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Abstract

Practical Uniform Interpolation for

Expressive Description Logics

Patrick Koopmann

A thesis submitted to the University of Manchester

for the degree of Doctor of Philosophy, 2015

The thesis investigates methods for uniform interpolation in expressive description

logics. Description logics are formalisms commonly used to model ontologies. Ontolo-

gies store terminological information and are used in a wide range of applications, such

as the semantic web, medicine, bio-informatics, software development, data bases and

language processing. Uniform interpolation eliminates terms from an ontology such

that logical entailments in the remaining language are preserved. The result, the uni-

form interpolant, is a restricted view of the ontology that can be used for a variety

of tasks such as ontology analysis, ontology reuse, ontology evolution and information

hiding. Uniform interpolation for description logics has only gained an interest in the

research community in the last years, and theoretical results show that it is a hard

problem requiring specialised reasoning approaches. We present a range of uniform in-

terpolation methods that can deal with expressive description logics such as ALC and

many of its extensions. For all these logics, these are the first methods that are able to

compute uniform interpolants for all inputs. The methods are based a new family of

saturation-based reasoning methods, which make it possible to eliminate symbols in a

goal-oriented manner. The practicality of this approach is shown by an evaluation on

realistic ontologies.
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Chapter 1

Introduction

Ontologies are knowledge systems that are used to model terminological knowledge

about a particular domain of interest, and are used in areas as diverse as medicine,

bio-informatics, the semantic web, software development, and many more. Usually,

ontologies define the meaning of and relations between concepts and roles using a

description logic, which provides a formal semantic framework and allows automated

reasoning systems to infer implicit information from the ontology. Modern appli-

cations have lead to the development of very large ontologies such as the medical

SNOMED CT (Stearns et al., 2001), which is a component in health information

systems in various countries, covering over 300,000 concepts, the National Cancer In-

stitute Thesaurus (NCI) (Sioutos et al., 2007), covering over 100,000 concepts, and

the Gene Ontology GO (Gene Ontology Consortium, 2004), covering about 40,000

concepts.

Since a lot of information present in ontologies is implicit, and entries in an ontol-

ogy can interact in non-trivial ways, understanding and managing a complex ontology

requires appropriate tool support. Uniform interpolation methods have the potential

to support various ontology related tasks. Uniform interpolation, which also has been

studied under the names forgetting, projection, marginalisation and variable elimi-

nation, is a means to extract possibly implicit information from an ontology based

on a specified set of concept and role symbols, a so-called signature. The result, the

uniform interpolant, is a restricted view of that ontology, possibly in a syntactically

different form, that only uses the symbols from the specified signature, while preserv-

ing all logical entailments of the ontology that are in this signature. This way, it can

15



16 CHAPTER 1. Introduction

be used to extract parts of an ontology for reuse or analysis or to remove confidential

information, and has many more applications.

This chapter gives an overview of applications for uniform interpolation, its chal-

lenges, and the main contributions of the thesis.

1.1 Applications of Uniform Interpolation

Ontology Summary. Comprehending a complex ontology can be hindered by a

too large vocabulary. If the central concepts and roles of the ontology are known,

uniform interpolation can be used to compute a more focused high-level summary of

the ontology (Lutz and Wolter, 2011; Wang et al., 2010b).

Ontology Reuse. Existing ontologies provide information about a lot of domains

for a broad scope. It is therefore reasonable in a lot of contexts to reuse an existing

ontology instead of developing a new one from scratch. However, not all information

from an existing ontology might be important for a particular application, and import-

ing the complete ontology leads to unnecessary complexity. It is for this reason that

methods for automated extraction of sub-ontologies gained a lot of interest in the last

years (Grau et al., 2008; Sattler et al., 2009; Konev et al., 2009a; Kontchakov et al.,

2010; Nikitina and Glimm, 2012; Gatens et al., 2014; Romero et al., 2015). Module

extraction methods compute subsets of the ontology that preserve all entailments over

given sets of concepts and roles. However, since modules are syntactical subsets of

the original ontology, they may contain much more concepts and roles than are speci-

fied. On the other hand, uniform interpolants only use the concept and role symbols

that are specified. Uniform interpolation can be used to eliminate symbols from an

ontology or module that are not needed for a particular application, so that ontologies

more suited for reuse are generated.

Ontology Analysis. With increasing complexity, ontologies become harder to

manage and understand, since the axioms in an ontology can interact in non-trivial

ways. For ontology engineers and users it is therefore important to provide convenient

and reliable ontology analysis tools. The uniform interpolant for a specified set of

symbols of interest is a direct representation of the relations between them. Uniform

interpolation has therefore the potential to be a powerful analysis tool for ontology
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engineers and users (Lutz and Wolter, 2011; Wang et al., 2010b).

Logical Difference. Tools for computing the difference between text files are in-

dispensable tools for comparing different versions of files, variations of which are used

in software development to control the evolution of software products. For ontologies

however, the syntactical difference of the textual representation is hardly useful, since

the same information can be expressed in different ways and a lot of important infor-

mation is implicit. A semantic approach, which exhibits differing logical entailments

of two ontologies, is much more valuable. This semantic notion of difference is called

logical difference in the literature (Konev et al., 2008b, 2012). If the signatures of two

ontologies differ, one is particularly interested in exhibiting entailments in the common

signature, or possibly some subset of it.

There has been a lot of research on algorithms that decide whether two ontologies

share the same entailments over given signature and to compute these different entail-

ments (Lutz et al., 2007; Pokrywczynski and Walther, 2008; Lutz and Wolter, 2010;

Konev et al., 2012, 2013; Botoeva et al., 2014). Ludwig and Konev (2014) propose

uniform interpolation as a means to compute logical differences in expressive descrip-

tion logics. Given the uniform interpolant of the second ontology for the signature of

interest, one can check using existing description logic reasoners which axioms of it

are logically entailed by the first ontology. The remaining axioms are a representation

of the new entailments in the selected signature.

Information Hiding. As pointed out by Grau (2010), ontology-based systems

are increasingly used in a range of applications that deal with sensitive information,

such as in health care systems. If these data are accessed by different users, it is a

critical requirement that confidentiality of private information is preserved, and that

users have different access on the data depending on their privileges. Such privileges

could for example restrict the visibility of certain concepts and roles. One approach

to deal with hidden terms is to restrict the access to the ontology using a black box

approach, where reasoners and systems can send queries to an ontology-based system

that are only allowed to use a restricted language, based on the privileges of the user.

This approach is followed by the import-by-query approach investigated by Grau and

Motik (2012). An alternative approach is to share a uniform interpolant that only

uses the terms a specific user is allowed to see. This approach is particularly useful
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if the owner of an ontology decides to share part of its ontology with other users for

reuse, but only wants to disclose limited information.

Ontology Obfuscation. In software engineering, obfuscation transforms a pro-

gram into a functionally equivalent one that is harder to read and understand by hu-

man users, in order to avoid reverse-engineering of the software (Collberg et al., 1998).

Uniform interpolation could be used to transfer this idea to the domain of ontologies.

Ontologies often contain auxiliary concepts that serve the purpose of structuring the

content. These structuring concepts can be regarded as proprietary knowledge, and

may not be of importance for the intended application by end-users. By forgetting

these concepts, one obtains an ontology that loses this structure and is harder to read

and edit by a user, while still preserving its intended functionality (Ludwig and Konev,

2013).

