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Conventionalpseudomorphic High Electron Mobility Transistor (b HEMTS)
with latticematched InGaAs/InAlAs/InP structures exhibit high mobility and
saturation velocity, and are hence attractive for the fabrication eétéwminal low
noise and high frequency devices, which operate at room temperature. The major
drawbacks of conventional pHEMT devices are the very low breakdown voltage (<
2 V) and the very high gate leakage current (~ 1 mA/mm), which degrade device,
performance especially in MMIC LNAs. These drawbacks are caused by the impact
ionization in the low band gap, i.e. thex®g1xAs (x = 0.53 or 0.7) channel
material plus the contribution of other parts of the epitaxial structure.

The capability to achieveigher frequency operation is also hindered in
conventional l nGaAs/ I nAl As/ I nP pHEMTS, du
length technology used. A key challenge in solving these issues is the optimization
of the InGaAs/InAlAs epilayer structure through bgad engineering, without
affecting the device RF characteristics. A related challenge is the fabrication of sub
micron gate length devices usindife optical lithography, which is more cest
effective, compared to the use eBeam lithography.

The maingoal for this research involves a radical departure from the
conventional InGaAs/InAlAs/InP  pHEMT structures by designing new and
advanced epilayer structures, which significantly improves the performance of
conventional lownoise pHEMT devices, and at tlsame time preserves the RF
characteristics. To achieve this, modified epilayer structures were fabricated and
characterized, including solving the stanc
and RF results are then carefully analysed, and compared thode of the
conventional pHEMT. Optimization of the submicrorgate length process is then
performed, by introducing a new technique to further sdailen the bottom gate
opening. A new material, SoG, is also explored to simplify the submicron process
flow even further.

The results of this work show outstanding performance compared to the
conventional pHEMT. The breakdown voltage and gate current leakage are )
significantly i mproved, by O 70 % and O ¢
effect on the RF characteristics, tehthe new technique of the submicron process
shows a 58 % increase if) &nd 33 % increase imdx

The SoG material shows suitability for use in a-seflow process, but due
to some constraints, its development is left as future work; howeveresgnprit
could be used for passivation and production of capacitor dielectrics.

The success of the modification and optimisation of the InGaAs/InAlAs
material system, coupled with the gate length reduction intesob r e gi me enabl
high breakdown and ultfaigh speed low noise devices to be fabricated, especially
for low-noise amplifers (LNAs) and lownoise receivers operating in the
microwave and millimetre wave regime.
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CHAPTER 1

INTRODUCTION

1.1 OVERVIEW

Modern consumer electronics generallgeuSilicon (Si) MOSFET technology.
However, as the drive to fulfil Moor eds
architectures are being proposethe High Electron Mobility Transistor (HEMT)

being a case in point. The device has already been mappedheninternational
Technology Roadmap for Semiconductor (ITRS), and will cater for more advanced
communications and ultfaigh speed, ultrdow noise electronics applications. The

HEMT - also known as the heterostructure FET (HFETgtegrates a junction

between two materials with different band gaps (a heterojunction) as the path for
high electrons mobilities; this is different from MOSFET, which uses a doped

region for the movement of electrons.

The formation of the channel in MOSFET particularly RMOSFETs where the
electrons are the charge carrietsan be explained by referring to Figure 1.1. When
the bias at the gate has a positive potential with reference totihe Bubstrate

i.e. a positive voltage is applied at the gate depletion regin near to the gate
oxide surface will be created, because the majority of the holes will be repelled by
the positive charges at the gate terminal, while some minority electrons will be
attracted to the surface; however, the gate potential it is stillaaofor the
accumulation of electrons to cause current conduction. When the positive gate
voltage is increased, it will form a dense inversion layer of electrons under the gate
oxide surface; when this gate voltage reaches the threshold voltage thé

electronrich inversion layer will form a conduction channel; therefore this channel
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formation will conduct current between the MOSFET source and drain terminals.
This behaviour is different from that of a High Electron Mobility Transistor

(HEMT), which wil be explained in detail in Chapter 2.

