine the performance brought by the gradient descent method. In case the 

algorithm chooses a smaller size of step, the algorithm would take too long to 

converge with an inefficient performance. However, in case the algorithm 

chooses a bigger size of step, the algorithm would lead to the potentially bad 

results. Hence, the determination of the proper size of step γ  can either keep 

the efficiency of converging or save the computational time for converging. 

Further, the disadvantage of the gradient descent method on converging towards 

a local minimum in common is the converging speed will become slower as more 

closing the local minimum.  



 89

2.8 Summary 

Through this chapter, we have reviewed, fuzzy sets and membership functions, 

fuzzification and defuzzification, fuzzy system identification, literature reviews 

of learning and identification of fuzzy systems, cluster analysis, similarity-based 

pruning strategy, and parameters optimisation. For each, the primary roles and 

relevant research have been discussed in detail, and each is associated with the 

research in this thesis.  
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Chapter 3 A Three-Part Input-Output 

Clustering-Based Approach For Fuzzy 

System Identification 

This chapter presents a three-part input-output clustering-based approach for 

fuzzy system identification. The motivation behind the work in this chapter 

considers obtaining complete and consistent fuzzy systems by integrating a 

variety of existing clustering properties without much complicated mechanism 

and computational resource. In order to acquire a mutually exclusive 

performance by constructing an effective fuzzy model as far as possible, this 

chapter presents a modular method to identify fuzzy systems based on a hybrid 

clustering-based technique. The determination of the proper number of clusters 

and the appropriate location of these clusters are one of primary considerations in 

constructing an effective fuzzy model. Due to the above reasons, a hybrid 

clustering algorithm concerning input, output, generalisation and specialisation is 

introduced in this chapter. The proposed clustering technique, a three-part 

input-output clustering algorithm (Lee & Zeng, 2010), integrates a variety of 

clustering features simultaneously, which usefully combines the advantages of 

several clustering methods in the domain, including the advantages of input 

clustering, output clustering, flat clustering, and hierarchical clustering, to 

identify the clustering problem. The primary purpose of the hybrid 

clustering-based approach aims at generating a sound initial fuzzy model by 

recognising the approximate location of clusters as far as possible. In order to 

realise the objectives of the research work in this chapter, the outline of the 

research is illustrated in Fig. 3.1. 
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Fig. 3.1 Structure of the first research work 
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The rest of this chapter is organised as follows: a comprehensive introduction to 

this work is described in Section 3.1; in Section 3.2, the concept of hybrid 

clustering based on IF-THEN-IF is introduced; then the three-part input-output 

clustering technique of the proposed work is discussed in Section 3.3; in Section 

3.4, the procedure of the proposed work is described in detail; in Section 3.5, the 

proposed work will be validated by simulation examples; and a conclusion is 

given in Section 3.6. 

3.1 Introduction 

Fuzzy systems have been applied at a variety of areas as a result of their 

representation capability. Due to good knowledge representation, the 

development of fuzzy system identification have been considered and proposed 

for the purpose of solving regression-type problems as well as function 

approximation problems. So far as the modelling of fuzzy system identification is 

concerned, there are two ways commonly implemented for the initial fuzzy 

model. One is to define fuzzy rules by grid partition, but grid-based partition 

approaches easily touch the problem of the “curse of dimensionality” with its 

large computational costs. Another one is to partition or cluster the observations 

or data first, and each resultant subset or cluster is a fuzzy rule in the initial fuzzy 

model. In other words, the predetermined partitioning method before 

constructing the fuzzy system is also a way of achieving a better performance in 

the overall identification of the fuzzy system, because the problem of the “curse 

of dimensionality” can be relieved in most cases in advance. As mentioned in 

section 1.4.3, an effective clustering technique can relieve the problem of the 

“curse of dimensionality”. 

 

Due to the above reason, clustering-based approaches for fuzzy system 

identification have therefore been considered, such as Chiu’s method (1994), the 

method proposed by Kim et al. (1997), the method proposed by Delgado et al. 
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(1997), as well as the method proposed by Chen et al. (1998). The purpose of 

these is to develop a sound clustering technique evolved from the strength of the 

existing clustering algorithms to reinforce the performance of fuzzy system 

identification. 

 

So far as a pure black box type of approach is concerned, it is not easy to develop 

a sound clustering technique concerning everything, because without prior 

knowledge, sometimes the performance is strictly limited under certain 

conditions. Generally, most schemes of fuzzy system identification start out 

using clustering techniques with the features of flat clustering or hierarchical 

clustering used to determine the partition of the initial model, such as the 

k-means clustering algorithm or the average linkage clustering algorithm, and 

finally end applying the methods of parameter optimisation to reinforce the 

accuracy of the approximation of the final model, such as the gradient descent 

method, Newton’s method, or the genetic algorithm. 

 

In order to effectively make a positive performance corresponding to the target 

system, a hybrid clustering algorithm integrating the advantages of the existing 

clustering techniques has been considered. A three-part input-output clustering 

technique has therefore been developed for enhancing the positive performance 

of fuzzy system identification and then carries out this as a foundation to capture 

useful knowledge in the target system. Hence, the hybrid clustering algorithm 

which has been proposed in this chapter originally considers input clustering and 

output clustering together, so that the proposed hybrid clustering method is 

diversely constructed by integrating the concept of input-output clustering and 

the technique of three-part clustering successively. 

 

The framework of the proposed fuzzy model is constructed on an IF-THEN IF 

rule-base scheme by implementing a main module carrying sub-modules. The 

purpose of this paper is to try to develop a clustering-based approach for the 
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identification of fuzzy systems based on a hybrid clustering-based technique with 

positive reliability. The structure of the proposed method is composed of three 

phases, comprising clustering determination, fuzzy rules generation, and 

parameters optimisation. In the rudimentary phase, the proposed method tries to 

determine the proper number of clusters and their appropriate location by using 

training data. In the second phase, the fuzzy system will be constructed by the 

resulting cluster determined by the first phase. In the final phase, parameters of 

the model will be fine-tuned by the gradient descent method. 

3.2 Hybrid Clustering Based on IF-THEN IF Rule Base 

Scheme 

Clustering algorithms have been widely used to solve pattern recognition 

problems and moreover effectively perform the reliability of fuzzy system 

identification by constructing an initial model, because the feature of clustering 

algorithms are usually used to determine the initial rules for fuzzy systems. 

Generally, most input clustering algorithms achieve a good performance on 

constructing the initial model of system identification. However, it is insufficient 

to only consider the inputs for clustering because the optimal number of clusters 

and the appropriate location of clusters cannot easily to be identified by 

considering the inputs only. The output for clustering has therefore been 

considered for a clustering algorithm to positively find the optimal number of 

clusters and their appropriate location. Generally, there are two ways of 

considering outputs for clustering. One is to incorporate the outputs into the 

training set, and then by combining the inputs x and outputs y with the weight w 

of the outputs as a new vector ),( wyxz =  for clustering (Gonzalez et al., 2001). 

Another one is to cluster inputs x in the output context (Pedrycz, 1996; Pedrycz, 

2002; Pedrycz, 2006; Leski, 2003). In order to develop a mutually exclusive 

high-reliability clustering technique, a hybrid clustering algorithm concerning 
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input, output, generalisation and specialisation has been developed in this work. 

This hybrid clustering algorithm integrates the features of flat clustering and that 

of hierarchical clustering. In other words, the proposed clustering method does 

not only consider inputs and output, but also put focus on the generalisation 

performance and specialisation performance for clustering. 

3.2.1 IF-THEN IF Rule Base Scheme 

Basically, the structure of the proposed hybrid clustering algorithm is based on 

an IF-THEN IF rule base, and it originates from the concept of two-part 

clustering. In the entire structure, there is a main module comprising of primary 

clusters. Each primary cluster may carry sub-modules (sub-clusters) or none at 

all. According to the relationship of the distribution of the dataset, there are three 

types of distributions, including: 

v Dataset with different output. As displayed in Fig. 3.2, dataset in cluster A 

possess different output with dataset in cluster B. 

v Dataset with similar output but non-connective input. As displayed in Fig. 

3.3, dataset in cluster A possess similar output but non-connective input 

with dataset in cluster B, and dataset in cluster C possess similar output 

but non-connective input with dataset in cluster D. 

v Dataset with similar output and connective input. As displayed in Fig. 3.4, 

dataset in cluster A possess similar output and connective input, and 

dataset in cluster B possess similar output and connective input. 
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Fig. 3.2 Dataset with different output 
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Fig. 3.3 Dataset with similar output but non-connective input 
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Fig. 3.4 Dataset with similar output and connective input 
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In order to identify these three types of dataset distributions clearly and then 

partition precisely, a hierarchical structure using the rule form of “IF - THEN IF”, 

as illustrated in Fig. 3.5, has been used in the rule base as the main framework of 

the proposed clustering algorithm. The first IF concerns the primary rules of the 

main module, and the second IF concerns the respective sub-module and the 

secondary rule set. According to the scheme, the dataset will be considered for 

location at one of the primary clusters first, and then it will be decided whether 

the dataset will be  considered for locating at a sub-module (sub-cluster) of the 

corresponding primary cluster or not. If the dataset is located at a high certainty 

region (high population region) in a primary cluster of the main module, then this 

dataset could be recognised as locating at a primary cluster only. However, if the 

dataset is located at a low certainty region (low population region) in a primary 

cluster of the main module, then this dataset could be recognised as locating at a 

sub-module of the corresponding primary cluster of the main module. 

Main Module

Primary Cluster 1
(primary rule 1)

Sub-
Cluster

1

Sub-
Cluster

i

Sub-
Cluster

n

 secondary rule 1  secondary rule i  secondary rule n

Primary Cluster 1
(primary rule n)

Sub-
Cluster

1

Sub-
Cluster

i

Sub-
Cluster

n

 secondary rule 1  secondary rule i  secondary rule n

Primary Cluster 1
(primary rule i)

Sub-
Cluster

1

Sub-
Cluster

i

Sub-
Cluster

n

 secondary rule 1  secondary rule i  secondary rule n  

Fig. 3.5 IF-THEN IF Rule Base Scheme 
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The positive scheme of the hierarchical framework can perform these three types 

of dataset distributions effectively, and can be described as follows: 

v Dataset with different output → Different primary clusters→ Different 

rules 

v Dataset with similar output but non-connective input → The same 

primary cluster, but different sub-clusters → Different rules 

v Dataset with similar output and connective input → The same primary 

cluster→ The same rule 

3.2.2 Input-Output Clustering Technique 

In order to carry out the IF-THEN IF rule base scheme by identifying the proper 

number of clusters and the probable location of these clusters approximately, the 

proposed hybrid clustering algorithm applies the concept of input-output 

clustering to support a good performance with a positive achievement. This is 

because the input-output clustering technique can effectively perform with good 

reliability as well as less uncertainty when processing a high-dimensional dataset 

in fuzzy system identification. In order to increase the accuracy and decrease the 

fuzziness for clustering together, the dataset will be initially partitioned based on 

the output space by output clustering, and the resultant clusters will be further 

partitioned by input clustering. Though the input-output clustering technique is 

much more complicated than the input clustering technique, the� input-output 

clustering technique can discover a more precise cluster by carefully taking the 

relationship between the input variable and the output variable into consideration 

simultaneously. By satisfying a variety of requirements and conditions, the 

number of output constrictions for output clustering can be tuned properly. For 

instance, in case more partition is required, the number of output constrictions 

can be increased. In contrast, in cases where fewer partitions are required, the 

number of output constrictions can be decreased appropriately. 
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3.2.3 The Constriction for Output Clustering 

The purpose of output clustering is to determine the number of output 

constrictions in the output space. Through determining the number of output 

constrictions in advance, the sophisticated relationship between the dataset being 

located at a variety of places before starting the process of clustering can be 

effectively decreased. Moreover, the output space is evenly partitioned based on 

hard interval partition, so we therefore considers ( )nxxxfy ,...,, 21= , where 

[ ]βα ,∈y . The output space is evenly partitioned by m, then: 

[ ]mmy αααα ,[...), 110 −∈ UU , where αα =0  and βα =m . As displayed in Fig. 

3.6, each interval based on the above definition can be recognized an output 

constriction respectively, and the training data are roughly grouped based on this 

output partition to obtain a set of clusters. 