Conflict Resolution in Distributed Ontologies. A central idea of the se-

mantic web is to integrate ontologies from different sources, which are developed and

maintained by different parties. A major challenge in managing such a system of dis-

tributed and dynamic ontologies is to handle inconsistencies that are introduced when

integrating these ontologies. In the context of propositional belief systems, Lang and

Marquis (2002) propose a solution to this problem based on forgetting. By forgetting

the variables that cause a conflict, one can create a set of belief systems that can be

merged without resulting in an inconsistent system. This idea has been followed in

Qi et al. (2008) to manage inconsistencies among distributed ontologies using uniform

interpolation for description logics. A similar approach is used in Qi and Du (2009),

who define a belief revision operation in the spirit of Gärdenfors (1988) on the basis

of forgetting.

TBox Abduction. Abduction, originally introduced by Peirce (1878), deals with

the problem of finding a rational explanation of an observation in a logic-oriented

manner. Formally, given an observation O in form of a logical formula, and a the-

ory T of background knowledge, in abduction we are interested in computing a logical

formula H, the hypothesis, such that T and H together logically imply the observa-

tion. In order to avoid trivial answers, usually a set of relevance criteria is specified.

A typical approach is to specify the relevance conditions via a set of abducibles, pred-

icate symbols that are allowed in the hypothesis (Paul, 1993). TBox abduction is the
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task of explaining TBox axioms based on an ontology of background knowledge. An

alternative view is that, given an incomplete ontology and a set of desired entailments

for that ontology, TBox abduction computes a set of axioms that have to be added

to the ontology in order to ensure the desired entailments are logically entailed. This

has applications especially in ontology debugging (Elsenbroich et al., 2006; Bienvenu,

2008).

TBox abduction with abducibles can be reduced to uniform interpolation. Given

an ontology O and a TBox axiom αO = C1 v C2, we can represent the negation of α

as an ABox axiom (C1 u ¬C2)(a), where a is a special designated individual name,

and compute the uniform interpolant of O∪{(C1 u¬C2)(a)} for S, where S is the set

of abducibles allowed in the hypothesis. In the uniform interpolant, we can express

all ABox axioms on a in a single ABox axiom H(a). By negating H, we obtain a

hypothesis TBox axiom αH = > v ¬H such that O ∪ {αH} |= α, which is an answer

of the abduction problem.

Approximation. Logical formulae can be approximated into weakest sufficient

and strongest necessary conditions (Lin, 2001; Doherty et al., 2001). Given a for-

mula F , a theory T and a set of predicates S, a strongest necessary condition of F

on S under T is a formula Fsnc such that T ∪ F |= Fsnc, such that there is no for-

mula F ′ with T ∪ F |= F ′, T ∪ F ′ |= Fsnc, and T ∪ Fsnc 6|= F ′. A weakest sufficient

condition Fwsc of F on S under T is a formula Fwsc such that T ∪Fwsc |= F , and there

is no formula F ′ such that T ∪F ′ |= F , T ∪Fwsc |= F ′ and T ∪F ′ 6|= Fwsc. Approxima-

tion is for example useful in multi-agent systems in which several agents communicate

and only share a restricted vocabulary (Doherty et al., 2004). Strongest necessary

and weakest sufficient conditions can provide lower and an upper approximations to

queries between agents in such systems.

The strongest necessary condition Fsnc on S under T corresponds to the uniform

interpolant of T ∪ F for S, and the weakest sufficient condition coincides with the

abduction hypothesis, which can be reduced to uniform interpolation as described

above.

More potential applications of uniform interpolation can be found in Gabbay et al.

(2008), which deals with the more general problem of second-order quantifier elimina-

tion.
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1.2 Challenges and Contributions

Uniform interpolation in description logics has gained interest in the research commu-

nity only in the last years. An investigation of its theoretical properties showed that

it is a potentially hard problem. Uniform interpolants cannot always be represented

finitely, and if they can, already for the description logics EL and ALC, their size can

be triple exponential in the size of the input ontology (Lutz and Wolter, 2011; Nikitina

and Rudolph, 2014).

This thesis is concerned with the description logic ALC and more expressive ones,

and the question of whether it is possible to develop practical methods for uniform

interpolation in these languages that are suited for the envisioned applications. So

far, existing methods for uniform interpolation in expressive description logics can

in general only compute approximations of the uniform interpolant (see Wang et al.,

2014; Lutz and Wolter, 2011; Ludwig and Konev, 2014). In contrast, we developed a

solution that uses fixpoint operators, such that a finite and precise representation of

the uniform interpolant can always be computed. For applications that require a more

classical representation, fixpoints can easily be simulated in classical description logics

using auxiliary concept symbols, as we will discuss. Greatest fixpoint operators have

been used before for representing uniform interpolants (Lutz et al., 2010; Nikitina,

2011), but only for the less expressive description logic EL.

Due to the worst-case complexity and novelty of the problem, new reasoning meth-

ods are required if we want to compute uniform interpolants practically. For this

reason, a new family of saturation-based reasoning methods has been developed as

part of the project. These methods can be used to compute uniform interpolants

in description logics up to the expressivities of SHI, SIF and SHQ. These are

important sublanguages of the web ontology standard languages OWL DL 1.1 and

OWL DL 2.0, which additionally support more complex role constructors, nominals

and data types.

Furthermore, we show how uniform interpolation with expressive description logics

can be applied on knowledge bases with ABoxes, that is, how to eliminate concepts

and roles from a knowledge base that not only contains terminological information,

but also assertions about individual objects, as it could for example be found in a
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database. This makes it possible to use uniform interpolation in applications where

data play a major role, for example in information hiding.

The practicality of the developed methods is investigated in an evaluation of imple-

mented prototypes of these methods, showing that they can indeed be used to compute

uniform interpolants in a range of realistic use cases.

The main contributions of the thesis are the following:

• We present the first method that can compute a finite uniform interpolant for

every ALC ontology and signature. This is also the first practical method that

is able to eliminate role symbols from an ontology.

• We present uniform interpolation methods for 6 additional description logics,

which extend ALC up to the expressivities of SH, SIF and SHQ, and for

which uniform interpolation has not been investigated before.

• We present a method for computing uniform interpolants of SHI knowledge

bases with ABoxes. This is the first method for an expressive description logic

that can deal with ABoxes of arbitrary structure, and makes use of a new trans-

formation technique into SHOI.

• All these methods are based on a new family of saturation-based reasoning meth-

ods, which use a new technique of introducing symbols dynamically.

• The practicality of these approaches is supported by an evaluation on realistic

ontologies. We also provide two simple heuristics for choosing signatures for

which uniform interpolants are easy to compute.

1.3 Overview of the Thesis

In Chapter 2, we describe existing methods that have been developed for computing

uniform interpolants in description logics and related logics, as well as methods for

related problems. In addition, we give an overview of saturation-based reasoning

procedures for these logics, since a major part of the thesis deals with the development

of new saturation procedures that can be used for uniform interpolation.
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Chapter 3 contains the preliminaries, in which we formally introduce description

logics, fixpoints and uniform interpolation.

The main calculus for computing uniform interpolants is presented in Chapter 4.

This is the first method to compute finite representations of uniform interpolants of

ALC ontologies independent of the input, and it is the first practical uniform interpo-

lation method that can eliminate both concept and role symbols. The method is based

on a new saturation-based reasoning calculus ResALC, which we extend to a method

for computing finite representations of ALC uniform interpolants.