Gate

Source ? Drain

Gate Oxide

Depletion layer

P-type Substrate

2

Body

Figure 1.1 N-type Metal Oxide Semiconductor Field Effect Transistor
(nMOSFET) [1]

HEMTs behave like FETs, except that they comprise materials which keep the
electrons and holes less firmly bound, so that these carriers of electric current have
greater mobility. This is due to the fact
a pdential well, and therefore these charge carriers are physically separated from

their parent donor or acceptor atoms and thus will suffer less scattering leading to a
higher mobility. If an undoped spacer layer is introduced, as is the case in all the
devices studied in this work, then the physical separation of fee electrons and their

donor atoms is even greater improving the mobility even further.
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Due to this Ahigh electron mobilityo, HE N
FETs, therefore HEMTs offer ¢iher performance when amplifying microwave

signals.

Another variant, the pseudomorphic HEMT (pHEMT) is the fastest type of

transistor, and is ideal for microwave and millimetrave applications. The device

is made from compound materials which are ntitcematched. The structure of

the pHEMT is different from HEMT, in that one of the material layers is so thin that

the crystal | attice stretches fApseudomorpt
material. This structure allows the pHEMT to havedyeperformance with larger

bandgap differences than would otherwise be possible.

The pHEMT uses higmobility materials for the channel; many new materials have

been explored since early 200006s,-Vbut the
compound emiconductorg?2]. For this research, the materials used are Indium

Gallium Arsenide (InGaAsand Indium Aluminium Arsenide (InAIAs). InGaAs is a
semiconductor material composed of Indium, Gallium and Arsenic, while InAIAs is

a semiconductor material composed of Indium, Aluminium and Arseniéldn

»As has almost the same lattice constant a&dmnxAs for x~0.52, but a larger

bandgap. This material system has already become important for fabricating
Monolithic Microwave Integrated Circuit (MMIC) devices including very loaise

amplifiers and receivers, mainly due to its outstanding combimatib high

frequency operation and low noise.

1.2 RESEARCH BACKGROUND

As the drive towards ever smaller and faster devices intensifies, a great deal of
progress has been made in the research ofsiioon materials to substitute for

silicon in the transistr channel. Among the materials studied arg &glow band
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gap ll-V compound semiconductofd-7], carbon nanotubd8] and grapheng9].
However, IIFV compound semiconductors are the most studied matenathis
group, and have the potential to enable the production of futurespegd
transistors for commercial applications, with very low noise and high breakdown

voltages.

Studies have also shown that pHEMTs usingVllcompound semiconductors
incorpomting quantum wells show improvements in both energy efficiency and
speed, compared with silicon channel devices; the enhanced electron channel

mobility is the key performance boosting paramg2e6).

In general, pHEMT devices have the highest transconductance (for a given gate
size) when incorporating InGaAsAlAs compound semiconductors, because of the
high eletron mobility, large conduction band discontinuity, and very good carrier
confinement in the channglQ]. This unique property allows the design of fairly
complex circuitry, and subsequent fabrication imtieely low-volume applications

where the cost of using either CMOS or SiGe would be prohibitive.

The precise nanoscagize growth of compound semiconductor materials for
pHEMTSs relies on a technique called Molecular Beam Epitaxy (MB&)11]. The

most important aspect of MBE is the slow deposition rate (typically less than 1000
nm per hour), which allowsheé films to grow epitaxially. MBE dominates the
practical approaches and techniques required to meet the stringent doping and
thickness specifications, to safonolayer accuracy for the production of pHEMTS.
This enables the production of a variety of auhed lownoise and ultrdast
electronic devices, such as ngeneration high speed instrumentation, Ultra Wide
Band communications (UWB) and electronic warfare.

32



1.3 PROBLEM STATEMENT

pPpHEMT devices using the InGaAsAIAs materials system, lattiematchedo InP,
have a bright future not only for ulttagh speed and ultd®w noise devices such
as Monolithic Microwave Integrated Circuit (MMIC) Low Noise Amplifiers
(LNASs), but also for Power Amplifier (PAS).