0α

1α

mα

1−mα
Output Constriction m

     Output Space

2−mα

2α

Output Constriction m-1

Output Constriction 2

Output Constriction 1

y

 

Fig. 3.6 Output Constrictions 
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3.3 Three-Part Input-Output Clustering Technique 

The proposed hybrid clustering method can be regarded as a three-part 

input-output clustering algorithm for clearly identifying the three types of dataset 

distribution for system identification discussed above step by step, and the 

clustering technique consists of output clustering and input clustering. In addition 

to output clustering at the beginning, input clustering can be decomposed into 

two parts; flat clustering and hierarchical clustering. In flat clustering, the 

proposed method uses the fuzzy c-means clustering algorithm as the antecedent 

part of input clustering, as a result of generalisation performance. In hierarchical 

clustering, the proposed method uses the average group linkage clustering 

algorithm as the consequent part of the input clustering, as a result of 

specialisation performance. 

 

The reason for using fuzzy c-means clustering as the second-part clustering is the 

properties of generalisation. Also, the reason for using the average group linkage 

clustering method as the third-part of the clustering is the properties of 

specialisation brought by hierarchical clustering and its average distance criterion. 

Basically, the average group linkage clustering algorithm applies average 

distance criterion, where the distance between the average values or mean vector 

of clusters will be computed. By other means, the average group linkage 

clustering method can perform effectively under the dataset are distributed by an 

average way. Moreover, as the clusters are generated by fuzzy c-means 

clustering algorithm, each resultant cluster can be assumed that contains the 

dataset distributed by an average way approximately. As an aspect of 

specialisation, the average group linkage clustering method is objective 

producing smaller clusters, which are helpful for data discovery for 

specialisation. 

 

In principle, the proposed hybrid clustering method comprises of three steps, 
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consisting of output constriction for output clustering, the fuzzy c-means 

algorithm for the first input clustering, and the average group linkage algorithm 

for the second input clustering. Basically, the first-part clustering is the 

rudimentary clustering based on output clustering, and aims to identify “dataset 

with different output”. The second-part clustering (the primary cluster of the 

main module) is determined by the fuzzy c-means clustering algorithm, and aims 

to identify “dataset with similar output and connective input”. Finally, the 

last-part of the clustering (the sub-cluster of the primary cluster) is determined by 

the average group linkage clustering algorithm, and aims to identify “dataset with 

similar output but non-connective input”. Hence, the proposed hybrid clustering 

method integrates the advantages of input clustering, output clustering, flat 

clustering, and hierarchical clustering, to effectively perform the identification of 

the clustering problem. According to the concepts discussed above, the regular 

steps of the proposed method can be definitely stated as follows: 

l Step 1: Determine the rudimentary cluster (first-part clustering) by 

processing output clustering 

l Step 2: Determine the primary clusters of the main module (second-part 

clustering) by processing the fuzzy c-means algorithm  

l Step 3: Determine the sub-clusters of primary cluster (third-part clustering) 

by processing the average group linkage clustering algorithm. 

l Initial fuzzy system identification model completed. 

l Step 4: Tune the parameters of the initial fuzzy models by the gradient 

descent method. 

l End: Hybrid clustering algorithm completed. 
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3.4 The Procedure of the Proposed Method 

As described in the introduction, the method for modelling fuzzy system 

identification is based on a three-part input-output clustering technique, 

consisting of cluster determination, fuzzy rule generation and parameter 

optimisation. 

Normally, in the phase of clustering determination, the first-part input-output 

clustering is processed by output clustering, and afterwards the second-part 

input-output clustering is processed by the fuzzy c-means clustering algorithm 

using the equations 2.38, 2.39, 2.40 and 2.41. Finally, the third-part input-output 

clustering is processed by the average group linkage clustering method using the 

equation 2.42. 

 

In the phase of fuzzy rule generation, fuzzy rules are generated by triangular 

membership functions based on the resultant clusters generated by the phase of 

cluster determination using the equations 2.9, 2.10, 2.11, 2.12, 2.13, 2.14 and 

2.15, with the fuzzy modelling based on the TS fuzzy model. The reason for 

using the triangular membership functions in this work is their transparency and 

interpretability as a result of its finite partition range of input space. 

 

As the fuzzy system is modelled by the symmetric triangular membership 

functions above, there are three types of parameters required to be tuned by the 

gradient descent method. The parameters of the triangular membership function 

in the antecedent part of the fuzzy system are the centre ija , the width ijb  of 

the triangular membership function, and those of the triangular membership 

function in the consequent part of the fuzzy system are the output variables iw  

of the output membership function.  
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The target of the gradient descent method aims at minimising the square error, 

and which can be represented by: 

 2)(
2
1 ryyE −×=                      (3.1) 

where y  is the system output of fuzzy reasoning and ry  is the desirable 

output. According to equations 2.9, 2.10, and 2.13, the formulas for fine tuning 

the parameters of the fuzzy model (Nomura et al., 1991; Nomura et al., 1992; 

Guely & Siarry, 1993) evolved by the gradient descent method (equation 2.75) 

can be represented by:  
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The partial derivatives of equations 3.5, 3.6, and 3.7 can be obtained by: 
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Therefore, the gradients of the objective function (
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In equation 3.12 and 3.14, the signum function is denoted by sgn, and which can 

be defined by: 
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The algorithm converges until either reaching the local minimum of the function 

or the stopping criterion ε≤− ryty )(  is satisfied. 

 

As the fuzzy system is modelled by asymmetric triangular membership functions, 

there are four types of parameters required to be tuned by the gradient descent 

method. In addition to the centroid ija  and the output variable iw , there are 

two widths ijb  and ijc  to be tuned. Therefore, the second width ijc  can be 

defined by gradient descent method using: 
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The partial derivatives of equations 3.5, 3.6, and 3.18 for an asymmetric 

triangular membership function based on equations 2.14 and 2.15 can be 

obtained by: 
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Therefore, the gradients of the objective function (
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asymmetric triangular membership function can be derived as follows: 
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In both ijjijij axba ≤≤−  and ijijjij caxa +≤≤ , the partial derivatives of 

iw
E

∂
∂

 is the same with using equation 3.16. The algorithm converges until either 

reaching the local minimum of the function or the stopping criterion 

ε≤− ryty )(  is satisfied. 

 

Generally, the gradient descent method is the most used method for parameter 

optimisation in fuzzy system identification, and the limitation of the gradient 

descent method has already been described in section 2.7. In addition the main 

reason for using the gradient descent method in this work is its lower 
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computational cost compared to other optimisation methods for fuzzy modelling. 

There are other optimisation methods for parameter optimisation, such as 

Newton’s method or a genetic algorithm. The reason for not using Newton’s 

method is its huge computational cost, and the reason of not using a genetic 

algorithm is its huge computational time based on a mechanism of global 

minimum type as mentioned in section 2.7. 

 

Initially, the gradient descent method can be processed very fast as a result of the 

linear shape of the triangular membership function. However, the processing of 

the gradient descent method slows as it reaches the peak of the triangular 

membership function. Though the triangular membership function is not smooth 

at the peak, the gradient descent method still can reach the probable local 

minimum by tracking back. This means that the gradient descent method can 

track back as the point passes over the minimum point to another side of the 

shape of the triangular membership function. The movement, is like throwing a 

small bead into a triangular cup, where the bead can finally reach the bottom of 

the triangular cup with the movement of a pendulum.  

3.5 Simulation 

In order to validate the reliability of the performance of the proposed method, 

comparisons of the simulation results between other methods and the proposed 

method are described in the following section by one three-input nonlinear 

function approximation, two classical benchmark problems, and one nonlinear 

dynamic system identification. Further, the experiments are only one run as well 

as not cross validated, and that the comparisons with others are ‘general’. 

However, the proposed algorithm has been tested on many datasets, which 

confirms the positive results of the proposed algorithm. 
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3.5.1 Three-Input Nonlinear Function Approximation 

The example of simulation can be generated by: 

25.115.0 )1( −− +++= zyxt                   (3.27) 

where ]6,1[∈x , ]6,1[∈y , ]6,1[∈z . 216 training data as well as 125 testing 

data are randomly generated from the above domain, The accuracy of the 

proposed method will be measured by MAPE, and can be represented by: 
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               (3.28) 

where n is the number of training data, iy  is the system output of fuzzy 

reasoning and r
iy  is the desirable output. 

 

The comparisons of the accuracy in MAPE between the proposed method and 

other methods are reported in Table 3.1. From Table 3.1, the proposed method 

holds a better MAPE of either training example or testing example than those of 

other methods in the comparison. Further, the proposed method uses fewer rules 

and parameters than other methods in the comparison as well. 

 

Methods Rules 
(neurons) 

Parameters MAPE of 
Training 

MAPE of 
Testing 

ANFIS  
(Jang, 1993) 

8 50 0.0430 1.0660 

GDFNN  
(Wu et. al,, 2001) 

10 64 2.1100 1.5400 

SOFNN 
(Leng et al., 2005) 

9 60 1.1380 1.1244 

Proposed Work – 1 
By Affine TS Fuzzy Model 

8 50� 0.0015� 0.0018�

TABLE 3.1 COMPARISON OF RESULTS BASED ON (3.27) 



 109

3.5.2 Benchmark Problems: Mackey-Glass time-series 

prediction 

The proposed method has been validated on a benchmark problem: the 

Mackey-Glass chaotic time series prediction. The chaotic time series is generated 

from the Mackey-Glass differential delay equation defined by (Chiu, 1994; 

Kasabov & Song, 2002; Angelov & Filev, 2004) 
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               (3.29) 

where 2.1)0( =x , 0)( =tx  for t < 0, and 17=τ . 

 

The target of the simulation aims at using the past values of x to predict the 

future value of x. Therefore, the prediction task is to predict the value x(t+85) 

from the input vector [x(t-18); x(t-12); x(t-6); x(t)] for any value of the time t. In 

this simulation, 3000 data points ]3200.201[∈t  are generated for training, and 

500 data points ]5500.5001[∈t  are generated for testing. 

 

Further, the accuracy of the proposed method will be measured by the 

non-dimensional error index (NDEI) defined as the ratio of the root mean square 

error (RMSE) over the standard deviation of the target data, and which can be 

represented by 
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where n is the number of training data, y  is the system output of fuzzy 
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reasoning, ry  is the desirable output, and y  is the mean of ry . 

 

The comparisons of the accuracy in NDEI between the proposed method and 

other methods are reported in Table 3.2. From Table 3.2, the proposed method 

attains a better NDEI of the testing example than that of the other methods in the 

comparison. Further, the proposed method uses fewer rules than other methods’ 

in the comparison as well. 

 

Method Rules 
(neurons) 

NDEI for 
Testing 

DENFIS 
(Kasabov & Song, 2002) 

58 0.276 

DENFIS 
(Kasabov & Song, 2002) 

883 0.033 

RAN (Platt, 1991) 113 0.373 
ESOM 
(Deng & Kasabov, 2000) 

114 0.32 

ESOM 
(Deng & Kasabov, 2000) 

1000 0.044 

EFuNN (Kasabov, 1998) 193 0.401 
EFuNN (Kasabov, 1998) 1125 0.094 
Neural gas (Fritze, 1995) 1000 0.062 
eTS  
(Angelov & Filev, 2004) 

113 0.095 

Simple_eTS 
(Angelov & Filev, 2005) 

11 0.394 

exTS 
(Angelov & Zhou, 2006) 

10 0.331 

exTS 
(Angelov & Zhou, 2006) 

9 0.361 

SAFIS 
(Rong et al., 2006) 

6 0.376 

Proposed Work – 1 
By Zero-Order TS Fuzzy Model 

16 0.1008 

Proposed Work – 1 
By Affine TS Fuzzy Model 

81 0.0254�

 

TABLE 3.2 COMPARISON OF RESULTS BASED ON (3.29) 
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3.5.3 Benchmark Problem: Box-Jenkins Gas Furnace 

The well-known Box–Jenkins gas data (Box & Jenkins, 1976) has 296 data pairs 

{(u(t), y(t)) |t�[1, 296]}, where y(t) is the output CO2 concentration and u(t) is the 

input gas flow rate. Meanwhile, the series-parallel model can be obtained as:  

y(t)=f(y(t-1),u(t-4)).                     (3.31) 

In this simulation, 200 data samples were randomly chosen for training, and 90 

data samples were randomly chosen for testing. Further, the accuracy of the 

proposed method was measured by NDEI.  