The method serves as a basis for further uniform interpolation methods that can

deal with more expressive description logics. In Chapter 5, we extend the calculus

and the uniform interpolation method step by step to include more description logic

operators, to develop a uniform interpolation method for the description logics SH

and SIF .

Whereas these extensions are implemented by extending the initial calculus for

ALC stepwise by new rules, for the description logic SHQ, we develop a new calculus,

whose rules can be seen as a generalisation of the rules of the earlier calculi. This

is done in Chapter 6. SHQ uses so-called cardinality restrictions, which require a

more complex and harder to prove approach as the earlier description logics. For this

reason, we deal with SHQ in its own chapter.

All these methods deal with uniform interpolation of ontologies. Chapter 7 shows

how our approaches can be extended to uniform interpolation of SHI knowledge bases

that consist of both an ontology and an ABox.

All methods have been implemented and evaluated for various use cases. The

results of the evaluation are presented in Chapter 8, where we show that the proposed

methods are indeed practical for a lot of applications, but also discuss limitations of

the current implementation.

The thesis finishes with a conclusion and an overview of future work in Chapter 9.

1.4 Published Results

Some results presented in this thesis have been published at conferences and work-

shops. The core method for computing uniform interpolants in ALC presented in
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Chapter 4 was first described at the conference Frontiers of Combining Systems (Fro-

CoS) in 2013 (Koopmann and Schmidt, 2013a), though only for the case of forgetting

concept symbols. The method for forgetting concept and role symbols, for the descrip-

tion logic ALCH, as presented in Chapter 4 and Section 5.1, was presented at the con-

ference Logic for Programming, Artificial Intelligence and Reasoning (LPAR) in 2013

(Koopmann and Schmidt, 2013c). The LPAR paper also introduces the role resolu-

tion rule presented in the evaluation chapter (Section 8.1). Uniform interpolation for

SIF , presented in Sections 5.5 and 5.6, was presented at the Description Logic Work-

shop in 2015 (Koopmann and Schmidt, 2015b). The method for the description logic

SHQ, described in Chapter 6, was presented at the International Joint Conference on

Automated Reasoning (IJCAR) in 2014 (Koopmann and Schmidt, 2014a). Uniform

interpolation for knowledge bases with ABoxes, which is the topic of Chapter 7, was

presented at the Description Logic Workshop in 2014 (Koopmann and Schmidt, 2014c)

and at the AAAI Conference in 2015 (Koopmann and Schmidt, 2015a), though only

for the description logic ALC. Some of the implementation details presented in Sec-

tion 8.1 have been described in a publication on practical aspects of uniform interpo-

lation for ALC at the Workshop on Modular Ontologies (WoMO) in 2013 (Koopmann

and Schmidt, 2013b). The implemented methods have been made publicly available in

form of the tool and Java library Lethe, which was presented at the OWL Reasoner

Evaluation Workshop (ORE) in 2015 (Koopmann and Schmidt, 2015c).



Chapter 2

Related Work

2.1 Forgetting in Classical Logics

In propositional logics, uniform interpolation has been studied and used under the

more general names forgetting and variable elimination. For propositional logics, the

result of forgetting a symbol p from a formula F can simply be defined as a formula

equivalent to F [p/>]∨F [p/⊥]. The perhaps oldest mentioning of this form of forgetting

is made in Boole (1854). Later on, forgetting played an important role in the first

automated reasoning systems under the name variable elimination. For example, the

famous Davis-Putnam algorithm (Davis and Putnam, 1960) decides satisfiability of

a formula by essentially eliminating each propositional variable from the input one

after another. Other papers discuss the problem of forgetting in propositional logic

for other applications, for example Lang and Marquis (2002), Kohlas et al. (1999) and

Lang et al. (2003).

Different normal form representations allow for different techniques to efficiently

forget propositional symbols. If a propositional formula is in disjunctive normal form,

we can forget a symbol p by removing all unsatisfiable clauses and removing all literals

of the form p and ¬p in the remaining clauses (Lang et al., 2003). If it is in conjunctive

normal form, forgetting a symbol can be achieved by computing the resolvents on that

symbol (as in Davis and Putnam (1960) or Kohlas et al. (1999)).

In first-order logic, most methods for forgetting were studied in the context of

second-order quantifier elimination. Since this is a problem in its own right and its

motivation is slightly different, we discuss second-order quantifier elimination in detail

24
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in Section 2.2.

Though methods for second-order quantifier elimination have long been studied at

this point, Lin and Reiter (1994) first introduced the term “forgetting” to denote the

elimination of predicates in first-order logic formulae. Lin and Reiter define forgetting

in the following way, which is also referred to as strong forgetting by other authors

(Zhang and Zhou, 2010):

Definition 2.1.1 (Lin and Reiter 1994). Let F be a first-order logic formula and P

a predicate. Then, F ′ is a result of strongly forgetting P in F if for every interpreta-

tion M , we have M |= F ′ iff there is an interpretation M ′ with M ′ |= F such that M ′

agrees with M on every element except P .

Note that this original definition does not explicitly require the result of forget-

ting P to not contain P , even though this is usually assumed in the literature on for-

getting. As the authors note, the result of forgetting a predicate P from a formula F

is equivalent to the second-order formulae ∃X.F [P/X]. This reduces the problem of

forgetting to the problem of second-order quantifier elimination discussed in the next

section. It also implies that the result of forgetting cannot always be represented as a

first-order formula.

Zhang and Zhou (2010) propose an alternative notion, called weak forgetting, which

is closer to the definition we use throughout the thesis. The result of weak forgetting

is always first-order representable, but possibly only by an infinite set of formulae.

Definition 2.1.2 (Zhang and Zhou 2010). Let F be a first-order logic formula and P

a predicate. F ′ is the result of forgetting P iff for every formula G that does not

contain P , we have F ′ |= G iff F |= G.

The result of weak forgetting is not always equivalent to the result of strong for-

getting, but if the result of strong forgetting is first-order representable, the notions

coincide. For applications that are more concerned with logical entailments than with

models, weak forgetting provides a sufficient definition.

Since the result of weak forgetting may be an infinite set of formulae, Zhou and

Zhang (2011) investigate the notion of bounded forgetting, whose results only preserve

logical consequences up to a certain quantifier rank. The quantifier rank of a formula
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is defined as the maximum depth of nestings of existential or universal quantifiers. For

a given quantifier rank the result of bounded forgetting is always finite.

2.2 Second-Order Quantifier Elimination

Second-order quantifier elimination is concerned with the problem of transforming

second-order formulae into equivalent first-order logic formulae. This is achieved by

eliminating quantified predicate symbols. Due to the equivalence ∀X.F ≡ ¬∃X.F , it

is sufficient to focus on eliminating existentially quantified predicates. Therefore, the

general problem of second-order quantifier elimination is to transform a formula of the

form ∃ ~X.F into an equivalent formula F ′ without existential quantifiers over predicate

symbols.

As we observed earlier, second-order quantifier elimination in this sense directly

corresponds to strong forgetting in first-order logic, since the result of strongly for-

getting a predicate P from a formula F is equivalent to ∃X.F [P/X]. Second-order

quantifier elimination is highly undecidable (Gabbay et al., 2008; Ackermann, 1935).

Nonetheless, successful techniques from the area of second-order quantifier elimination

can directly be used for forgetting predicate symbols in first-order logic formulae.