Conversely, such devices that incorporate cotiweal InGaAsInAlAs pHEMTs

suffer from low breakdown voltage £¥) and poor linearity, regardless of the gate
length used12]. Over the years, researchers havade efforts to increase the -off
state breakdown voltagé3-18], but as yet the dk issue has not been fully solved.

In addition, the conventional material systealso experiences a large DC gate
current leakage, related to the low barrier height at the Schottky interface and to the

forward conduction inherent in the Schottky gate.

1.4 RESEARCH OBJECTIVES

The focus of this research deals with optimization and ongment of a
conventional 1 € m -strgimet echanheg nb@gdedh ,on dni ghl vy
InGaAs/InAlIAs/InP pHEMT developed at The University of Manchester. The
optimization and improvement is achieved either through bandgap engineering or
lateral scaling, or bothThe device fabrication is performed usindine optical
lithography, not only to produce lenoise devices that can be implemented in
MMIC LNAs in S-band and Xband regimes, but also to maintain its cost
effectiveness when producing saticron devices wthout the need to useBeam
lithography, which is usually used in GaAs or InP technologies. The low noise
devices investigated in this work are required to work in the region of 2 GHz to 8
GHz, operating at room temperature with a Minimum Noise FiduFaif) less than

1.5 dB[19, 20Q]. It is known from other researchgial-23] that the gate leakage
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current is one potential source of shot noise and thermal noise for operating
frequencies lower than 10 GHz. Hence, by reducing the gate leakage currents, the
reducton in noise figure is significant at the specified frequency range.

Furthermore, improvements in device breakdown voltage are expected in this

optimized material system, without compromising its low noise properties

1.5 THESIS ORGANIZAT ION

i. Chapter 2 starts with the theory and detailed description of the Hetero Junction
Field Effect Transistor, and also of mesamiconductor contacts which are
important in HEMT fabrication. Near to the end of the chapter, and explanation is
given of the basic HEMT stoure, its operation and finally the advantages of the
pHEMT which are used throughout this study.

ii.Chapter3addresses the major issue with the ¢
which is defined by optical-line lithography; the gate length after métation

enlarges from its initial lithographic definition. The target is to solve the issue and

optimize the gate length process. The performance of the optimized gate length

process is then compared with the current process by device fabrication, éhere t

DC and RF performances are compared.

iii. Chapter 4 presents the fabrication and characterization of a very low leakage
and high breakdown advanced InGaAs/InAlAs/InP pHEMT, through bandgap
engineering for lownoise applications. A detailed DC and RFmgmarison is
performed with the conventional InGaAs/InAlAs/InP pHEMT.

iv. Chapter 5 presents a new technique, identified and investigated to further scale
down the bottom gate openi ngate dulmmicrbores s t ha
InGaAs/InAlAs/InP  pHEMT, although this finding is still under development.

Similar to Chapter 4, fabrication and characterization of-hmige devices is
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undertaken, and their performance compared with the conventional pHEMT. The
fabrication of the improved pHEMT is performed witte new and improved seft
reflow process for lateral scaling, coupled with a new epilayer modification,
resulting in excellent DC and RF performances.

v. Chapter 6 demonstrates the possible routes to improve tgat& structure for
submicron pHEMT devefmment. The idea is to develop and explore a new material

- Spinon-Glass (SoG)- as a substitute for Silicon Nitride ¢8lis) hard mask
deposition. The extensive study as well as the key challenges and issues are

discussed in this chapter.

vi. Chapter 7 summarizes the work performed in this study and possible directions

for future research are suggested.
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CHAPTER 2

LITERATURE REVIEW

2.1HETERO JUNCTION FIEL D EFFECT TRANSISTOR

2.1.1 Introduction

Generally, the transistors in modern consumer electronics are madesiifoom

(Si) MOSFETSs. However, as the drive to fu
materials and architectures are being proposetie High Electron Mobility

Transistor (HEMT) being a case in point. It has already been mapped onto the
International Telknology Roadmap for Semiconductor (ITRS) and will cater for

more advance communication and uliigh speed, ultrdow power electronics

applications. The HEMT, also known as the heterostructure FET (HFET), integrates

a junction between two materials witlfferent band gaps (a heterojunction) as the

path for high electrons mobilities; this is different from MOSFET, which uses a

doped region for the movement of electrons.