 

Meanwhile, the comparisons of the accuracy in MSE as well as NDEI between 

the proposed method and other methods are reported in Table 3.3. From Table 3.3, 

the proposed method obtains better MSE for training as well as NDEI for testing 

than those of the other methods in the comparison. Further, the proposed method 

uses fewer rules than the other methods in the comparison as well. 

 

Method Rules 
(neurons) 

MSE for 
Training 

NDEI for 
Testing 

Tong’s (Tong, 1979) 19 0.469 N/A 
Pedrycz’s (Pedrycz, 1984) 81 0.320 N/A 
Xu’s (Xu & Lu, 1987) 25 0.328 N/A 
Li’s (Li & Mukaidono, 1995) 6 0.178 N/A 
Wang’s (Wang & Langari, 1996) 5 0.158 N/A 
Cheng’s (Cheng & Hsieh, 2001) 4 0.146 N/A 
SOFNN-I (Leng et al., 2005) 4 0.131 N/A 
eTS (Angelov & Filev, 2004) 5 N/A 0.30571 
Simple_eTS 
(Angelov & Filev, 2005) 

3 N/A 0.30041 

Proposed Work – 1 
By Affine TS Fuzzy Model 

4 0.074� 0.24958�

TABLE 3.3 COMPARISON OF RESULTS BASED ON (3.31) 
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3.5.4 Non-Linear Dynamic System Identification 

Finally, the non-linear dynamic system identification (Wang & Yen, 1999) has 

been used for validating the performance of the proposed method, and a 

series-parallel model is performed to identify this system as:  

)1())2(),1(()( −+−−= kukykygky                (3.32) 

where
)2()1(1
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5000 data are created for training, and 300 data are created for testing. 

 

The comparisons of the accuracy in RMSE between the proposed method and 

other methods are reported in Table 3.4. From Table 3.4, the proposed method 

holds a better RMSE of either training example or testing example than those of 

the other methods in the comparison. Further, the proposed method uses fewer 

rules than other methods’ in the comparison as well. 

 

Method Rules RMSE for 
Training 

RMSE for 
Testing 

SAFIS (Rong et al., 2006) 17 0.0539 0.0221 
M-RAN (Lu et al., 1997) 22 0.0371 0.0271 
RANEKF 
Kadirkamanathan & Niranjan, 1993) 

35 0.0273 0.0297 

Simple_eTS (Angelov & Filev, 2005) 22 0.0528 0.0225 
eTS (Angelov & Filev, 2004) 49 0.0292 0.0212 
HA (Wang & Yen, 1999) 28 0.0182 0.0244 
ICLA (Wang, et al., 2008) 8 0.0321 0.0318 
ICLA (Wang, et al., 2008) 20 0.0012 0.0007 
Proposed Work – 1 
By Affine TS Fuzzy Model 

8 0.0028� 0.0022�

TABLE 3.4 COMPARISON OF RESULTS BASED ON (3.32) 
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3.6 Conclusion 

This chapter tries to present a modular method to identify fuzzy systems based 

on a hybrid clustering-based technique. A hybrid clustering algorithm concerning 

input, output, generalisation and specialisation has hence been introduced in this 

article. The proposed clustering technique, a three-part input-output clustering 

algorithm, integrates a variety of clustering features simultaneously, including 

the advantages of input clustering, output clustering, flat clustering, and 

hierarchical clustering, to effectively perform the identification of the clustering 

problem. According to the advantages given above, the proposed clustering 

algorithm is capable of determining the proper number of clusters and the 

appropriate location of these clusters by considering both inputs and outputs. Due 

to the capabilities and the simulation results above, the proposed method 

possesses the potential for slightly easing the problem of the “curse of 

dimensionality”, and even provides positive reliability for fuzzy system 

identification. 

 

Further, the contribution brought by the work in this chapter can be described as 

follows. Three-part input-output clustering-based approach to fuzzy system 

identification can positively discover the proper number of clusters and their 

appropriate location by integrating a variety of existing clustering properties 

effectively. Also, the contribution is developed based on Occam’s Razor, because 

it applies the basic features of existing clustering algorithms to carry out the 

optimal performance without much complicated mechanisms and computational 

resource. 
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Chapter 4 A Similarity-Based Learning 

Algorithm For Fuzzy System 

Identification With A Two-Layer 

Optimisation Scheme 

Since a three-part input-output clustering-based approach to fuzzy system 

identification has been introduced in the previous chapter, an evolution of this 

work has therefore occurred for acquiring a more complete, consistent and 

compact fuzzy system. The motivation behind the work in this chapter considers 

obtaining compact, complete and consistent fuzzy systems by applying a 

similarity-based pruning strategy as well as developing a positive optimisation 

scheme without much complicated mechanism and computational resource. 

Therefore, two ways to improve the work proposed in chapter 3 have been 

considered in the extended work in this chapter, including the pruning strategy 

for the simplification of the fuzzy rule base and the optimisation scheme for the 

fine tuning parameters of fuzzy systems. So far as the pruning strategy is 

concerned, the purpose of which is to refine the rule base by processing 

similarity analysis of fuzzy sets, fuzzy numbers, membership functions or fuzzy 

rules, and to merge similar pairs in a reliable way. Through the pruning strategy, 

the complete rules can be kept and the redundant rules can be reduced in the rule 

base of the fuzzy system. The optimisation scheme can be regarded as a 

two-layer parameters optimisation in this extended work, because the parameters 

of the initial fuzzy model have been fine tuned by a two phase gradation layer. 

Hence, in this chapter, the extended work primarily focuses on applying the 

pruning strategy and the optimisation scheme to refine the initial fuzzy model to 

the final fuzzy model. The outline of the extended work in the chapter is 

illustrated in Fig. 4.1. 
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Fig. 4.1 Structure of the extended research work 
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The rest of this chapter is organised as follows: a comprehensive introduction of 

the proposed work is described in Section 4.1; in Section 4.2, the concept of the 

similarity-based pruning strategy and the application of an optimisation scheme 

in the extended work are discussed; then a similarity-based learning algorithm to 

fuzzy system identification with a two-layer optimisation scheme is introduced in 

Section 4.3; in Section 4.4, the procedure of the proposed work is described in 

detail; in Section 4.5, the proposed work will be validated by simulation 

examples; a conclusion is given in Section 4.6. 

4.1 Introduction 

In addition to the advantage of a good learning ability, one of the unique features 

of a fuzzy system is its knowledge presentation, and a compact fuzzy system 

makes this feature more obvious as a result of the well-interpretability. As a 

compact and transparent fuzzy system is also one of the increasingly important 

issues for fuzzy system identification, lots of research has been undertaken. 

Generally, most of these methods apply a variety of pruning strategies to make 

the optimal simplification of the fuzzy rule base. The simplification of the fuzzy 

rule base consists of two stages. The first stage is the similarity analysis between 

fuzzy sets, fuzzy membership functions, or fuzzy numbers, the purpose being to 

distinguish between similar pairs and dissimilar pairs. The second stage is to 

merge similar pairs into clusters, and to refine the fuzzy rule base. Briefly, the 

policy of the pruning strategy is that dissimilar clusters will be distinguished and 

similar clusters will be merged in an intelligent way. 

 

As the initial fuzzy model is constructed, the size of the obtained structure of the 

model is dependent on the performance of the predetermined clustering 

algorithm. In cases where the predetermined clustering algorithm performs, the 

size of the obtained structure of the initial fuzzy model is much smaller. In 

contrast, where the predetermined clustering algorithm performs ineffectively, 



 117

the size of the obtained structure of the initial fuzzy model is much bigger. In 

other words, a larger size of the structure of the fuzzy model is a result of an 

incomplete performance by the predetermined clustering algorithm. As 

mentioned before, a larger sized structure of the fuzzy model may be due to a 

large number of redundant rules in the fuzzy system. Due to the disadvantages 

brought about by the incomplete performance of the predetermined clustering 

algorithm, pruning strategies have been investigated to simplify the structure for 

refining the rule base. The purpose of most pruning strategies is to keep the 

useful rules and reduce the useless rules by positively pruning the structure as far 

as possible.  

 

The behaviour of the proposed pruning strategy in the extended work consists of 

two stages, including the simplification of the size of the obtained structure and 

the merging of similar pairs. The primary task of the first stage of the pruning 

strategy aims at how to simplify the structure of the initial fuzzy model based on 

similarity analysis, and that of the second stage of the pruning strategy aims at 

how to merge the similar fuzzy rules resulting from the simplification of the 

structure of the initial fuzzy model based on the generalisation consideration. 

This is one of the effective ways to acquire a compact fuzzy system by refining 

the rule base with the similarity-based pruning strategy. The is because the size 

of the structure of the initial fuzzy model has been simplified, the highly similar 

clusters have been merged, the number of redundant rules have been reduced and 

similar rules have been integrated in the rule base of the fuzzy system by the 

positive performance of the similarity-based pruning strategy.    

 

In addition to the similarity-based pruning strategy, this extended work also 

develops a two-layer optimisation scheme to refine the initial fuzzy model by 

fine tuning the parameters of the initial fuzzy model. Basically, the procedure of 

the two-layer optimisation scheme consists of the application of uni-α-cuts of 

fuzzy sets and the gradient descent method. In the first layer of the optimisation 
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scheme, the application of uni-α-cuts of fuzzy sets, roughly tunes the parameters 

of the initial fuzzy model by discovering the most proper degree of uni-α-cuts of 

fuzzy sets of the initial fuzzy model. Consequently, the second layer of the 

optimisation scheme, the gradient descent method, tunes the parameters of the 

initial fuzzy model iteratively until the algorithm converges or the stopping 

criterion has been reached. 

 

Further, the framework of the fuzzy model in chapter 3 is constructed on the 

IF-THEN IF rule-base scheme based on a three-part input-output 

clustering-based approach. The purpose of the extended work in this chapter is to 

apply the similarity-based pruning strategy to merge highly similar sub-clusters 

and implement a two-layer optimisation scheme to reinforce the positive 

performance of the final fuzzy model. 

4.2 Preliminaries 

To attain a compact and complete fuzzy system, the similarity-based pruning 

strategy has been widely used to simplify the structure of fuzzy systems by 

reducing the complexity of the initial fuzzy model or the obtained system. An 

effective pruning strategy makes a fuzzy system more compact and transparent, 

and a similarity-based pruning strategy does not only increase the transparency 

of the fuzzy system but also decreases the complexity of the obtained system. 

 

Lots of similarity-based pruning strategies (Pappis & Karacapilidis, 1993; Chen 

& Chen, 1995; Lin, 1995; Chao et al., 1996; Hsieh & Chen, 1999; Lee, 1999; Jin 

et al., 1999) for mitigating overlap among membership functions have been 

proposed and were described in section 2.6. It is obvious that similarity analysis 

plays a significant role in the pruning strategy, and it reduces the complexity of 

the initial model for fuzzy system identification as well. 
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To make the optimal balance between simplicity and accuracy of the obtained 

system, parameters optimisation is required for obtaining the final fuzzy model 

by fine tuning parameters of the fuzzy model. The α-cuts of fuzzy sets is also one 

of the essential concepts in the parameter optimisation scheme in this work, 

because it is useful to discover the most appropriate fuzzy configuration to 

represent an unknown relationship. There are several papers that apply the 

concept of the α-cuts of fuzzy sets to support a positive performance in fuzzy 

modelling. Wu and Chen’s work (1999) proposed a fuzzy learning algorithm 

based on the α-cuts of equivalence relations and the α-cuts of fuzzy sets to 

construct membership functions of the input variables and the output variables of 

fuzzy rules and to induce the fuzzy rules from the numerical training data set. In 

Lee and Zeng’s works (2008) as well as Lee and Wang’s work (2009), the 

concept of the α-cuts of the fuzzy set can be regarded as determining the proper 

degree of sensitivity for the system under observation. 