There are in general two approaches to eliminate second-order quantifiers. The

first, which is implemented in the Scan algorithm and in the hierarchical resolution

approach (Gabbay and Ohlbach, 1992; Bachmair et al., 1994; Ohlbach, 1996), uses

resolution on clausal representations of the input to eliminate quantified variables. The

second approach, which is used in the algorithms Dls, Dls*, Sqema and MSQEL

(Szalas, 1993; Doherty et al., 1997; Nonnengart and Sza las, 1995; Conradie et al., 2006;

Schmidt, 2012), uses rewrite rules on the input formula until quantified predicates can

be eliminated using known equivalences. These methods have been used for a variety

of applications, for example in artificial intelligence and for automating correspondence

theory of modal logic (a detailed discussion of applications can be found in Gabbay

et al., 2008).

Ackermann’s lemma, which has been first presented in Ackermann (1935), plays a

central role in all these approaches, and states the following:

Lemma 2.2.1 (Ackermann 1935). Let X be a predicate variable, F (~x, ~y) a formula in
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which X does not occur, Gp[X] a formula in which X occurs only positively and Gn[X]

a formula in which X occurs only negatively. Then, the following equivalences hold:

∃X.∀~x
(
¬X(~x) ∨ F (~x, ~y)

)
∧Gp[X] ≡ Gp[X/F (~x, ~y)]

∃X.∀~x
(
X(~x) ∨ F (~x, ~y)

)
∧Gn[X] ≡ Gn[X/F (~x, ~y)],

where in Gp[X/F (~x, ~y)] and Gn[X/F (~x, ~y)], the variables in ~x are renamed to respective

arguments of X in Gp and Gn.

If the input formula is represented in clausal form, Ackermann’s lemma can be ap-

plied by resolving on the symbol to be eliminated. This approach is followed by Scan

and the hierarchical resolution approach (Gabbay and Ohlbach, 1992; Bachmair et al.,

1994; Ohlbach, 1996). Scan is the first algorithm for forgetting in first-order logic, and

is used in the first implementations of forgetting beyond propositional logic (Gabbay

and Ohlbach, 1992; Engel, 1996).

An alternative approach is followed by the Dls system (Doherty et al., 1997). Us-

ing Skolemisation and equivalence preserving transformations, Dls tries to transform

input formulae into a form that allows the quantified variables to be eliminated using

Ackermann’s lemma. Skolemisation (Baaz et al., 2001; Nonnengart and Weidenbach,

2001) is used to eliminate first-order existential quantifiers of variables by introducing

function symbols. If the above process manages to eliminate all quantified predicates,

in a last step the formula has to be unskolemised by eliminating function symbols and

reintroducing corresponding existential quantifiers. Depending on the input formula,

the unskolemisation step does not always succeed, but if it does, the result is a formula

in first-order logic that is equivalent to the second-order input formula.

In Nonnengart and Sza las (1995), this approach is extended by using the following

generalisation of Ackermann’s lemma, which is referred to as generalised Ackermann’s

lemma.

Theorem 2.2.2 (Nonnengart and Sza las 1995). Let X be a predicate variable, Fp[X]

and Gp[X] be formulae in which X occurs only positively and Fn[X] and Gn[X] be

formulae in which X occurs only negatively. Additionally, assume X occurs in Gp[X]

and Gn[X] only with variables as arguments. Then, the following equivalences hold:

∃X.∀~x
(
¬X(~x) ∨ Fp[X]

)
∧Gp[X] ≡ Gp[X/νX(~x).Fp[X])]

∃X.∀~x
(
X(~x) ∨ Fn[X]

)
∧Gn[X] ≡ Gn[X/µX(~x).Fn[X./¬P ])],
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where the arguments in X bound by the fixpoint operator are mapped to the actual

variables of the substituted predicates.

Generalised Ackermann’s lemma allows us to eliminate existentially quantified vari-

ables in cases where there is no first-order formula equivalent to the input, but a

formula in fixpoint logics. This approach is followed in the Dls* system.

Whereas Ackermann’s lemma plays a central role in both approaches, resolution-

based and rewriting-based, we are not aware of any resolution-based system that uses

generalised Ackermann’s lemma. The methods presented in the thesis can be seen as

an exception, since they use both resolution and generalised Ackermann’s lemma in

order to efficiently compute finite results for all input ontologies in the language under

consideration.

2.3 Uniform Interpolation in Modal Logics

Many modal logics are syntactic variants of description logics, which is why results

for uniform interpolation in modal logics apply to description logics as well. More

precisely, formulae in the multi-modal logic K are syntactic variants of concepts in

the description logic ALC, and formulae in hybrid logics correspond to concepts in

description logics with nominals. In contrast, formulae in modal logic K can be seen

as ALC concepts with only one role. Reasoning on standard modal logic formulae

can therefore be seen as reasoning on description logic concepts in absence of a TBox.

Modal logic K is the weakest logic in the class of modal logics. Extensions of modal

logic K are obtained by adding additional axioms on the semantics of the modalities.

The modal µ-calculus, which extends modal logic K with fixpoint operators, is

expressive enough to represent TBoxes. These can be encoded using the greatest

fixpoint operator. The modal µ-calculus is therefore equally expressive as the descrip-

tion logic ALCµ, which is the extension of the description logic ALC with fixpoint

operators.

In modal logic, forgetting has been studied under the name uniform interpolation.

In Craig (1957), William Craig first formulated what is nowadays referred to as the

Craig interpolation lemma for first-order logics. Given two first-order logic formulae F1

and F2, there is always a first-order logic formula Fi that only uses predicate symbols
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that both occur in F1 and F2 and for which we have F1 |= Fi and Fi |= F2. For a logic

with this property, we say it has Craig interpolation, and we refer to Fi as the Craig

interpolant of F1 and F2.

Henkin (1963) defines a stronger property, which is commonly known as uniform

interpolation, and that can be stated as follows:

Definition 2.3.1. A logic L has uniform interpolation iff for every L formula F and

every set of symbols S there exists an L formula F S such that for every L formula G

that only contains symbols from S we have F S |= G iff F |= G .

In the above definition, F S is a uniform interpolant of F for S. By comparing

this definition to Definition 2.1.2, one can see that uniform interpolants of F for S

are equivalent to results of weakly forgetting from F the symbols that are not in S.

Therefore, in logics with uniform interpolation, the result of weakly forgetting any

set of predicates is always finite. Henkin proves this property for propositional logic.

From the results presented in the last sections it follows that first-order logic does not

have uniform interpolation.

First research on uniform interpolation in modal logics focused on determining

which logics enjoy the uniform interpolation property. Ghilardi and Zawadowski (1995)

prove that the modal logic S4 does not have uniform interpolation. In contrast, Visser

(1996) shows that the modal logics K, IPC, GL and S4Grz have uniform interpola-

tion. In D’Agostino and Hollenberg (1996), it is proved that the modal µ-calculus has

uniform interpolation as well.

These results are obtained by model-theoretic observations, and leave open the

problem of how to construct uniform interpolants for these logics. This question was

targeted in B́ılková (2007) and Kracht (2007), who describe methods to effectively

compute uniform interpolants in the modal logics K and T, in the first case using

a sequent-calculus, and the second case using a tableau method. For the modal µ-

calculus, a method is presented in D’Agostino and Lenzi (2006) that uses a special

form of disjunctive normal form to construct uniform interpolants of formulae in the

modal µ-calculus.