2.1.2Lattice Matched Materials

Any two different semiconductor materials will havdfelient lattice constants; if

the two materials are brought into contact, one can observe that, at the atomic level,
the atoms at the hetemoterface change their positions to maintain the geometry of
the lattice. A strain will be induced at the hetarterface, resulting from this
atomic level change or adjustment. To form heterojunction interfaces, there is a

need to ensure that the strain does not exceed a specific critical value which will
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later cause crystal dislocation. The severity of such distocaés such that the
carriers will be concentrated in the defect area, and hence degrade the carrier

mobility, which in turn will result in poor device function.

There are a number of materials that are available to form heterojunction interfaces,

as show in Figure 2.1.
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Figure 2.1 Energy band gap of direct (solid line) and indirect (dashed line)
materials, and lattice constant for various -V semiconductors at room
temperature [24].

As can be seen from the Figure 2.1, it is possible to combine the semiconductor
materials in binary, ternary and quaternary systems, to form a variety of alloys with

nearly latticematched heterjunction interfaces. Examples of such semiconductor
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alloys are 1953Ga 47As/Ino50Al0.48AS/INP and GaAs/AlGa-xAs; these material

systems heterunction interfaces have close lattice constant values but abrupt

variations in their band gaps.
2.1.3Psaidomorphic Materials

Modern epitaxial growth techniques, for example the Molecular Beam Epitaxial

(MBE) technique, have the ability to grow mismatched semiconductor epitaxial

layers; the epitaxial layer grown will assume the lattice parameters of theatlayer

deposited on. However, the mismatched layers must be kept within certain limits,

and the deposited layer must be very thin to avoid formation of defects or

di sl ocati ons. This new | ayer then is call
structue and physical properties are alteredn example of this is ¥Bgi1xAs-

InyAliyAs when x | y. As shown in Figure 2.
be in compressive strain if the deposited layer has a larger lattice constant, or tensile

strain ifthe deposited layer lattice constant is smaller.

a, ag

| % np
psemlolnorphic T
as naee
ag a as

Figure 2.2 Formation of pseudomorphic layers with (a) compressive and (b)
tensile strain[25].
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Note that a pseudomorphic layer can be grown to a certain critical thickpess h
Taking Figure 2.2 as example, the strain between the substrate and the deposited

epilayer is given by Equation 2.1.
c— "L Equation 2-1
Where & = strain & e=latteeenstant dithe depoesited lagey e r s

as = lattice constant of the substrate layer, while the critical thickndssgiven by

Equation 2.2 below:

=28 Equation 2-2
£ as
Furthermore, it i s necessary to appreciat

and their physical properties are changed, the total energy within the unit cell is
maintained. This is possible because of the distortion ofi¢pesited layer in the
direction perpendicular to the growth direction, leading to lattice matching in the

lateral plane.

2.1.4Band Discontinuities

The most interesting and important part of the heterojunction is the band gap energy
associated with eachaterial in the structure. When two materials with different
band gap energies are brought together, i.e. a high band gap material combined with
a low band gap material, it will lead to energy band discontinuities as shown in
Figure 2.3. This so called baigap engineering is the main feature of heterojunction

devices, especially HEMbased devices.
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Figure 2.3 Energy band diagrams before (left) and after (after) combination.

By referring itno bHiugeuries 2t.h3e, héiAgbh band gap
the low band gap material, while;EEc and E are the valence band, conduction

band and Fer mi |l evel s respectively. The
det er mi rcédthe lwonducpdn bah, a 0 fdr theptalence band. Finally,

G and Edenote the electron affinity and band gap, respectively.