The Implementation of α-Cuts of Fuzzy Sets 

Through discovering the optimal global degree of the α-cuts of fuzzy sets, the 

parameters of the triangular membership functions in the fuzzy system can be 

fine tuned. The triplet of the triangular fuzzy set 

( )vertexrightcentrevertexleft ,,  can be defined as ( )iii cba ,, , and the 

calculation for constructing the triangular membership function based on α-cuts 

in Lee’s works can be presented by (Lee & Zeng, 2008; Lee & Wang, 2009): 
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where minx  is the value of the minimum unit of each partition or cluster , maxx  

is the value of the maximum unit of each partition or cluster, α represents the 

degree of the α-cuts of fuzzy sets, and ( ].1,0∈α . 
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4.3 A Similarity-Based Fuzzy Learning Algorithm with 

Two-Layer Optimisation Scheme 

Fuzzy system identification generally consists of clustering for constructing the 

initial fuzzy model and parameter optimisation for finalising the final fuzzy 

model. As mentioned earlier, this work is an evolutionary work developed from 

the structure of the three-part input-output clustering method proposed in chapter 

4. In addition to the original structure of the three-part input-output clustering 

method, a similarity-based pruning strategy is applied to refine the fuzzy rule 

base for the purpose of obtaining a compact and complete fuzzy model, and a 

two-layer optimisation scheme is developed for parameter optimisation for the 

purpose of obtaining a precise fuzzy model with a positive generalisation 

performance. 

 

So far as the similarity-based pruning strategy is concerned, the extended work in 

this chapter adopts the similarity-based pruning strategy proposed by Leng et al. 

(2009) as the strategy for the simplification of the fuzzy rule base. The reason for 

this is the similarity-based pruning strategy proposed by Leng et al. is the most 

complete for the similarity analysis of triangular fuzzy membership functions or 

triangular fuzzy sets. All six cases proposed by Leng et al. have already covered 

all probable similarity relationships between two triangular fuzzy membership 

functions or triangular fuzzy sets. The criteria for combining two triangular fuzzy 

membership functions or triangular fuzzy sets with a high similarity in equations 

2.55, 2.59, 2.63, 2.67 and 2.71, essentially takes the generalisation performance 

of fuzzy systems into account, because the a priori knowledge is totally 

unavailable in black box type modelling. 

 

So far as the parameter optimisation is concerned, most of the fuzzy system 

identification methods apply single parameters optimisation. Basically, the single 
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parameter optimisation can perform well based on an effective initial fuzzy 

model. However, it is insufficient to only consider single parameters optimisation 

in the optimisation scheme, especially for local minimum optimisation method. 

Therefore, the reasons for developing a two-layer optimisation scheme can be 

described as follows: 

v A much better local minimum may be acquired in potential. For instance, 

as shown in Fig. 4.2, local minimum B is better than local minimum A. 

v The reinforcement for the initial fuzzy model 

Global
Minimum
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Minimum

Local
Minimum

Local
Minimum

Local
Minimum

Local
Minimum

A
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C

D

E

F

 

Fig. 4.2 Local Minimums 

Due to the above reasons, a two-layer optimisation scheme for parameter 

optimisation has therefore been developed. The two-layer optimisation scheme 

consists of the application of uni-α-cuts of fuzzy sets and the gradient descent 

method. The first-layer is implemented by the application of uni-α-cuts of fuzzy 

sets, the purpose of which aims at achieving a rough parameter optimisation and 

to discover a better starting point for the gradient descent method. Generally, a 

many layered optimisation scheme results in the problem of overfitting, and may 

lead to inconsistent results for the validation as well. To improve the performance 

and avoid the problem of overfitting, the concept of uni-α-cuts of fuzzy sets has 

therefore applied been in the optimisation scheme. 
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4.3.1 Similarity-Based Pruning Strategy 

The structure of the similarity-based pruning strategy consists of two phases. The 

first phase is similarity analysis between triangular fuzzy numbers, triangular 

fuzzy sets, or triangular fuzzy membership functions, and the purpose of which 

aims at distinguishing between similar pairs and dissimilar pairs. The second 

phase is the criterions of merging similar pairs, as the phase of similarity analysis 

has been completed. Further, based on Leng’s work (Leng et al., 2009), the 

similarity-based pruning strategy has been processing by equations 2.55-2.71. 

4.3.2 Two-Layer Optimisation Scheme 

A two-layer optimisation scheme consists of the concept of uni-α-cuts of fuzzy 

sets and the gradient descent method has been applied for refining the final fuzzy 

model. Basically, the motivation of the two-layer optimisation scheme originated 

from using local minimum optimisation methods to approximately close the 

global minimum with much less computational resource than global minimum 

optimisation methods. Through discovering the optimal degree of the uni-α-cuts 

of fuzzy sets, a better local minimum by the gradient descent method can be 

reached. In other words, the optimal degree of the uni-α-cuts of fuzzy sets can 

provide a “better starting point” for the gradient descent method. 

The Application of Uni-α-Cuts of Fuzzy Sets 

From the practical viewpoint of the α-cuts of fuzzy sets, to decrease the 

uncertainty brought by the system under observation, the α-cuts of fuzzy sets can 

be applied to discover the optimal degree of sensitivity for the system under 

observation. In other words, uncertainty can be decreased by finding the optimal 

degree of sensitivity to the system. As there is just one input variable in a 

single-input-single-output (SISO) fuzzy system, only one specific degree of the 

α-cuts of fuzzy sets is. However, in a multi-input-single-output (MISO) fuzzy 
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system, membership functions of each input variable also have their own specific 

degree of the α-cuts of fuzzy sets, so there are a variety of degrees of the α-cuts 

of fuzzy sets of input variables. The number of specific degrees of the α-cuts of 

fuzzy sets required to be calculated depends on the number of input variables in a 

MISO fuzzy system. The training accuracy would be highly satisfactory if the 

specific degree of the α-cuts of fuzzy sets of each input variable in the MISO 

fuzzy system has been acquired entirely. 

 

However, there are two questions to be considered. The first question is the 

problem of overfitting for validation in testing, and the second question is the 

huge computational costs spent in finding all specific degrees of the α-cuts of 

fuzzy set. 

 

So far as the first question is concerned, the training accuracy can be acquired 

precisely by finding all specific degrees of the α-cuts of fuzzy sets, but the 

performance of all of the obtained specific degrees of the α-cuts of fuzzy sets of 

each input variable in the MISO fuzzy system cannot be completely guaranteed 

to be consistent with the testing examples in validation. Consequently, the 

problem of overfitting for validation in testing arises. 

 

So far as the second question is concerned, it takes higher computational costs to 

figure out the specific degrees of the α-cuts of fuzzy sets in a MISO fuzzy system 

than in a SISO fuzzy system. For instance, if there are three input variables and 

one output variable in a MISO fuzzy system, three specific degrees of the α-cuts 

of fuzzy sets are required as a result of three input variables in the MISO fuzzy 

system. In contrast, only one specific degree of the α-cuts of the fuzzy set has to 

be calculated in a SISO fuzzy system. This is why the calculation for finding the 

specific degree of the α-cuts of fuzzy sets in a MISO fuzzy system has a higher 

computational cost than in a SISO fuzzy system. 
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To relieve the disadvantages brought by the problems addressed above, the uni- 

α-cuts of fuzzy sets has been applied instead of the general α-cuts of fuzzy sets. 

The application of uni-α-cuts of fuzzy sets is derived from the concept of general 

α-cuts of fuzzy sets. The uni- α-cuts of fuzzy sets means only one global degree 

of α-cuts of fuzzy sets has to be considered whatever the number of input 

variables a MISO fuzzy system may possess, and the specific degree of uni- 

α-cuts of fuzzy sets covers all of the input variables in the MISO fuzzy system. 

In other words, the concept of uni- α-cuts of fuzzy sets deals with the multiple 

input variables in a MISO fuzzy system as a single input variable in a SISO 

fuzzy system. The mechanism of the uni- α-cuts of fuzzy sets only applies to one 

global degree of α-cuts of fuzzy sets to find the optimal degree of α-cuts of fuzzy 

sets of all of the input variables in a MISO fuzzy system. Moreover, the 

advantages can be stated as follows: 

v A better local minimum may be acquired. 

v The problem of overfitting for validation in testing can be relieved, and 

the reason is the difference between the training accuracy and the testing 

accuracy is not too much, as a result only one global degree of the α-cuts 

of fuzzy sets has been applied. 

v Less computational costs are required, as only one global degree of the 

α-cuts of fuzzy set has to be applied by the process once.  

v The preparation of obtaining a better starting point for the gradient 

descent method. 

4.4 The Procedure of the Proposed Work 

As described in the introduction, the method used is structured on modelling a 

fuzzy system identification based on a three-part input-output clustering 

technique, similarity-based pruning strategy, and a two-layer optimisation 

scheme. According to the concept discussed above, the steps of the proposed 
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method can be stated as follows: 

l Step 1: Three-part Input-Output Clustering approach 

l Step 2: Similarity Analysis  

l Step 3: Merge scheme. 

Initial fuzzy model completed. 

l Step 4: Tune the parameters of the initial fuzzy models by the uni-α-cuts of 

fuzzy sets. 

l Step 5: Tune the parameters of the initial fuzzy models by the gradient 

descent method. 

End: Final fuzzy model completed. 

 

Normally, the three-part input-output clustering based on triangular membership 

functions can be achieved using the equations provided by the chapter 3. After 

the three-part input-output clustering approach is completed, the similarity-based 

pruning strategy can be processed by equations 2.55-2.71 based on the resultant 

clusters generated by the three-part input-output clustering approach. Further, the 

reason of using triangular membership functions is simple to calculate for a 

similarity-based pruning strategy because of its finite partition range of input 

space. 

 

Once the new fuzzy rules are generated, the parameters of the initial fuzzy model 

are processed to the first stage of the two-layer optimisation scheme, by 

uni-α-cuts of fuzzy sets for parameters optimisation by equation 4.1. As 

described before, the task of this stage is to discover a “better starting point” for 

the gradient descent method. Afterwards, the new parameters generated by the 

first layer of the optimisation scheme, uni-α-cuts of the fuzzy set, are processed 
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in the second layer of the optimisation scheme, the gradient descent method, 

using equations 3.1-3.26 until the algorithm converges, either by reaching the 

local minimum of the function or the stopping criterion ε≤− ryty )(  is 

satisfied. 

4.5 Simulation 

In order to validate the reliability of the diverse performance of the proposed 

method, the comparisons of the simulation results between other methods and the 

proposed method are described in the following content by (1) two-input 

nonlinear sinc function approximation problem, (2) two types of static function 

approximation problems, (3) synthetic one-dimension function approximation 

problem, (4) synthetic two-dimensions function approximation problem, (5) 

three-input nonlinear function approximation problem, (6) nonlinear dynamic 

system identification, and (7) two classical benchmark problems. Further, the 

experiments are only one run as well as not cross validated, and that the 

comparisons with others are ‘general’. However, the proposed algorithm has 

been tested on many datasets, which confirms the positive results of the proposed 

algorithm. 

4.5.1 Benchmark Problem: Mackey-Glass time-series 

prediction 

The proposed method has been validated on a benchmark problem: the 

Mackey-Glass chaotic time series prediction. The chaotic time series is generated 

from the Mackey-Glass differential delay equation defined by: 

).(1.0
)(1

)(2.0
)(

10
tx

tx
tx

tx −
−+
−

=
τ
τ

                (4.2) 

where 2.1)0( =x , 0)( =tx  for t < 0, and 17=τ . 
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The target of the simulation aims at using the past values of x to predict the 

future value of x. In this simulation, 6000 data were generated by the 

fourth-order Runge-Kutta method with a step size of 0.1 for the purpose of 

training and testing, and aimed at predicting the value ( )Ttx ∆+  from input 

vector [ ])();6();12();18( txtxtxtx −−−  for any value of time t. According to the 

prediction of different ( )Ttx ∆+ , the simulation will be examined in two parts, 

including ( )85+tx  and ( )6+tx . 

 

The accuracy of the proposed method will be measured by root mean square 

error (RMSE) as well as by a non-dimensional error index (NDEI) defined as the 

ratio of the RMSE over the standard deviation of the target data. The 

comparisons of the accuracy in RMSE and NDEI between the proposed method 

and other methods are reported in Tables 4.1 and 4.2. From these results the 

proposed method attains a better RMSE and NDEI with fewer rules than that of 

other methods in the comparison.  

 

The simulation results have been compared with other methods, including the 

work of (1) Kasabov and Song (2002), (2) Platt (1991), (3) Deng and Kasabov 

(2000), (4) Kasabov (1998), (5) Fritze (1995), (6) Angelov and Filev (2004), (7) 

Angelov and Zhou (2006), (8) Wang and Zeng (2008), (9) Chen et. al. (1991), 

(10) Cho and Wang (1996), (11) Nauck and Kruse (1999), (12) Leng et. al. 