All these methods are based on transformations of the input into disjunctive nor-

mal form. While this is explicit in the method by D’Agostino and Lenzi (2006), the

methods by B́ılková (2007) and Kracht (2007) involve an implicit transformation into



30 CHAPTER 2. Related Work

disjunctive normal form by using respectively sequent-based and tableau-based rea-

soning. Computing uniform interpolants using disjunctive normal form has also been

used in propositional logic (see Section 2.1). Herzig and Mengin (2008) point out that

in a lot of applications, disjunctive normal forms are not a natural way to represent

formulae. Instead of using disjunctions, it is often more natural to represent informa-

tion using conjunctions as the outermost connectives. While Herzig and Mengin are

mainly interested in uniform interpolation in the modal logic K, we note this is also,

and especially, the case for description logics, since ontologies are usually conjunctions

of axioms. Herzig and Mengin present a method that works on modal logic formu-

lae in a conjunctive normal form, using a resolution calculus presented in Enjalbert

and Fariñas del Cerro (1989), which we briefly describe in Section 2.7.1. Similar to

resolution-based methods for variable elimination in propositional logic, and the Scan

algorithm for second-order quantifier elimination, the method by Herzig and Mengin

computes uniform interpolants by resolving on the symbols to be eliminated, which

makes it possible to eliminate these symbols in a goal-oriented manner.

2.4 Uniform Interpolation in DL-Lite and EL

The first method for forgetting and uniform interpolation that was explicitly targeted

at ontologies is presented in Wang et al. (2008, 2010b). This method targets ontologies

and knowledge bases represented in the lightweight description logic DL-Lite. The

main restriction of the various dialects of DL-Lite in comparison to other description

logics is that it does not allow for concepts under quantifiers. For this reason, forgetting

concept and role symbols can effectively be handled in a similar way as for propositional

logic. The described method basically uses a resolution algorithm on the symbols to

be eliminated to compute the uniform interpolants. Whereas most later work focuses

on forgetting in TBoxes, Wang et al. (2008) already consider knowledge bases that

also have an ABox.

Konev et al. (2009b) present a uniform interpolation method for the light-weight

description logic EL extended with role hierarchies and domain and range restrictions.

In general, EL does not have uniform interpolation. For this reason, the authors

formulate acyclicity conditions on the input that ensure that the computed uniform
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interpolant is always finite. The output of this algorithm is in the worst case of

exponential size in the size of the input ontology. The authors evaluate their method

on two large prominent EL ontologies, and show that it is able to eliminate large

sets of symbols from these. However, the fact that EL is a Horn logic, and that the

method assumes the input to be acyclic, makes the problem much easier than for more

expressive description logics and general ontologies.

Lutz et al. (2010) analyse properties of EL enriched with greatest fixpoint opera-

tors, ELν, and show that it is as expressive as EL enriched with simulation quantifiers,

a language in which uniform interpolants of concepts can be expressed directly. They

further show that Craig interpolants always exist in ELν. In Nikitina (2011), an ap-

proach for uniform interpolation of general EL ontologies is presented that also uses

greatest fixpoint operators. The method is based on computing most specific super-

concepts and most general sub-concepts of the concepts in the signature, which is

performed by analysis of derivation graphs for these concepts.

A method for computing uniform interpolants of general EL TBoxes without using

fixpoints is presented in Nikitina and Rudolph (2012, 2014), using a method based

on proof-theory and regular tree grammars. The authors prove that these uniform

interpolants are in the worst case of triple exponential size in size of the input ontology.

Lutz et al. (2012) additionally target the question of when uniform interpolants

of EL TBoxes can be represented finitely and purely in EL. They develop an algorithm

based on tree automata representations of the TBox that can decide whether such a

uniform interpolant for a given TBox and signature exists. This way, they prove that

the complexity of this problem is ExpTime-complete. If a uniform interpolant exists,

it can be computed by giving the set entailed axioms in the selected signature up to a

certain depth.

2.5 Uniform Interpolation in ALC

For ALC, uniform interpolation was first described on the level of concepts, in so-called

concept interpolants.

Definition 2.5.1. Let C be an L concept and S a signature. The concept CS is

an L concept uniform interpolant of C for S if CS is an S concept, |= C v CS and
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|= CS v C ′ for every S concept C ′ with |= C v C ′.

While for ALC concepts, a finite uniform interpolant in ALC always exists, for

ALC TBoxes this is not the case, since ALC does not have uniform interpolation.

Concept uniform interpolation in ALC directly corresponds to uniform interpola-

tion in modal logic K. Therefore, concept uniform interpolants can be constructed by

transforming C into disjunctive normal form and replacing every literal that is not in

the signature with >, as it is implicitly done in modal logic K in B́ılková (2007) and

Kracht (2007). This technique is used in ten Cate et al. (2006) and Wang et al. (2009)

for computing concept uniform interpolants of ALC concepts.

Based on this idea, Wang et al. (2009) develop a method for uniform interpolation

of ALC knowledge bases, which under certain syntactical restrictions can also deal

with ABoxes. The method can be compared to the approach by D’Agostino and Lenzi

(2006) for computing uniform interpolants in the modal µ-calculus. However, whereas

D’Agostino and Lenzi (2006) assume the input to be in a specific disjunctive normal

form, Wang et al. (2009) do the transformation incrementally during the computation

of the uniform interpolant. The main idea is to represent the TBox as a single con-

cept in disjunctive normal form, so that concepts and roles can easily be eliminated.

Since such a representation is possibly infinite, they approximate it incrementally and

determine using equivalence tests between increments whether a uniform interpolant

has already been computed. The different approximation steps correspond to results

of bounded forgetting, as it is defined in Zhou and Zhang (2011) for first-order logic

(see Section 2.1).

In Wang et al. (2010a, 2014), this method is optimised using tableau-based reason-

ing. Classically, a tableau reasoner tries to disprove a formula by exploring different

interpretations in different branches until a model is found or every branch contains

a contradiction. Wang et al. (2010a) modify this approach for ALC in such a way

that the set of satisfiable branches in the tableau can be transformed back into an

approximation of the input TBox which is of a form similar to a disjunctive normal

form. By excluding elements from the branches that are not in the desired signa-

ture, one can obtain an approximation of the uniform interpolant. Similar to their

approach in Wang et al. (2009), the tableau is stepwise extended until two succeeding

approximations are equivalent or a maximum number of iterations is reached.
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As with the first methods for uniform interpolation in modal logics, a major dis-

advantage of these two approaches is that they explicitly or implicitly transform the

input into disjunctive normal form. This is an unusual representation for TBoxes,

which are usually represented as sets of relatively small axioms, rather than one large

axiom in the form of a disjunction. The original structure of the ontology is usually

not preserved by this approach. Motivated by this, Wang et al. (2010a, 2014) present

a second method based on tableaux, which aims at preserving the original structure of

the ontology. For this structure-preserving uniform interpolation method, the authors

do not provide a termination condition, whereas for the other method it is given in

form of an upper bound on the number of required approximation steps.

For the methods that are not structure-preserving, it is claimed in Wang et al.