Once thermal equilibrium (i.e. Fermi levels aligned) is achieved between the two
semiconductor materials, i . eEofthesatwad B, t h.

materials is given by Equation 2.3:

AE, = EA —EF Equation 2-3

This band gap discontinuity can be further manipulated by using different types of
materials in combination. For example, for thB8aAs/AbsGa4sAs and
INo.53G@.47AS/IN0 s2Al0.48AS [26-28] HE MT s, ¢ anee0.65pdY and 0.77 eV
respectively. Hence, InGaAsAlAs pHEMTs have a largeenergy band gap
discontinuity with better control of the carriers at the heterostructure, compared to

GaAsAlGaAs devices.

40



2.1.5Quantum Well and 2DEG

A basic Quantum Well (QW) <can bel[290r med
of low band gap semiconductor material (e.g. GaAs) is sandwiched between two
similar high band gap semiconductors (e.g. AlGaAs). As illustrated in Figure 2.4,
such a heterojunction boungawill experience discontinuities at the edges of the
conduction band and valence band, with a QW generated for the carriers (electrons

and holes).
(a) | AlGaAs | GaAs | AlGaAs
—X
E.
(b) C
AE. Ep
S __o©o E,
E E

gl

Figure 2.4 (a) Heterojunction structure, (b) Energy band dagram of an ideal
un-doped square shape quantum well and (c) Conduction band diagram if
AlGaAs is n-doped[29].
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Note that the dopants in high band gap layers cpplgthe carriers to the quantum
well; when the bottom of the quantum well is below the Fermi level, the high energy
donors will fall down to the low lying energy levels in the well, hence creating a
Two Dimensional Electron Gas (2DEG)this is shown inFigure 2.4(c). An
interesting fact about the 2DEG is that the electrons are only able to move in the
direction along the heterojunctions interface, not in the direction perpendicular to

the interface i.e. the crystal growth direct{@9)].

2.1.6D e | tidDopediLayers

Traditionally, the doped layers are referred to as bulk doped, where the impurities

are homogeneously doped throughout the supply layer. Howebwetter type of

doping is found t o -Hopingdwhérd assendconguctardgayen r s i my
isdopedinasinglat omi ¢ pl ane. Figure 2.-8peshow t he

and bulkdoped structures in terms of the energy band diagram and quaetlsm w

(a) E(:

1
I 1
—s Spacer width

By O L [ AEC

Al Ga, As

Figure 25 Ener gy band dopedgAGaAs/GdAsa heterastructure.
(b) Bulk-doped AlGaAs/GaAs heterostructureg 30].
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Referring to Figure 2.5, the’lquantization energy level is denoted at @nd is
similar to b in the quantum well. @ther observations from the figure also show
that all of the carriers are ingfo f  tdbped niaterial, whereas they are widely

spread over the supply layer of bulkped material. As & is below the Fermi

level, this gives the advantage of being d@bléncrease the carrier concentration in

the 2DEG region, with a high probability
doped are to the quantum well. This phenomenon gives great benefits to-HEMT

based devices.

2.2METAL -SEMICONDUCTOR CONTAC TS

2.2.1 Introduction

There are two essential contacts in any semiconductor device, especially in
heterostructures like HEMbased devices. These two contacts are known as the
Ohmic contact and the Schottky contact, the creation of which depends on the
characteristis of the interface with the semiconductor. These contacts are mainly

used to connect the semiconductor device to external circuits or probes.

2.2.2Schottky Contact

This type of contact is basically a metal contact to the gate, in order to enter the
channé region in the HEMT. Figure 2.6 illustrates a metakemiconductor
interface before and after forming of the Schottky contact; this is the energy band

diagram of an #type semiconductor and metal contact. The notation shown in the

figures is as followsami s t he met al sislersémicdndustar wworko n, A

f un ctdiothe, contact barrier height,is the semiconductor electron affinity,
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Eg is the band gap, Hs the bottom of the covalence band, i& the top of the
valence band, &s the Fermlevel, V, is the potential difference between minimum
of the conduction band and the Fermi levgljsghe energy band gap, ang;i\and

Xdepare the builin-voltage and depletion region, respectively.