(2005), (13) Paiva and Dourado (2004), (14) Wu and Er (2000), (15 Leng et. al. 

(2009), (23) Angelov and Filev (2005), and (38) Rong and Sundararajan (2006).  

(A) ( )[ ]85+= txOutput ; [ ])();6();12();18( txtxtxtxInputs −−−= ; 

In this simulation, the input data can be defined 

by [ ])();6();12();18( txtxtxtxInputs −−−= , and the output result can be defined by 
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( )[ ]85+= txOutput . In order to compare this with the other methods, 3000 data 

points ]3200,201[∈t  were generated for training, and 500 data points 

]5500,5001[∈t  for testing.  

 

Method Rules 
(neurons) 

RMSE 
for 
Training 

RMSE 
for 
Testing 

NDEI 
for 
Training 

NDEI 
for 
Testing 

DENFIS 
(Kasabov & Song, 2002) 

58 N/A N/A N/A 0.27600 

DENFIS  
(Kasabov & Song, 2002) 

883 N/A N/A N/A 0.03300 

RAN Platt (Platt, 1991) 113 N/A N/A N/A 0.37300 
ESOM  
(Deng & Kasabov, 2000) 

114 N/A N/A N/A 0.32000 

ESOM  
(Deng & Kasabov, 2000) 

1000 N/A N/A N/A 0.04400 

EFuNN (Kasabov, 1998) 193 N/A N/A N/A 0.40100 
EFuNN (Kasabov, 1998) 1125 N/A N/A N/A 0.09400 
Neural gas (Fritze, 1995) 1000 N/A N/A N/A 0.06200 
eTS (Angelov & Filev, 2004) 9 N/A N/A N/A 0.37200 
eTS (Angelov & Filev, 2004) 113 N/A N/A N/A 0.09540 
Simple_eTS 
(Angelov & Filev, 2005) 

11 N/A N/A N/A 0.39400 

exTS (Angelov & Zhou, 2006) 10 N/A N/A N/A 0.33100 
exTS (Angelov & Zhou, 2006) 9 N/A N/A N/A 0.36100 
SAFIS  
(Rong & Sundararajan, 2006) 

6 N/A N/A N/A 0.37600 

ICLA (Wang & Zeng, 2008) 12 0.00131 0.00131 N/A N/A 
Proposed Work – 2 
By Zero-Order TS Fuzzy Model 

16 0.05458 0.05458 0.24342 0.23783 

Proposed Work – 2 
By Affine TS Fuzzy Model 

16 0.02008� 0.01933� 0.08954� 0.08423�

Proposed Work – 2 
By Zero-Order TS Fuzzy Model 

81 0.01708� 0.01612� 0.07617� 0.07024�

Proposed Work – 2 
By Affine TS Fuzzy Model 

81 0.00561� 0.00564� 0.02505� 0.02459�

TABLE 4.1 COMPARISON OF RESULTS BASED ON ( )[ ]85+= txOutput  
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(B) ( )[ ]6+= txOutput ; [ ])();6();12();18( txtxtxtxInputs −−−= ; 

In this simulation, the input data can be defined 

by [ ])();6();12();18( txtxtxtxInputs −−−= , and the output result can be defined by 

( )[ ]6+= txOutput . In order to compare this with the other methods, 1000 data 

points ]1123,124[∈t  were generated for training, and 1000 data points 

]2123,1124[∈t  for testing. 

 

Method Rules 
(neurons) 

RMSE for 
Training 

RMSE for 
Testing 

NDEI for 
Training 

NDEI for 
Testing 

OLS  
(Chen et. al., 1991) 

13 0.0158 0.0163 N/A N/A 

RBF-AFS  
(Cho & Wang, 
1996) 

21 0.0107 0.0128 N/A N/A 

NEFPROX  
(Nauck & Kruse, 
1999) 

129 0.0315 0.0332 N/A N/A 

SOFNN  
(Leng et. al., 2005) 

4 0.0123 0.0118 N/A N/A 

Paiva’s  
(Paiva & Dourado, 
2004) 

9 0.0228 0.0239 N/A N/A 

DFNN  
(Wu & Er, 2000) 

5 0.0132 0.0131 N/A N/A 

SANFS  
(Leng et. al., 2009) 

10 0.0084 0.0088 N/A N/A 

Proposed Work – 2 
By Zero-Order TS 
Fuzzy Model 

16 0.01148� 0.0117� 0.051136� 0.052123�

Proposed Work – 2 
By Affine TS 
Fuzzy Model 

16 0.00221� 0.0022� 0.009839� 0.009968�

TABLE 4.2 COMPARISON OF RESULTS BASED ON ( )[ ]6+= txOutput  
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4.5.2 Benchmark Problem: Box-Jenkins Gas Furnace 

The system identification of Box–Jenkins gas furnace is a well-known 

benchmark problem, and the Box–Jenkins gas data (Box & Jenkins, 1976) has 

296 data pairs [ ]{ }296,1|))(),(( ∈ttytu , where y(t) is the output CO2 

concentration and u(t) is the input gas flow rate. The series-parallel model can be 

obtained by ( ))4(),1()( −−= tutyfty , ( ))4(),3(),1()( −−−= tututyfty , and 

( ))2(),1(),(),3(),2(),1()( −−−−−= tutututytytyfty . The accuracy of the proposed 

method will be measured by mean square error (MSE), RMSE) and NDEI. In 

this simulation, 200 data samples are randomly chosen for training, and 90 data 

samples for testing. From Tables 4.3, 4.4 and 4.5, the proposed method attains a 

better MSE, RMSE, and NDEI with fewer rules than for other methods in the 

comparison. 

 

The simulation results have been compared with other methods, including (1) 

Box and Jenkins (1976), (2) Tong (1979), (3) Pedrycz (1984), (4) Xu and Lu 

(1987), (5) Li and Mukaidono (1995), (6) Wang and Langari (1996), (7) Cheng 

and Hsieh (2001), (8) Angelov and Filev (2004), (9) Angelov and Filev (2005), 

(10) Sugeno and Yasukawa (1993), (11) Castellano and Fanelli (2000), (12) Yen 

et. al. (1998), (13) Juang (2002), (14) Lee and Ouyang (2003), (15) Setnes et. al. 

(1998), (16) Ouyang et. al. (2005), (17) Sugeno and Tanaka (1991), (18) Kim et. 

al. (1997), (19) Kim et. al. (1998), (20) Tsekouras (2005), (21) Leng et. al. 

(2005), and (22) Leng et. al. (2009). 
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(A) ( ))4(),1()( −−= tutyfty ; 

In this simulation, 200 data samples were randomly chosen for training, and 90 

data samples for testing. 

 

Method Rules 
(neurons) 

MSE for 
Training 

RMSE for 
Training 

RMSE for 
Testing 

NDEI for 
Training 

NDEI for 
Testing 

Tong’s 
(Tong, 1979) 

19 0.469 N/A N/A N/A N/A 

Pedrycz’s 
(Pedrycz, 1984) 

81 0.320 N/A N/A N/A N/A 

Xu’s 
(Xu & Lu, 1987) 

25 0.328 N/A N/A N/A N/A 

Li’s 
(Li & Mukaidonom, 
1995) 

6 0.178 N/A N/A N/A N/A 

Wang’s 
(Wang & Langari, 
1996) 

5 0.158 N/A N/A N/A N/A 

Cheng’s 
(Cheng & Hsieh, 
2001) 

4 0.146 N/A N/A N/A N/A 

SOFNN-I 
(Leng et. al., 2005) 

4 0.131 N/A N/A N/A N/A 

eTS 
(Angelov & Filev, 
2004) 

5 N/A N/A N/A N/A 0.30571 

Simple_eTS 
(Angelov & Filev, 
2005) 

3 N/A N/A N/A N/A 0.30041 

Proposed Work – 2 
By Zero-Order TS 
Fuzzy Model 

4 0.079� 0.28192� 0.722774� 0.08994� 0.29135�

Proposed Work – 2 
By Affine TS Fuzzy 
Model 

4 0.074� 0.27371� 0.619156� 0.08732� 0.24958�

TABLE 4.3 COMPARISON OF RESULTS BASED ON ( ))4(),1()( −−= tutyfty  
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(B) ( ))4(),3(),1()( −−−= tututyfty ; 

In this simulation, 145 data samples were randomly chosen for training, and 145 

for testing. 

 

Method Rules 
(neurons) 

MSE for 
Training 

RMSE for 
Training 

RMSE for 
Testing 

NDEI for 
Training 

NDEI for 
Testing 

FLBA 
(Sugeno & Yasukawa, 
1993) 

6 0.190 N/A N/A N/A N/A 

SONFIN 
(Castellano & Fanelli, 
2000) 

6 0.185 N/A N/A N/A N/A 

SVD-QR-CP 
(Yen et. al., 1998) 

7 N/A N/A N/A 0.748 1.036 

ACA 
(Juang, 2002) 

7 N/A N/A N/A 0.316 0.445 

SCRG 
(Lee & Ouyang, 2003) 

7 N/A N/A N/A 0.205 0.385 

SM 
(Setnes et. al., 1998) 

7 N/A N/A N/A 0.216 0.415 

MFC 
(Ouyang et. al., 2005) 

7 N/A N/A N/A 0.147 0.369 

SANFS 
(Leng et. al., 2009) 

2 N/A N/A N/A 0.089 0.132 

Proposed Work – 2 
By Zero-Order TS 
Fuzzy Model 

8 0.02031� 0.14252� 0.565249� 0.042� 0.217�

Proposed Work – 2 
By Affine TS Fuzzy 
Model 

8 0.01320� 0.11491� 0.554255� 0.033� 0.213�

TABLE 4.4 COMPARISON OF RESULTS BASED ON ( ))4(),3(),1()( −−−= tututyfty  

 

 

 



 133

(C) ( ))2(),1(),(),3(),2(),1()( −−−−−= tutututytytyfty ; 

In this simulation, all 296 data samples were used for training. 

 

Method Rules 
(neurons) 

MSE for 
Training 

RMSE for 
Training 

Sugeno 
(Sugeno & Tanaka, 1991) 

2 0.068 N/A 

Kim et al. 
(Kim et al., 1997) 

2 0.055 N/A 

Kim et al. 
(Kim et al., 1998) 

2 0.062 N/A 

Box & Jen. 
(Box & Jenkins, 1976) 

N/A 0.202 N/A 

SOFNN-II 
(Leng et. al., 2005) 

2 0.057 N/A 

Tsekouras’s 
(Tsekouras, 2005) 

8 0.075 N/A 

Proposed Work – 2 
By Zero-Order TS Fuzzy Model 

8 0.069� 0.26346�

Proposed Work – 2 
By Affine TS Fuzzy Model 

8 0.056� 0.23746�

TABLE 4.5 COMPARISON OF RESULTS BASED ON 

( ))2(),1(),(),3(),2(),1()( −−−−−= tutututytytyfty  

4.5.3 Two-Input Nonlinear Sinc Function 

This example is used to demonstrate the performance of the proposed method, 

and the function is defined as: 

.
)sin()sin(

),(sin
xy

yx
yxcz ==                  (4.3) 

where [ ] [ ].10,10,10,10 −∈−∈ yx  

 

In this simulation, 242 data were generated by equation 5.20 within the domain, 
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and 121 data were randomly chosen for training and the remaining 121 data were 

used for testing. The accuracy of the proposed method was measured by RMSE. 

From Table 4.6, the proposed method attains a better RMSE with fewer rules 

than that of other methods in the comparison, and the simulation results have 

been compared with other methods, including (1) Leng et. al. (2004) and (2) 

Leng et. al. (2009). 

 

Method Rules 
(neurons) 

Parameters RMSE for 
Training 

RMSE for 
Testing 

SANFS 
(Leng et. al., 2009) 

17 N/A 0.0428 0.0658 

OSOFNN 
(Leng et. al., 2004) 

N/A 45 0.0565 0.0956 

Proposed Work – 2 
By Zero-Order TS 
Fuzzy Model 

9 27� 0.0293� 0.0416�

Proposed Work – 2 
By Affine TS 
Fuzzy Model 

9 45� 0.0195� 0.0324�

TABLE 4.6 COMPARISON OF RESULTS BASED ON (4.3) 

4.5.4 Static Function Approximation I 

The static function to be approximated is the Hermite polynomial: 

).
2

exp()21(1.1)(
2

2 x
xxxf −+−=                (4.4) 

where [ ]4,4−∈x  

 

In this simulation, 200 data were generated by equation 4.4 within the domain, 

and all of the data were used for training. The accuracy of the proposed method 

wa measured by RMSE. From Table 4.7, the proposed method attains a better 

RMSE with fewer rules than those of the other methods in the comparison. The 
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simulation results have been compared with other methods, including (1) Wu and 

Er (2000), (2) Chen et. al. (1991), (3) Lu et. al. (1997), and (4) Kadirkamanathan 

and Niranjan (1993). 