(2009) and in Wang et al. (2010a, 2014) that after 2n iterations either a uniform

interpolant is computed or there is no finite uniform interpolant. From this follows

that the size of a uniform interpolant is at most double exponential in the size of the

input ontology. This claim is disproved in Lutz and Wolter (2011), where a family of

ontologies is identified for which the smallest uniform interpolant is of size in O(222p(n)
),

where p is a polynomial and n is the size of the input ontology. Lutz and Wolter (2011)

modify the approach in Wang et al. (2009) to compute uniform interpolants of triple

exponential size, this way providing a tight bound on the worst case complexity of the

size of uniform interpolants. Lutz and Wolter (2011) further prove the complexity of

deciding whether a finite uniform interpolant inALC exists to be 2ExpTime-complete.

The methods in Wang et al. (2009, 2010a, 2014); Lutz and Wolter (2011) have two

drawbacks. First, except for the structure-preserving approach in Wang et al. (2010a,

2014), which does not have a termination criterion, they compute uniform interpolants

in disjunctive normal form. As observed earlier, this is an unusual representation, since

usually ontologies correspond to large conjunctions of axioms rather than disjunctions.

Secondly, they do not follow a goal-oriented approach, which is why these methods

are not feasible for large ontologies.

The first approach to overcome these problems in order to obtain practicality is pre-

sented in Ludwig and Konev (2013, 2014), which uses resolution to eliminate concept

symbols from ALC ontologies. The method was developed independently around the

same time as our method, presented in Chapter 4, was developed, and published two
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months earlier than our results (Koopmann and Schmidt, 2013a). It is based on the

resolution-based technique by Herzig and Mengin (2008) for computing uniform inter-

polants of modal logic formulae (see Section 2.3). For this, they extend the resolution

calculus by Enjalbert and Fariñas del Cerro (1989), which is also used by Herzig and

Mengin, to incorporate TBox axioms. The resulting method works on a conjunctive

normal form of the TBox, with the effect that the computed uniform interpolants are

of a form that is more natural. This also reduces the normalisation cost compared to a

translation into disjunctive normal form. Moreover, using resolution makes it possible

to directly compute inferences on the symbols to be eliminated, as it is done for ex-

ample in the SCAN approach for second-order quantifier elimination (see Section 2.2).

The authors show that the method is practical enough to forget small sets of concept

symbols from various ontologies, and demonstrate its application for computing logical

differences of ontology versions on the NCI thesaurus (for logical difference, see Sec-

tion 1.1). For ontologies that follow certain acyclicity conditions, the method always

terminates. For general ontologies, the method cannot guarantee termination, even

if finite uniform interpolants exist. The authors show how the method can be used

for bounded forgetting in this case, such that approximated uniform interpolants are

computed which preserve all entailments of the uniform interpolant up to a specified

depth.

2.6 Related Problems in Description Logics

Besides uniform interpolation, there are various other research topics that are con-

cerned with entailments of ontologies in a specified signature, most notably module

extraction, inseparability and logical difference.

Module extraction deals with the problem of extracting subsets of an ontology, so-

called modules, usually with regard to some selected signature. Logic-based notions of

modules require the module to preserve certain entailments in the specified signature,

often under specific robustness conditions. Module extraction has applications in

ontology reuse, but has also been used to optimise reasoning, such as by the systems

Chainsaw (Tsarkov and Palmisano, 2012) and MORe (Romero et al., 2012). Module

extraction has received a lot of attention in the last years, as reflected in a volume
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on modular ontologies (Stuckenschmidt et al., 2009) and the series of Workshops on

Modular Ontologies (WoMO) (Haase et al., 2006; Baclawski et al., 2014).

Logical properties of module extraction have for example been studied in Konev

et al. (2008a); Grau et al. (2008). Grau et al. (2008) study a notion of module where

a module must be able to replace an ontology in a union of ontologies, such that all

entailments over a specified signature in the description logic under consideration are

preserved. Notably, deciding modularity according to this notion is undecidable for

the description logic ALCO. If modules are required to preserve entailments in second-

order logic, deciding modularity is already undecidable for the lightweight description

logic EL (Lutz and Wolter, 2010). Despite these negative results, it is often possible

to compute approximations of minimal modules. Methods for module extraction use

different methodologies, and for example use syntactical approaches (Grau et al., 2008;

Sattler et al., 2009), QBF-solvers (Kontchakov et al., 2010; Gatens et al., 2014) or

Datalog reasoning (Romero et al., 2015), and can also involve rewriting of the axioms

of the ontology to obtain a more succinct representation of the modules (Nikitina and

Glimm, 2012).

Strongly related to the logic-based notions of module extractions is the notion of

inseparability. Given two ontologies O1 and O2 and a signature S, O1 and O2 are S-

inseparable if they share all entailments over S in some query language, where different

notions of inseparability differ in the query language used. Inseparability can be used

to define notions of modules, and has furthermore applications in ontology reuse,

ontology refinement and comparison of ontology versions. If two ontologies are not

S-inseparable, one can compute finite representations of the logical difference, which

contains all entailments in S in which the two ontologies differ. The logical difference

can serve as an explanation on why two ontologies are not inseparable, which makes

it a powerful tool in analysing ontology changes.

The complexity of different notions of inseparability and the related problem of

deciding conservative extensions has been studied for various logics (Lutz and Wolter,

2007; Ghilardi et al., 2006; Lutz et al., 2007; Lutz and Wolter, 2010; Botoeva et al.,

2014; Kontchakov et al., 2010). In a lot of description logics, deciding inseparability

with respect to entailments in the language under consideration is one exponential

harder than deciding satisfiability (Lutz and Wolter, 2007; Ghilardi et al., 2006; Lutz
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et al., 2007). For the description logic ALCOIQ, it is undecidable (Lutz et al., 2007).

If semantic notions of inseparability based on models are used, inseparability is un-

decidable already for EL (Lutz and Wolter, 2010). Methods for computing logical

difference have been investigated in Konev et al. (2008b, 2012); Ludwig and Konev

(2013, 2014), where notably Ludwig and Konev (2013, 2014) use uniform interpolation

for ALC ontologies to compute logical differences.

2.7 Saturation-Based Reasoning

After practical methods for uniform interpolation, another major contribution of the

thesis is the development of new saturation procedures for description logics. Using

saturation-based reasoning for generating uniform interpolants has several advantages,

of which the following are the most important. (1) Direct methods for resolution work

by computing entailments that are represented in the logic under consideration. The

computed entailments can therefore be used as they are in the uniform interpolant,

which avoids expensive translation procedures. (2) The resolution rule, which usually

plays a central role in these approaches, provides a way of computing inferences on a

single symbol in a goal-oriented manner, which is advantageous if the aim is to forget

that symbol.

Saturation-based reasoning is used by some of the most successful theorem provers

for first-order logic, such as E (Schulz, 2002), Spass (Weidenbach et al., 2002) and

Vampire (Riazanov and Voronkov, 2002), and has recently received increased atten-

tion for reasoning in description logics.

Since modal logics and description logics are closely related, we briefly discuss the

current state of the art of saturation-based reasoning on both modal and description

logics.

2.7.1 Modal Logics

Since modal logic formulae can be represented in first-order logic, one obvious ap-

proach is to translate a modal logic formula into first-order logic and use an existing

saturation-based first-order prover. This approach has been extensively studied in

Schmidt (1996, 1999); Hustadt and Schmidt (2002); Schmidt and Hustadt (2003a,b);
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Hustadt et al. (2004b); Areces et al. (2001b), and even used as a framework for study-

ing new deduction methods (Schmidt, 2009).