Vacuum Level

Vacuum Level

qém qes

Eg
v Ev
Metal Semiconductor Metal Semiconductor
(a) (b)

Figure 2.6 Schematic band diagram of a metal and semiconductor (a) in
isolated ntype semiconductor adjacent to metal, and (b) in contact after
thermal equilibrium [31].

As can be seen from Figure 2.6(b), there will be a flow of electrons from the
semiconductor conduction band into the metal, when both the naetdl
semiconductor make contact due to the Fermi levels of both materials reaching

equilibrium. The flow of free electrons will then leave a positive charge of ionised
donors in the semiconductor, which creates a depletion region of thickqgsane

corsequent band bending at the interface.
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Note that there is also a small region of electron bugicat the boundary of the
metal and semiconductor. These equal and opposite charges at the contact boundary

will then create an electric field from the semicoocr to the metal, and

subsequently establish a potential barrig at the interface, andpy- the builtin-

potential-at t he semi conduct or gsanddMgistoresiribte f unct
the electron flow from semiconductor to metal side, subsequently forming a

rectifying contact. Equation 2.4 below shows tielationship betweenpvwi t & A

and W

qVei= g -gVn Equation 2-4

On the other hangi,s tihdee ablalryr ireerl ahteehdg htto At h e

and the semiconductor electron affin@yas showrbelow in Equation 2.5:

qE= &G Equation 2-5

The builtin-potential can also be written as Equation 2.6, to show its relationship

with the wogakndf wwncti ons A

qVbi= (- M) Equation 2-6

Furthermore, the Schottky contact will be formed under the two key conditions

below:
1. Large barrierpg>kli ght i .e. when ~a
2. Low doping concentration tN<< Nc
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The Schottky barrier described in Figure 2.6(lgtigerebias where the Fermi level

Er between semiconductor and metal are equal (or aligned). Under thibiagro
condition, the net current flow between semiconductor and metal is zero, because
the same amount of current flows from semiconductor to natdl viceversa.
However, under forward and reverse bias conditions, theibypbtential changes,

and lence changes the flow of current transport. These conditions are illustrated in
Figure 2.7 begerénans constai8lwrhbiotle flygures.

E

_

1 1
ISEMICONDUCTOR SEMICONDUCTOR

Figure 2.7 Current transport by thermionic emission. (a) forward bias, and (b)
reverse biag31].

Figure 2.7(a) shows that, when a positive biassVapplied to the metalt will
undergo a forward bias condition. Under this condition, the Fermi level of
semiconductor (k) will be shifted up relative to the Fermi level of metah{Eand

the builtin-potential will be reduced by the applied voltage @n the other hand
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Figure 2.7(b) shows that, if a negative bi&s is applied to the metal, a reverse
bias condition is achieved. In this case, the Fermi level of semiconduetpmii

be shifted down relative to the Fermi level of metad)Eand the builin-potential

will increase by the applied voltage:VThe quantity of electron flow from metal to
semiconductor under the revetsias mode is also known as the leakage current in
pHEMTSs.

2.2.30hmic Contact

An Ohmic contact different from a Schottky contact, becatuiseeissentially a nen
rectifying contact, and does not control the flow of current, which means the current
flows equally in both directions (reverse and forward) with a linedf |
characteristic. An Ohmic contact should have insignificant contact mststa
relative to the series resistance of the semiconductor, so that little or no current loss

occurs across the device.

The current conduction mechanism is usually either tunnelling or thermionic
emission. In the case where thermionic emission is domitf@ntontact resistance

of the metal to semiconductor is given by Equation 2.7 below:

k agqfs o E ,
= expe—0 guation 2-7
R gA*T KT =

Where A* is the effective Richardson constant, ands the temperature in K.
Equation 2.7 also shows that a low barrier height is needed to allow the Ohmic

contact to achieve a smaltirespective of doping.