 

Method Rules 
(neurons) 

RMSE for 
Training 

DFNN 
(Wu & Er, 2000) 

6 0.0056 

OLS 
(Chen et. al., 1991) 

7 0.0095 

M-RAN 
(Lu et. al., 1997) 

7 0.0090 

RANEKF 
(Kadirkamanathan and Niranjan, 1993) 

13 0.0262 

Proposed Work – 2 
By Zero-Order TS Fuzzy Model 

6 0.0251�

Proposed Work – 2 
By Affine TS Fuzzy Model 

6 0.0088�

TABLE 4.7 COMPARISON OF RESULTS BASED ON (4.4) 

4.5.5 Static Function Approximation II 

The static function to be approximated is: 

25.1
2

2
121 )1(),( −− ++== xxxxfy .                (4.5) 

where ]5,1[1 ∈x , ]5,1[2 ∈x  

 

In this simulation, 50 data were generated by equation 4.5 within the domain, and 

all of the data was used for training. The accuracy of the proposed method was 

measured by MSE. From Table 4.8, the proposed method attains a better MSE 

with fewer rules and parameters than that of the other methods in the comparison, 

and the simulation results have been compared with other methods, including (1) 

Sugeno and Yasukawa (1993), (2) Emani et al. (1998), (3) Nozaki et al. (1997), 

(4) Lee and Ouyang (2003), (5) Kim et al. (1997), (6) Kim et al. (1998), (7) 
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Tsekouras (2005), and (8) Wang et al. (2007). 

 

Method Rules Parameters MSE for 
Training 

Sugeno and Yasukawa 
(Sugeno & Yasukawa, 1993) 

6 65 0.079 

Emani et al. 
(Emani et al., 1998) 

8 91 0.0040 

Nozaki et al. 
(Nozaki et al., 1997) 

25 125 0.0085 

Lee and Ouyang 
(Lee & Ouyang, 2003) 

10 N/A 0.0042 

Kim et al. 
(Kim et al., 1997) 

3 21 0.0197 

Kim et al. 
(Kim et al., 1998) 

3 21 0.0090 

Tsekouras 
(Tsekouras, 2005) 

8 40 0.0042 

IOC 
(Wang et al., 2007) 

8 40 0.0075 

IOC 
(Wang et al., 2007) 

13 65 0.0025 

Proposed Work – 2 
By Zero-Order TS Fuzzy Model 

16 40 1.74E-05 

Proposed Work – 2 
By Affine TS Fuzzy Model 

16 72 1.04E-06 

TABLE 4.8 COMPARISON OF RESULTS BASED ON (4.5) 

4.5.6 Synthetic One-Dimension Data 

This function is used to demonstrate the performance of the proposed method, 

and the function is defined as: 

)5sin(1.0)3sin(3.0)sin(6.0 xxxy πππ ++= .            (4.6) 

where ]1,1[−∈x  

In this simulation, 200 data were generated by equation 4.6 within the domain, 

and 100 data were randomly chosen for training and the remaining 100 data were 
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used for testing. The accuracy of the proposed method was measured by RMSE).  

From Table 4.9, the proposed method attains a better RMSE with fewer rules 

than that of the other methods in the comparison. The simulation results have 

been compared with other methods, including (1) Karyannis and Mi (1997), (2) 

Pedrycz (2006), and (3) Wang et al. (2007). 

 

Method Rules 
(neurons) 

RMSE for 
Training 

RMSE for 
Testing 

RBFNN 
(Karyannis & Mi, 
1997) 

36 
0.06�0.024 1.14�0.991 

LM 
(Pedrycz, 2006) 

36 
0.05�0.006 0.06�0.007 

IOC 
(Wang et al., 2007) 

7 0.033597 0.035765 

Proposed Work – 2 
By Zero-Order TS 
Fuzzy Model 

11 0.010075 0.027964 

Proposed Work – 2 
By Affine TS Fuzzy 
Model 

11 0.002519 0.011110 

TABLE 4.9 COMPARISON OF RESULTS BASED ON (4.6) 

4.5.7 Synthetic Two-Dimension Data 

This function is used to demonstrate the performance of the proposed method, 

and the function is defined as: 

)5.0sin(255.0426.0),( 21212121 xxxxxxxxfy ++++== .        (4.7) 

where ]6,4[1 −∈x , ]4,2[2 −∈x  

 

In this simulation, 200 data were generated by equation 4.7 within the domain, 

and 100 data were randomly chosen for training and the remaining 100 data were 

used for testing. The accuracy of the proposed method was measured by RMSE. 
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From Table 4.10, the proposed method attains a better RMSE with fewer rules 

than that of the other methods in the comparison. The simulation results have 

been compared with other methods, including (1) Karyannis and Mi (1997) and 

(2) Pedrycz (, 2006). 

 

Method Rules 
(neurons) 

RMSE for 
Training 

RMSE for 
Testing 

RBFNN 
(Karyannis & Mi, 1997) 

25 
14.86�0.70 16.83�0.77 

LM 
(Pedrycz, 2006) 

25 
10.16�0.74 11.90�0.90 

Proposed Work – 2 
By Zero-Order TS Fuzzy Model 

16 3.502812� 12.34929�

Proposed Work – 2 
By Affine TS Fuzzy Model 

16 1.904039� 7.623169�

TABLE 4.10 COMPARISON OF RESULTS BASED ON (4.7) 

4.5.8 Three-Input Nonlinear Function Approximation 

This function is used to demonstrate the performance of the proposed method, 

and the function is defined as: 

25.115.0 )1( −− +++= zyxt                  (4.8) 

where ]6,1[∈x , ]6,1[∈y , ]6,1[∈z . 216 training data as well as 125 testing 

data were randomly generated using the above equation. 

The simulation results have been compared by MAPE with other methods, 

including (1) Jang (1993), (2) Wu et al. (2001), and (3) Leng et al. (2005). The 

comparisons of the accuracy in MAPE between the proposed method and the 

other methods are reported in Table 4.11.  From Table 4.11, the proposed 

method holds a better MAPE as either a training example or testing example than 

those of other methods in the comparison. The proposed method also uses fewer 

rules and parameters than the other methods in the comparison. 
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Method Rules 
(neurons) 

Parameters APE of 
Training 

APE of 
Testing 

ANFIS 
(Jang, 1993) 

8 50 0.043 1.066 

GDFNN 
(Wu et al., 2001) 

10 64 2.11 1.54 

SOFNN 
(Leng et al., 2005) 

9 60 1.1380 1.1244 

Proposed Work – 2 
By Zero-Order TS Fuzzy Model 

8 26� 0.003410� 0.003265�

Proposed Work – 2 
By Affine TS Fuzzy Model 

8 50� 0.000406� 0.000563�

TABLE 4.11 COMPARISON OF RESULTS BASED ON (4.8) 

4.5.9 Nonlinear Dynamic System Identification 

Finally, the proposed method has been used to identify a variety of nonlinear 

dynamic systems. The accuracy of the proposed method was measured by MSE, 

as well as RMSE. From Tables 4.12, 4.13, 4.14, and 4.15, the proposed method 

attains a better MSE and RMSE with fewer rules than those of the other methods 

in the comparison. The simulation results have been compared with other 

methods, including (1) Abonyi (1999), (2) Wang and Yen (1999), (3) Yen and 

Wang (1999), (4) Yen and Wang (1998), (5) Wang et al. (2007), (6) Angelov and 

Filev (2004), (7) Angelov and Filev (2005), (8) Lu et al. (1997), (9) 

Kadirkamanathan and Niranjan (1993), (10) Rong et al. (2006), (11) Wang and 

Yen (1999), (12) Wang et al. (2008), (13) Chen et al. (1991), (14) Cho and Wang 

(1996), (15 Wu and Er (2000), (16) Wu et al. (2001), (16) Leng et al. (2004), and 

(17) Leng et al. (2009). 
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(A) The nonlinear dynamic system can be identified by: 

)1())2(),1(()( −+−−= kukykygky .               (4.9) 

where 
)2()1(1

]5.0)1()[2()1(
))2(),1(( 22 −−+

−−−−
=−−

kyky
kykyky

kykyg , 






=
25
2

sin)(
t

ku
π , 0)1()0( == yy  

 

In this simulation, data is generated by equation 4.9, and 200 data samples were 

randomly chosen for training, and 200 data samples were randomly chosen for 

testing. The accuracy of the proposed method was measured by MSE. 

 

Method Rules MSE for 
Training  

MSE for 
Testing 

GG-TLS 
(Abonyi, 1999)  

12 3.7E-04 2.9E-04 

GG-LS 
(Abonyi, 1999) 

12 3.7E-04 2.9E-04 

EM-TI 
(Abonyi, 1999) 

12 2.4E-04 4.1E-04 

EM-NI 
(Abonyi, 1999) 

12 3.4E-04 2.3E-04 

Wang 
(Wang and Yen, 1999) 

28 3.3E-04 6.0E-04 

Yen 
(Yen & Wang, 1999)  

20 6.8E-04 2.4E-04 

Yen 
(Yen & Wang, 1998) 

23 3.2E-05 1.9E-03 

IOC 
(Wang et al., 2007) 

8 4.28E-04 4.41E-04 

IOC 
(Wang et al., 2007) 

12 4.9E-05 5E-05 

Proposed Work – 2 
By Zero-Order TS Fuzzy Model 

8 1.837E-03� 1.812E-03�

Proposed Work – 2 
By Affine TS Fuzzy Model 

8 1.19E-08� 3.21E-09�

TABLE 4.12 COMPARISON OF RESULTS BASED ON (4.9) 
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(B) The nonlinear dynamic system can be identified by: 

)1())2(),1(()( −+−−= kukykygky .               (4.10) 

where 
)2()1(1

]5.0)1()[2()1(
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−−−−
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kykyky

kykyg , 
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π , 0)1()0( == yy  

 

In this simulation, data was generated by equation 4.10, and 5000 data samples 

were randomly chosen for training, and two sets of 200 data samples and 300 

data samples were randomly chosen for testing. The accuracy of the proposed 

method was measured by RMSE. 

 

Method Rules RMSE for 
Training 

RMSE for 
Testing 

SAFIS 
(Rong et al., 2006) 

17 0.0539 0.0221 

M-RAN 
(Lu et al., 1997) 

22 0.0371 0.0271 

RANEKF 
(Kadirkamanathan & Niranjan, 
1993) 

35 0.0273 0.0297 

Simple_eTS 
(Angelov & Filev, 2005) 

22 0.0528 0.0225 

eTS 
(Angelov & Filev, 2004) 

49 0.0292 0.0212 

HA 
(Wang & Yen, 1999) 

28 0.0182 0.0244 

Proposed Work – 2 
By Zero-Order TS Fuzzy Model 

8 0.007619� 0.007006�

Proposed Work – 2 
By Affine TS Fuzzy Model 

8 9.47E-06� 1.1E-10�

TABLE 4.13 COMPARISON OF RESULTS BASED ON (4.10) BY 200 TESTING DATA 
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Method Rules RMSE for 
Training 

RMSE for 
Testing 

SAFIS 
(Rong et al., 2006) 

17 0.0539 0.0221 

M-RAN 
(Lu et al., 1997) 

22 0.0371 0.0271 

RANEKF 
(Kadirkamanathan & Niranjan, 
1993) 

35 0.0273 0.0297 

Simple_eTS 
(Angelov & Filev, 2005) 

22 0.0528 0.0225 

eTS 
(Angelov & Filev, 2004) 

49 0.0292 0.0212 

HA 
(Wang & Yen, 1999) 

28 0.0182 0.0244 

ICLA 
(Wang et al., 2008) 

8 0.0321 0.0318 

ICLA 
(Wang et al., 2008) 

20 0.0012 7.48E-04 

Proposed Work – 2 
By Zero-Order TS Fuzzy Model 

8 0.007619� 0.007006�

Proposed Work – 2 
By Affine TS Fuzzy Model 

8 9.47E-06� 1.1E-10�

TABLE 4.14 COMPARISON OF RESULTS BASED ON (4.10) BY 300 TESTING DATA 

(C) The nonlinear dynamic system can be identified by: 

)())1(),(()1( tutytygty +−=+ .                (4.11) 

where 
)1()(1

]5.2)()[1()(
))1(),(( 22 −++
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tytyg ,  
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π , 0)1()0( == yy  

 

In this simulation, the data was generated by equation 4.11, and 200 data samples 

were generated within the domain for training, and 200 data samples for testing. 