Whereas these approaches translate modality operators using binary predicates, a

different representation is chosen in Ohlbach (1988), where a resolution-based method

for first-order modal formulae is presented. Ohlbach represents paths along the modal-

ities using additional attributes to the predicates, similar to Skolemisation approaches

used in first-order logic theorem proving (see Baaz et al., 2001; Nonnengart and Wei-

denbach, 2001).

In contrast to translation based approaches, direct resolution works directly on

the logic under consideration. Most research on direct resolution methods for modal

logics was undertaken throughout the eighties and the early nineties. The first direct

resolution method for modal logics is presented in Fariñas del Cerro (1982, 1985);

Enjalbert and Fariñas del Cerro (1989). Here, the input formula is expected to be

in a CNF-based clausal normal form that allows for nested formulae inside modality

operators. In order to be able to resolve on nested clauses, a system of meta-rules

is defined, that generates rules which can resolve on arbitrarily nested literals. For

this approach, refinements and strategies such as subsumption deletion have been

investigated in Auffray et al. (1990), even though completeness of resolution with

subsumption deletion was left open in this paper. This problem was solved in the

extension of this method used in Ludwig and Konev (2013, 2014) to compute uniform

interpolants of ALC ontologies.

Mints (1989, 1990) avoids the problem of nested formulae by using a flattened

normal form, which forbids arbitrary nestings of modal operators. This leads to a

simpler calculus without the need for meta-rules, and does not affect the applicability

of the calculus, since every set of modal formulae can be translated into an equi-

satisfiable set of flattened clauses via the introduction of new symbols. A similar idea

is followed by the more recent approach for direct resolution for modal logics presented

in Nalon and Dixon (2007); Nalon et al. (2014), which applies to a variety of different

modal logics.

Whereas all these methods require the input to be normalised in some way, there

are also methods that work directly on the input formulae. Melvin Fitting, mostly

known for his research on tableau reasoning, presents a direct resolution calculus for
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modal logics in Fitting (1990), where transformations on the input formulae are applied

during the inference process. This method uses a splitting rule to explore different

branches of the modal formulae, which makes it similar to tableau-based reasoning

approaches. Areces et al. (2001a) in contrast present a method for modal, description

and hybrid logics in negation normal form, which works without a splitting rule, and

instead uses labelled formulae to keep track of the different possible branches along the

modalities. The authors also generalise their method to the description logic ALCR,

which is ALC extended with conjunctions on roles. In Areces and Goŕın (2011), this

approach is further refined using ordered resolution with selection functions, closely

inspired by the work of Bachmair and Ganzinger (2001).

2.7.2 Description Logics

Even though tableau-based reasoning has long been a leading paradigm in reasoning

for description logics, with reasoners such as Racer (Haarslev and Möller, 2003),

Pellet (Sirin et al., 2007), and HermiT (Shearer et al., 2008) as prominent examples,

in the last years saturation-based reasoning methods received increased attention by

the description logic community. First methods using resolution for description logic

were based on translations of description logics into first-order logic (Hustadt and

Schmidt, 2000; Hustadt et al., 2004b; Schmidt, 2009; Kazakov and Motik, 2008) or

into disjunctive datalog (Hustadt et al., 2004a). In recent years, however, researchers

started investigating direct saturation methods for description logics, which are often

referred to as consequence based reasoning methods.

Saturation-based reasoning systems have proved particularly successful for clas-

sifying ontologies. Ontology classification is the task of inferring all atomic concept

inclusions of the form A v B that are entailed by an ontology, in order to create a sub-

sumption hierarchy of the concept names in the ontology. Testing these entailments

individually is not efficient, since there are quadratically many, and larger ontologies

can contain 10,000s of concept names and more. Using saturation-based approaches,

it is sufficient to saturate the set of axioms once, until all atomic concept inclusions

are derived.

The first consequence-based methods in description logics exploited the simple
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structure of the Horn description logic EL (Baader et al., 2005), most prominently im-

plemented by the ELK reasoner (Kazakov et al., 2012, 2014). The next consequence-

based methods extended this approach to the more expressive Horn logics Horn SHIQ

(Kazakov, 2009) and Horn SROIQ (Ortiz et al., 2010), the full Horn fragment of

the web ontology standard language OWL DL 2.0. By using ordered resolution tech-

niques, efficient classification algorithms based on saturation could be developed for the

non-Horn logics ALCH (Simanč́ık et al., 2011a) and ALCI (Simanč́ık et al., 2011b).

The most expressive description logic so far for which a purely consequence-based

method has been developed is SHIQ, for which a method is described in Bate et al.

(2015). Notably, this method works on first-order representations of the ontology,

whereas the other consequence-based approaches work directly on axioms in descrip-

tion logic syntax. By tightly integrating tableau reasoning into consequence-based

reasoning, Steigmiller et al. (2014a) develop a saturation-based method for SROIQ,

the description logic underlying OWL 2.0 DL, which is implemented by the reasoner

Konclude (Steigmiller et al., 2014b). Similar to the methods by Mints (1989, 1990);

Nalon and Dixon (2007); Nalon et al. (2014) for direct resolution in modal logics,

consequence-based reasoners for description logics usually use a flattened normal form

representation of the input, which limits required inferences on nested concepts.

The methods presented in this section often achieve worst-case optimal reasoning

time by focusing on the inferences required for the targeted reasoning tasks. They

therefore only ensure completeness for the reasoning task in question, and cannot be

used to compute all entailments required for uniform interpolation. Herzig and Mengin

(2008) as well as Ludwig and Konev (2013, 2014) solve this problem by extending the

resolution calculus by Enjalbert and Fariñas del Cerro (1989) with additional rules,

but for ALC, the resulting calculus does not terminate in case the uniform interpolant

cannot be finitely represented in ALC. For these reasons, we introduce a new family

of saturation procedures in this thesis that overcomes these problems.



Chapter 3

Basics of Description Logics and

Uniform Interpolation

We assume basic knowledge of first-order logic and set theory. Given a set or multi-

set N , we denote by #N the number of elements in N . An ordering is any binary

relation that is irreflexive and transitive. An ordering ≺ is total iff for any two distinct

elements a, b on which the ordering is defined, we either have a ≺ b or b ≺ a. If ≺ is an

ordering on elements in a set N , we denote by ≺mul the multiset extension of ≺, which

is defined as follows. For two multisets or sets N1, N2 ⊆ N , if there exists an element

x2 ∈ (N2\N1) such that x1 ≺ x2 for all x1 ∈ (N1\N2), then N1 ≺mul N2. Given a total

ordering ≺ on elements of a set N , we define the n-ary lexicographic extension ≺n on

the n-ary product N×. . .×N as the ordering that satisfies 〈xa1, . . . , xan〉 ≺n 〈xb1, . . . , xbn〉

iff there is an index m such that xai = xbi for all i < m and xam ≺ xbm.

For any expression E, E[F1/F2] is the result of replacing every subexpression F1

in E by F2. If E[F ] is an expression which contains a subexpression F , E[F1] denotes

the result of replacing F in E[F ] by F1.