In the case of high semiconductor doping @ * @n?), the barrier height and
depletion width becomes very thin, for whithe R is then controlled by the
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tunnelling current. Alternatively, for semiconductor dopingp ®  ctn?®,

thermionic emission will once again be domingsii

2.3HIGH ELECTRON MOBILI TY TRANSISTOR (HEMT)

2.3.1 Introduction

HEMT devices are an improvement on the Md&amiconductor Field Effect
Transistor (MESET) and preferred for high speed, high frequency and low noise
applications. The high and low band gap heterojunction in the HEMT, made from

group IV materials, enables high electron mobility.

Furthermore, the existence of quantum well and 2DEG doped channel layer
enhances the carriers mobility where electrons can move freely and quickly without

collision with any impurities.

2.3.2HEMT Structure

As discussed previously, a sandwich of ardoped low band gap and a doped high
band gap material edilishes a 2DEG structure, and therefore enables high electron
mobility. Generally, a depletiemode HEMT structure is as shown in Figure 2.8
below:
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Gate
Dep

Ohmic n+ leti Ohmic n+
Supply on d1

Semi-insulating (SI) substrate

Figure 2.8 General depletion mode HEMT structure with G-doping.

The source and drain metal contacts are on top of the cap layer, where the cap layer
could be either waloped or doped. In the above figure, an alloyed Ohmic contact is
diffused down to the 2DEG, and provides a low resistance path betweeDE 2

and metal contacts (Source and Drain in this case).

Under the cap | ay e-dopirgraed spabeelaysr.uTbedupply | ayer ,
| ayer c¢ ou lddpedoe bulk dopedtber diffarence is illustrated in Figure
2.9 below.
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Figure 2.9 Conduction Band of general depletion mode HEMT structure with
U-doping [32].

In Figure 2.9 above, energy quantization occurs at the discontinuity formed between
the high and low band gap materials. Electrons in the supply layer (bulk doping
c as e )d o@r #aping case) can then tunnel through the thin potential barrier
and be tapped in the triangular QW. The electrons in the QW form a high electron
mobility plane called a 2DE(33].

The Coulomb scattering between electrons and the fixed ionized atoms separated by

the spacer layer leads to hignobility. This separation helps to improve the low
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temperature (<100 K) carrier mobilif{32]. However, there is always a trad#

between carrier density and mobility with the spacer layer thickness.

Lastly, the purpose of the buffer layer is to isolate any unwanted defects in the
substrate surface, antsato decouple it from the 2DEG.

Note that, in Figure 2.8, the gate metal contact is between the etched cap layers
(gate recess process). The depletion region exists under the gate. When a negative
gate electric field is applied, this region will broadieom the bottom of the gate

towards the 2DEG, and the channel formed in the same location as the 2DEG region

will be depleted this is called a depletion mode devj&g).

2.3.3Principles of Operation

In a depletion mode HEMT, and referring to Figure 2.8, a depletion region will
extend to the 2DEG regiowhen a bias voltage is applied to the gate metal. The

developed depletion region is actually due to the induced electric field when the bias
voltage is applied. Hence, by adjusting the gate bias voltage, tfie 2DEG

concentration can be altered and tifiene controls the channel currenigl

Figure 2.10 below shows the relationship between two important terms in HEMT

operation, which are the pindif voltage (\f) and threshold voltage (.
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Threshold voltage

Pinch-off voltage

Figure 2.10 General VGs vs Ips graph (Depletion mode device)31].

The condition when the channel current is at zero is called joffcioltage (\p) as
shown in Figure 2.10. This is because the 2DEG is completely depleted by the
depletion region under the gate electric field. An increase in negative gate bias
voltage (Vas) will push out some electrons from the alredoymed quantum well

(at Ves = 0 for a depletioomode HEMT), hence a decrease in the concentration of
electrons in the channel, at an adequatrige negative ¥s (i.e. at \b), all

electrons are driven ouf the well, causing the sheet carrier dendity {n channel

to become zerfB4, 35]. Equation 2.8 and Equation 2.9 show the expressionsgfor V

for bul k -dopipgisupgly layer, despectively.