The accuracy of the proposed method was measured by RMSE 

. 
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Training samples: 200 data samples, ]200,1[∈t  

Testing samples: 200 data samples, ]600,401[∈t   

 

Method Rules Parameters RMSE for 
Training 

RMSE for 
Testing 

DFNN 
(Wu & Er, 2000) 

6 48 0.0283 N/A 

GDFNN 
(Wu & Er, 2001) 

6 48 0.0241 N/A 

OSOFNN 
(Leng et al., 2004) 

5 46 0.0157 0.0151 

OLS 
(Chen et al., 1991) 

65 326 0.0288 N/A 

RBF-AFS 
(Cho & Wang, 1996) 

35 280 0.1384 N/A 

SANFS 
(Leng et al., 2009) 

8 N/A 0.0114 0.0107 

Proposed Work – 2 
By Zero-Order TS 
Fuzzy Model 

8 26 0.029812� 0.028627�

Proposed Work – 2 
By Affine TS Fuzzy 
Model 

8 50 2.21E-04� 0.000106�

TABLE 4.15 COMPARISON OF RESULTS BASED ON (4.11) 

4.6 Conclusion 

The chapter proposes a similarity-based fuzzy learning algorithm with a 

two-layer optimisation scheme based on the work proposed in the previous 

chapter, a three-part input-output clustering-based approach for fuzzy system 

identification. The work proposed in this chapter can be regarded as an extension 

of the three-part input-output clustering-based fuzzy learning algorithm. In order 

to generate a compact fuzzy system, a pruning strategy based on similarity 

analysis between fuzzy sets has been applied for refining the rule base of the 

fuzzy model by measuring the similarity between fuzzy sets, as well as reducing 
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the redundant rules of the fuzzy system. To avoid the problem of underfitting and 

that of overfitting, a two-layer optimisation scheme has been introduced for 

refining the fuzzy model. So far as the parameters optimisation is concerned, a 

two-layer optimisation scheme is more powerful than only one local minimum 

parameters optimisation. However, since a two-layer optimisation scheme is 

more complicated than a single-layer optimisation scheme, a two-layer 

optimisation scheme may lead to a higher computational cost and the problem of 

overfitting during validation. Due to the above reasons, the concept of uni-α-cuts 

of fuzzy set has been developed in the optimisation scheme. To validate the 

reliability of the proposed method, a number of classical simulations have been 

conducted using the proposed method and the comparisons of the simulation 

results with other methods have been discussed. Through the comparisons, the 

proposed method can achieve a positive reliability. 

 

Further, the contribution brought by the extended work in this chapter can be 

described as follows. A two-layer optimisation scheme is developed for 

achieving a better local minimum with much less computational resource. 

Through discovering the optimal degree of the uni-α-cuts of fuzzy sets, a “better 

starting point” can be obtained for the gradient descent method. Also, the 

contribution is developed based on Occam’s Razor, because it combines the 

general concept of the α-cuts of fuzzy sets and the existing gradient descent 

method to reach a better local minimum without much complicated mechanisms 

and computational resource. 
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CHAPTER 5 CONCLUSION AND 

FUTURE WORK 

This thesis has concentrated on learning and identification of fuzzy systems, and 

a comprehensive introduction and analysis concerning research on learning and 

identification of fuzzy systems has been provided. Subsequently, two research 

topics on learning and identification of fuzzy systems have been proposed in this 

thesis to effectively cope with regression-type problems and function 

approximation problems. Each takes its assigned responsibility for the 

performance of fuzzy system identification. So far as the first work proposed in 

chapter 3 is concerned, a three-part input-output clustering-based approach to 

fuzzy system identification, this work aims at constructing a complete initial 

fuzzy model by discovering the proper number of clusters and the appropriate 

location of those clusters. The second work proposed in chapter 4, details a 

similarity-based learning algorithm for fuzzy system identification with a 

two-layer optimisation scheme, that aims at refining the fuzzy rule base by a 

similarity-based pruning strategy and by providing a more positive parameter 

optimisation scheme, so making the fuzzy system of chapter 4 more compact and 

precise.  

 

So far as a perfect modular method for fuzzy system identification is concerned, 

it should not only positively cope with pattern recognition problems, but also 

primarily comprise of the following features, well-understanding interpretability, 

low-degree dimensionality, highly reliability, stable robustness, highly accuracy 

of the approximation, less computational costs, and maximum performance. 

However, it is extremely difficult to meet all of these conditions. Moreover, these 

two research areas can be integrated into one primary work, and this primary 

work has been designed to meet the above conditions as far as possible. 
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5.1 Contributions 

In order to reach the optimal achievement, this research tries to perform the 

advantages of the proposed methods under various kinds of regression-type 

problems and function approximation problems, and overcome the weaknesses 

that occur during the computation of the overall procedure. Basically, the 

contributions of this thesis are brought by two proposed works respectively. 

 

The first work, three-part input-output clustering-based approach for fuzzy 

system identification, can positively discover the proper number of clusters and 

their appropriate location by integrating a variety of clustering properties 

effectively. The contribution is developed based on Occam’s Razor, because it 

applies the basic features of existing clustering algorithms to carry out the 

optimal performance without much complicated mechanisms and computational 

resource. 

 

The second work, similarity-base learning algorithm for fuzzy system 

identification with a two-layer optimisation scheme, can achieve a better local 

minimum with much less computational resource. Through discovering the 

optimal degree of the uni-α-cuts of fuzzy sets, a “better starting point” can be 

obtained for the gradient descent method. Also, the contribution is developed 

based on Occam’s Razor, because it combines the general concept of the α-cuts 

of fuzzy sets and the existing gradient descent method to reach a better local 

minimum without much complicated mechanisms and computational resource. 

 

In addition to the above description, the research proposed in this thesis 

anticipates the discovery of the best compromise between the following features, 

the low degree of the dimensionality, high accuracy of the approximation, 

well-understood interpretability, maximum performance and minimum 

computational cost. 
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5.2 Future Work 

As described earlier, a flexible, complete, consistent, compact and precise fuzzy 

system consists of well-understanding interpretability, low-degree dimensionality, 

highly reliability, stable robustness, highly accuracy of the approximation, less 

computational costs, and maximum performance. How to develop a flexible, 

complete, consistent and compact fuzzy system with a reliable performance that 

meets the conditions above is always an interesting challenge for future work on 

learning and identification of fuzzy systems. 

 

Though the proposed learning algorithms for fuzzy system identification can 

acquire a positive performance by refining the rule base and reducing the useless 

subsets or clusters, it still cannot break the problem of the “curse of 

dimensionality”. As described in the previous sections 1.4.3 and 4.1, the problem 

of the “curse of dimensionality” is still an important issue when dealing with 

large systems and designing a fuzzy learning algorithm, because the number of 

combinations is too huge to manage. In addition to the problem of the “curse of 

dimensionality” in learning and identification of the fuzzy system in high 

dimensional spaces, further research puts the focus on the advanced 

multi-overlaps similarity analysis in a similarity-based pruning strategy. 

 

In order to understand the problems involved in future work, the problem of the 

“curse of dimensionality” and further research on multi-overlaps similarity 

analysis they will be described. 
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5.2.1 Curse of Dimensionality in Learning and 

Identification of fuzzy System in High Dimensional 

Spaces 

The “curse of dimensionality” is a term coined by Richard Bellman (1961) and is 

applied to the problems caused by the rapid increase in volume associated with 

adding extra dimensions to a (mathematical) space. It is a significant obstacle in 

machine learning problems that involve learning from few data samples in a high 

dimensional feature space (Wikipedia, 2006). Simply, the “curse of 

dimensionality” means the size of a data-set grows exponentially with its 

dimension N. For example, there are ten inputs in a fuzzy system, and each input 

has two membership functions. Therefore, partitioning will lead to 102  rules, 

and this is large for a learning algorithm, as illustrated in Fig. 5.1. The partition 

result from the “curse of dimensionality” can be calculated as follows: 

∏
=

n

i
iX

1

                         (5.1) 

where n is the number of input fuzzy sets of the input variable X, iX  is the 

input variable in the fuzzy system.  

)(1 xAl−

    Input 1

        Input 2

)(1 xA
        0

  ........

)(2 xA )(xAl

  ........

)(1 yA

)(2 yA

)(1 yAn−

)(yAn

 

Fig. 5.1 “Cure of dimensionality” in MISO 

http://en.wikipedia.org/wiki/Machine_learning
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The problem of the “curse of dimensionality” is that it spends too much time and 

cost for a learning algorithm to converge the entire system, especially in a high 

dimensional space. To break the “curse of dimensionality”, requires the refining 

and simplifying of partitioning or clustering and is a significant issue in solving 

this problem. Therefore, a good way to break the “curse of dimensionality” is by 

reducing the complexity of the clustering, and to find the best solution or optimal 

clustering will be a very significant area of research in the future. For the time 

being, the focus of research is on reducing the complexity of clustering as a 

short-term goal. Though simple clustering can possibly lift the problem of the 

“curse of dimensionality”, it also decreases the accuracy of a precise fuzzy 

system. Therefore, in addition to reducing the complexity of the clustering, how 

to keep the accuracy performance of precise fuzzy systems at the same time will 

be the mid-term goal of future work. So far, there are many theories and methods 

working on machine learning. Therefore, to discover useful theories and methods 

and to try to integrate these to make the best compromise between these 

conditions is a really significant topic, and which will be set as a long-term goal 

of future work. 

5.2.2 Multi-Overlaps Similarity Analysis for A More 

Flexible Similarity-Based Pruning Strategy 

Most of similarity analysis methods only discuss the degree of similarity between 

two fuzzy numbers, fuzzy sets, or fuzzy membership functions, but less discuss 

the similarity analysis between more than two. However, it is insufficient to only 

discuss the similarity analysis between two fuzzy numbers, fuzzy sets, or fuzzy 

membership functions, because there are a great diversity of similarity analysis 

and merging schemes worthy of consideration in order to design a more flexible 

similarity-based pruning strategy. For instance, similarity analysis between three 

fuzzy sets or fuzzy membership functions merges into two fuzzy sets or fuzzy 

membership functions, as illustrated in Fig. 5.2, or similarity analysis between 
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four fuzzy sets or fuzzy membership functions merges into two or three fuzzy 

sets or fuzzy membership functions, as illustrated in Fig. 5.3. 

)(xA

X

)(xµ

)(xB )(xC

1α 2α 3α 1γ 2γ 3γ1β 2β 3β
 

Fig. 5.2 Overlap between three fuzzy sets A, B, and C 

 

)(xA

X

)(xµ

)(xB )(xC

1α 2α 3α 1γ 2γ 3γ1β 2β 4β3β4α 4γ

)(xD

 

Figure 5.3 Overlap between four fuzzy sets A, B, and C 

Similarity Priority: 

To measure the degree of similarity between multiple fuzzy sets, the similarity 

priority based on similarity analysis can be regarded as a possible solution. 