. _aNpd; Equation 2-8[31, 36]

pbulk— doping — ZE,}E
£
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v _gnid" Equation 2-9[31]

p&—deping ~—

ofs

Where q is the electron charge; N the lulk carrier density, gd(as shown in Figure
2.9) is the distance between the gate metal (Schottky barrier) and the top of the

spacer Iayerl]) Is the dielectric constant of vacuuﬁ’i,is the dielectric constant of

the supply region (largband gap regionfps’i s t he sheet carrier
doping region, and d* (as shown in Figure 2.9) is the distance between the gate
met al adoping. Eduations-8 and 29 show that, at a given fixed value of

Np andng’, the distancesicand d*, measured from the gate, determine the device

Vmand hence the mode of operation of the device, as explained below.

The threshold voltage ¢V is the sarting point of current conduction between the
source and drain in the channel at a predetermined particular value of current (as
shown in Figure 2.10), or simply the point that determines whether the device is ON

or OFF. Equation 2.10 below determines\hie of .
4B, Equation 2-10[31, 37]

Equation 210 shows that ¥ is largelyinfluenced by the valuef@he barrier height

A b and pinchoff voltage b ( a s s umi n g . far a Specifie skmiaertiuctor
heterojunction) i.e. ¥ can be varied between negative and positive values, which
later determine the operational modes of the HEMT, i.e. Depletion omEaiment

[31]. As previously discussed, a depletimode HEMT already has a channel at

Ves= 0 V, and hence i s known as a normally

d

Vin(Vin< 0) . Conversely, a nor madvhlye Mi®©FFO0 dev

0) is known as an enhancemembde HEMT.
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Furthermore, when &k is made higher thanwy the carrier density in the channel

can be changed if the gate bias voltage is applied to the HEMT without changing the
channel thickness. The sheet carrier dengity ¢an be calculated using Equation

2.11 below:

C|Vee — V., — V] :
n_(x) = [Ves f; bs (1] Equation 2-11[31, 32

Where x, is the direction of the drasource electric field, ¥Ws(x), is the applied
drainsource electric field (Ws= 0 atsource side Ws = applied electric field at

drain side), and @s the gate channel capacitance, given by Equation 2.12:

C,=— 0% Equation 2-12[31, 32]
di + d: + d!i

Where d, is the supply layer thicknessg, ds the spacer thickness, angisl the
channel thickness (as shown in figure 2.9). The most important characteristic of the

HEMT operation is the channel current bebar, where the two regions are
usually the main areas of concern. Depending on thernvagnitude, the channel

current falls into two regions, called linear and saturation. The current behaviour in

this channel is given by Equation 2.13 below:

-
r

w Vi Equation 2-13[31, 32
Ins = L_FHCE[EVGS - Vrhjvﬂj' — ] g [ ]
gq

Where Lg = gate lengthg, = Carrier mobility in 2DEG.
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Considering the condition whenp¥ << (VgsVth), the channel current will be in

the linear region, and Equation 2.13 can besriéten as:

w :
Ipe = — pi, C;(Vies — Vi Wops Equation 2-14[31, 32

Ly

Here bsis shown to be linear withps and the corresponding channel resistance is

given by:

R—_Llg 1 4V Equation 2-15[31, 32]

k3

W, C; Voe =V, Al

The relationship betwedasand \bsis shownin Figure 2.11:
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Figure 2.11Ideal 1-V characteristics of a HEMT [31, 34].

As can be seen from Figure 2.1dhen \bsincreases to a positive value, the electric
field at the drain side wiltise rapidly, therefore the depletion region at the drain
side increases. Hence, the average esestional area for thed flow is reduced,
which causes the channel resistance to increase; consequeiritréases at a slow
rate, and eventually sadtes when ¥s = Ves Vin (pinch-off point). This is the
point where the source and drain are completely separated by the reviassztl
depletion region, but the large saturatieg dould flow across this depletion region
[37]. Furthermore, as thep¥ increases beyond this pindiff point, the depletion
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