Basically, the degree of similarity between fuzzy sets can be calculated based on 

section 2.6.6, afterwards the similarity priority can be acquired by sorting the 

degree of similarity between each fuzzy set. Since the similarity priority between 

each fuzzy set has been determined, the multi-merging scheme can merge fuzzy 
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sets. For example, as illustrated in Fig. 5.2, the degree of similarity between 

fuzzy sets ( )111 ,, γβαA  ( )222 ,, γβαB  and ( )333 ,, γβαC  can be calculated by 

equations based on section 2.6.6, and which can be represented by ),( BAS , 

),( CBS , as well as ),( CAS , respectively. Therefore, the similarity priority 

between fuzzy sets A, B, and C can be represented 

by [ ]),(),,(),,( CASCBSBASSR . In [ ]),(),,(),,( CASCBSBASSE , the similarity 

priority can be determined by the value of  ),( BAS , ),( CBS , as well as 

),( CAS . Moreover, a higher value of the degree of similarity indicates a high 

priority to be merged. Meanwhile, if ),(),(),( CASCBSBAS >> , the similarity 

priority of ),( BAS  could be 1, that of ),( CBS  could be 2, and that of 

),( CAS  could be 3. Therefore, in case two new fuzzy sets are planned to be 

merged from three fuzzy sets A, B and C, fuzzy sets A and B could be merged 

into a new fuzzy set. Also, if 7.0),( =BAS , 5.0),( =CBS , and 3.0),( =CAS , 

then [ ] [ ]3.0,5.0,7.0),(),,(),,( =CASCBSBASSR . Therefore, the similarity 

priority between fuzzy sets A, B and C is fuzzy set A, fuzzy set B, and then fuzzy 

set C, so fuzzy sets A and B could be merged into a new fuzzy set. 

 

The above is a simple example applying the concept of similarity priority to the 

problem of multi-overlaps similarity analysis. However, the more complicated 

the multi-overlaps similarity analysis, the more fuzzy sets are involved in a 

diverse way. How to apply the concept of similarity priority to a complicated 

multi-overlaps similarity analysis is also future work in constructing a complete 

and compact fuzzy system. 
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APPENDIX I: Similarity Measure Based 

on Four Cases Proposed by Chao’s Work 

In order to generate a simpler fuzzy inference system with fewer rules and 

parameters, Chao et al. (1996) simplified the fuzzy-neueral system with Gaussian 

membership functions by using similarity analysis to reduce redundant fuzzy 

rules. The calculation of the intersection of the nonlinear shape of Gaussian 

membership functions is very complex as a result of the nonlinear shape of 

Gaussian functions. To decrease the complex calculation of the intersection of 

the nonlinear shape of Gaussian membership functions, Chao et al. transformed 

the Gaussian membership function into a triangular membership function with an 

approximated value by: 

 ( )










 −−
→







 −
−

πσ

πσ
σ

mxmx
,0maxexp

2

2

           (6.1) 

where m is the centre of the Gaussian membership function and the triangular 

membership function both, σ  is the width of the Gaussian membership function 

and πσ  is the width of the triangular membership function transformed from 

the Gaussian membership function.  

Similarity Analysis 

According to equations 2.54 and 6.1, Chao et al. considered the similarity 

measures in four different cases by recognising the relationships between two 

triangular fuzzy membership functions, including:  

l Case 1: one membership function is the subset of the other membership 

function 

l Case 2: two membership functions possess a single intersection point  
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l Case 3: two membership functions possess two intersection points  

l Case 4: there is no intersection between membership functions 

 

These four different cases are based on the various kinds of relationships 

between two triangular fuzzy membership functions as illustrated in Fig. 6.1-6.4. 

Case 1: 

In case 1, illustrated in Fig. 6.1, the membership function ( )BM  has been 

included in the membership function ( )AM , and ( )AM  as well as ( )BM  

possess the same centre 21 mm =  with no intersection, where ( ) abeAM ∆= , 

( ) acdBM ∆= , and ∆  means the triangle area. Thus, the degree of similarity 

based on equation 2.54 for case 1 can be calculated by: 

( )
( )AM
BM

BAMBMAM
BAM

BAM
BAM

BAS =
∩−+

∩
=

∪
∩

=
)()()(

)(
)(
)(

),(          (6.2) 

where ( )BMBAM =∩ )(  

AB

21 mm =

a

b c d e
 

Figure 6.1 Case 1 of Chao’s work, ( )BM  is the subset of ( )AM , 

( ) ( )AMBM ⊆ . 
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Case 2: 

In case 2, illustrated in Fig. 6.2, the membership functions ( )AM  and ( )BM  

possess one intersection point at ( )11 , hs , so the intersection of ( )AM  and 

( )BM  can be calculated by: 

( ) 1212
1

)( hccBAM ×+=∩                      (6.3) 

where 
( ) ( )

21

211121
1 σσ

πσσσσ
+

++−
=

mm
c , 

( ) ( )
21

212122
2 σσ

πσσσσ
+

++−
=

mm
c , 

and 
( ) ( )

( ) πσσ
πσσ

21

2112
1

+

++−
=

mm
h .  

 

Integrating equation 6.3 into equation 2.54, the degree of similarity for case 2 can 

be calculated by: 

( )
( ) ( ) 12121

121

2
),(

hcc

hcc
BAS

+−+

+
=

πσσ
.               (6.4) 

AB

πσ 22 −m πσ11 +m

→← 1c
1m2m

→← 2c

( )11, hs

 

Fig. 6.2 Case 2 of Chao’s work, ( )AM  and ( )BM  with one intersection 

point ( )11 , hs . 
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Case 3: 

In case 3, illustrated in Fig. 6.3, the membership functions ( )AM  and ( )BM  

possess two intersection point at ( )11 , hs  and ( )22 , hs , so the intersection of 

( )AM  and ( )BM  can be calculated by: 

[ ]3322112
1

)( hchchcBAM ++=∩                    (6.5) 

where 
( ) ( )
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−
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Integrating equation 6.5 into equation 2.54, the degree of similarity for case 3 can 

be calculated by: 

( ) ( )33221121

332211

2
),(
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=

πσσ
.              (6.6) 
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1h
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Fig. 6.3 Case 3 of Chao’s work, ( )AM  and ( )BM  with two intersection 

points ( )11 , hs  and ( )22 , hs . 
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Case 4: 

In case 4, illustrated in Fig. 6.4, there is no intersection between the membership 

functions ( )AM  and ( )BM , so the intersection of ( )AM  and ( )BM  is: 

0)( =∩ BAM                         (6.7) 

Thus, integrating equation 6.7 into equation 2.54, the degree of similarity for 

case 4 is: 

0),( =BAS                          (6.8) 

AB

1m2m
 

Fig. 6.4 Case 4 of Chao’s work, ( )AM  and ( )BM  with no intersection. 

In the above cases, 1),(0 ≤≤ BAS , a larger value of ),( BAS  indicates a higher 

degree of similarity between fuzzy sets, fuzzy numbers, or fuzzy membership 

functions. 

Merging Policy 

According to the results calculated by Chao et al. (1996), two fuzzy membership 

functions ( )AM  and ( )BM  could be merged if the degree of similarity 

between the membership functions ( )AM  and ( )BM  is high enough or 

exceeds the reference value given by the expert system. Therefore, ( )AM  and 
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( )BM  would be merged into a new membership function ( )newM  if 

ε≥),( BAS , where ε  is the reference value, and 10 ≤< ε . Hence, the new 

centre newm  and width newσ  of the new membership function ( )newM  can be 

determined as follows: 

In case 1, illustrated in Fig. 6.1, ( )BM  is the subset of ( )AM , ( ) ( )AMBM ⊆ , 

so the new centre newm  and a new width newσ  can be calculated by: 

21 mormmnew =                        (6.9) 

2
21 σσ

σ
+

=new                         (6.10) 

In case 2, illustrated in Fig. 6.2, ( )AM  and ( )BM  possess one intersection 

point ( )11 , hs , so the new centre newm  and a new width newσ  can be calculated 

by: 

( ) ( )
2

2121 πσσ −++
=

mm
mnew                  (6.11) 

( ) ( )
π

πσσ
σ

2
2121 ++−

=
mm

new                  (6.12) 

In case 3, illustrated in Fig. 6.3, ( )AM  and ( )BM  possess two intersection 

points ( )11 , hs  and ( )22 , hs , so the new centre newm  and a new width newσ  can 

be calculated by: 

2
21 mm

mnew

+
=                        (6.13) 
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2
21 σσ

σ
+

=new                        (6.14) 

In case 4, illustrated in Fig. 6.4, since there is no intersection between the 

membership functions ( )AM  and ( )BM , ( ) ( ) 0=∩ BMAM , the merging 

behaviour is not necessarily required. 
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APPENDIX II: Similarity Measure Based 
on Four Cases Proposed by Jin’s Work 

Consequently, in order to generate flexible, complete, consistent and compact 

fuzzy rule systems, Jin et al. (1999) applied the fuzzy similarity measure as an 

index for accomplishing a compact fuzzy system. Jin et al. categorised nine 

different cases into four primary cases based on the triangular membership 

functions for the purpose of compactness: 

l Case 1: two membership functions possess a single intersection point. 

l Case 2: two membership functions possess two intersection points between 

the right side of membership function ( )AM  and both sides of membership 

function ( )BM . 

l Case 3: two membership functions possess two intersection points between 

both sides of membership function ( )AM  and the left side of membership 

function ( )BM . 

l Case 4: two membership functions possess three intersection points between 

both sides of membership functions ( )AM  and ( )BM . 

 

According to equation 2.54, the size of fuzzy sets ( )AM  and ( )BM  based on 

Jin et al. can be calculated by: 

( ) ( ) ( ) ( ) ., dxxBBMdxxAAM ∫∫
+∞

∞−

+∞

∞−
==              (7.1) 

 

The triplet ( )vertexrightcentrevertexleft ,,  of the triangular membership 

functions ( )AM  and ( )BM  can be represented by ( )111 ,, bma  and 
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( )222 ,, bma respectively, and fuzzy sets ( )xA  and ( )xB  described with the 

triangular membership functions can be defined by the following form: 

( )
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These four different cases, based on the various kinds of relationships between 

two triangular fuzzy membership functions are illustrated in Fig. 7.1-7.4, and the 

intersection between membership functions ( )AM  and ( )BM , )( BAM ∩ , can 

be calculated as follows: 

Case 1: 

In case 1, illustrated in Fig. 7.1, the membership functions ( )AM  and ( )BM  

possess single intersection point at ( )212121 , yxP , and 21x  as well as 21y  can be 

calculated by: 
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According to equation 7.3, the intersection of ( )AM  and ( )BM ,  )( BAM ∩  

can be calculated by: 
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Fig. 7.1 Case 1 of Jin’s work, ( )AM  and ( )BM  with one intersection point 

at ( )212121 , yxP . 

Case 2: 

In case 2, illustrated in Fig. 7.2, the membership functions ( )AM  and ( )BM  

possess two intersection points at ( )212121 , yxP  and ( )222222 , yxP  between the 

right side of membership function ( )AM  and both sides of membership 

function ( )BM . Also, 21x  as well as 21y  are the same as case 1 and 22x  as 

well as 22y  can be calculated by: 
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According to equation 7.5, the intersection of ( )AM  and ( )BM ,  )( BAM ∩  

can be calculated by: 
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Fig. 7.2 Case 2 of Jin’s work, ( )AM  and ( )BM  with two intersection 

points at ( )212121 , yxP  and ( )222222 , yxP . 

Case 3: 

In case 3, illustrated in Fig. 7.3, the membership functions ( )AM  and ( )BM  

possess two intersection points at ( )111111 , yxP  and ( )212121 , yxP  between both 

sides of membership function ( )AM  and the left side of membership 

function ( )BM . Also, 21x  as well as 21y  are the same as case 1, and 11x  as 

well as 11y  can be calculated by: 
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According to equation 7.7, the intersection of ( )AM  and ( )BM ,  )( BAM ∩  

can be calculated by: 
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Fig. 7.3 Case 3 of Jin’s work, ( )AM  and ( )BM  with two intersection 

points at ( )111111 , yxP  and ( )212121 , yxP . 

Case 4: 

In case 4, illustrated in Fig. 7.4, the membership functions ( )AM  and ( )BM  

possess three intersection points at ( )111111 , yxP , ( )212121 , yxP  and ( )222222 , yxP . 

The definition of ( )111111 , yxP , ( )212121 , yxP  and ( )222222 , yxP  are the same as 

the above cases. According to equations 7.3, 7.5 and 7.7, the intersection of 

( )AM  and ( )BM , )( BAM ∩  can be calculated by: 
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Fig. 7.4 Case 4 of Jin’s work, ( )AM  and ( )BM  with three intersection 

points at ( )111111 , yxP , ( )212121 , yxP  and ( )222222 , yxP . 

In the above cases, 1),(0 ≤≤ BAS , and a larger value of ),( BAS  indicates a 

higher degree of similarity between fuzzy sets, fuzzy numbers, or fuzzy 

membership functions. 
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