3.1 Description Logics

We introduce the description logics discussed throughout the thesis. An overview of

basic and more expressive description logics can be found in Baader and Nutt (2007)

and Calvanese and Giacomo (2007). Description logics can be viewed as fragments

of first-order logic that are used to represent ontologies. Description logics represent
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information by means of concepts, roles and individuals. There are various description

logics that differ in expressivity as well as in reasoning complexity. We first give a

general overview of the syntax and semantics of all classical description logic operators

that play a role in the thesis. In Section 3.3 we introduce fixpoint operators, which

are less common, but play a central role in our representation of uniform interpolants.

We first define the description logic SHOIQ, which is the union of all classical

description logics considered. We start by introducing the operators that are used to

express concepts and roles. We define Nc, Nr and Ni to be three pair-wise disjoint sets

of concept symbols, role symbols and individual symbols. A role is either a role symbol

or is of the form r−, where r ∈ Nr. If R is a role, we define the inverse Inv(R) of R

by Inv(r) = r− and Inv(r−) = r, for all r ∈ Nr.

A concept is an expression of one of the following forms, where A ∈ Nc, C, C1

and C2 are any concepts, R is any role, n and m are natural numbers with n ≥ 1,

m ≥ 0, and a1, . . . , an ∈ Ni.

> | ⊥ | A | ¬C | C1 u C2 | C1 t C2

∃R.C | ∀R.C | ≥nR.C | ≤nR.C

{a1, . . . , an}

The concepts in the second row are called role restrictions and referred to from left

to right as existential restrictions, universal restrictions, ≥-number restrictions and

≤-number restrictions. We alternatively refer to number restrictions as cardinality

restrictions. A concept C occurs positively in C ′ iff C occurs in C ′ only under an even

number of negations. If C occurs in C ′ only under an odd number of negations, it

occurs negatively in C ′.

In the remainder of the thesis, we use the symbols A and B to denote concept

symbols, r and s to denote role symbols, a and b to denote individuals, C to denote

concepts and R and S to denote roles, in each case possibly using subscripts or prime

symbols.
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An RBox R defines relations between roles using role inclusion axioms, role equiv-

alence axioms and transitivity axioms, which respectively have the following forms.

R v S

R ≡ S

trans(R),

where R and S are any roles. R ≡ S is a short hand of the two role inclusion axioms

R v S and S v R. Given an RBox R, we denote by vR the smallest reflexive-

transitive relation such that R vR S and Inv(R) vR Inv(S) for all R v S ∈ R. In an

RBox R with R vR S, we call R a sub-role of S and S a super-role of R. A role R

is transitive in R if trans(R) ∈ R or trans(Inv(R)) ∈ R. A role is simple if it does not

have a transitive sub-role. Otherwise, it is complex.

A TBox T contains terminological knowledge in form of a set of concept inclusion

axioms and concept equivalence axioms of the following respective forms.

C1 v C2

C1 ≡ C2,

where C1 and C2 are any concepts. An ABox contains assertional knowledge about

individuals in form of a set of concept assertions and role assertions of the following

respective forms.

C(a)

R(a, b),

where C is a concept, R a role and a, b ∈ Ni. The elements of TBoxes, RBoxes and

ABoxes are collectively referred to as axioms.

An ontology O is a tuple 〈T ,R〉, where T is a TBox and R is an RBox. A

knowledge base K is a tuple 〈T ,R,A〉, where T is a TBox, R is an RBox and A is

an ABox. In order to ensure decidability of the logic, we further require that only

simple roles occur in number restrictions in the TBox of an ontology or knowledge

base (see Horrocks et al., 2000). In other words, if O = 〈T ,R〉 or K = 〈T ,R,A〉, for

any concept of the form ≥nR.C or ≥nR.C occurring in T , there is no role S with

S vR R and trans(S) ∈ R or trans(Inv(S)) ∈ R. If R is the RBox of an ontology O
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Basic Description Logics
Name Allowed Constructs
EL A, C uD, ∃R.C, >
ALC EL + ¬C
S ALC + trans(R)

Extensions
Name Allowed Constructs Description
H R v S, R ≡ S Role Hierarchies
O {a0, ..., an} Nominals
I r− Inverse Roles
F ≤1R.> Functional role restrictions
Q ≥nR.C, ≤nR.C Qualified Number Restrictions

Table 3.1: Description logic families and their extensions.

or a knowledge base K, we alternatively denote the reflexive-transitive closure vR of

the role inclusion axioms in R by vO and vK, respectively.

By restricting which operators can be used for constructing concepts and roles, we

obtain different description logics. Table 3.1 gives an overview of the operators allowed

in the description logics EL, ALC and S, as well as additional operators allowed in

the extensions of these. A description logic is usually denoted by adding postfixes that

describe the additional allowed operators to one of these description logics, such as in

ELI for EL with inverse roles, ALCF for ALC with functional role restrictions, and

SHQ for S with role hierarchies and number restrictions. Note that role inclusion

axioms are only allowed in description logics with role hierarchies (denoted by the

postfix H), and transitivity axioms are only allowed in S and its extensions. Let L

be any description logic. We speak of an L ontology, an L axiom and a L concept to

denote that the ontology, axiom or concept only uses operators that are allowed in L.

The semantics of description logics is defined using Tarski-style interpretations.

An interpretation is a tuple I = 〈∆I , ·I〉, where the domain ∆I is a non-empty set of

domain elements, and the interpretation function ·I is a function that maps concept

symbols A ∈ Nc to subsets AI ⊆ ∆I of the domain, role symbols r ∈ Nr to binary

relations rI ⊆ ∆I ×∆I over the domain, and individuals a ∈ Ni to elements aI ∈ ∆I

of the domain. ·I is extended to concepts and roles according to Table 3.2.

An axiom α is true in an interpretation I, in symbols I |= α, iff one of the following

conditions hold:
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Description Logic Expression E Interpretation EI

⊥ ∅
> ∆I

¬C ∆I \ CI
C1 u C2 CI1 ∩ CI2
C1 t C2 CI1 ∪ CI2
∃R.C {x | ∃y : (x, y) ∈ RI ∧ y ∈ CI}
∀R.C {x | ∀y : (x, y) ∈ RI → y ∈ CI}
≥nR.C {x | #{(x, y) ∈ RI | y ∈ CI} ≥ n}
≤nR.C {x | #{(x, y) ∈ RI | y ∈ CI} ≤ n}
{a1, . . . , an} {aI1 , . . . , aIn}
r− {(x, y) | (y, x) ∈ rI}

Table 3.2: Interpretation of roles and concepts.

1. α is of the form C1 v C2 and CI1 ⊆ CI2 .

2. α is of the form C1 ≡ C2 and CI1 = CI2 .

3. α is of the form R1 v R2 and RI1 ⊆ RI2 .

4. α is of the form R1 ≡ R2 and RI1 = RI2 .

5. α is of the form trans(R) and RI is transitive.

6. α is of the form C(a) and aI ∈ CI .

7. α is of the form R(a, b) and (aI , bI) ∈ RI .

An interpretation I is a model of an ontology O iff every axiom α ∈ O is true in I.

If an ontology has a model, it is satisfiable, otherwise it is unsatisfiable. If an axiom α

is true in every model of an ontology O, we say α is entailed by O, in symbols O |= α.

If an axiom is entailed by every ontology O, we say α is valid, in symbols |= α. If

every axiom of an ontology O1 is entailed by an ontology O2, we say O1 is entailed

by O2, in symbols O2 |= O1. Note that we have O |= R v S iff R vO S.

Another way of defining the semantics of description logics is by giving a translation

function ·f from ontology axioms to first-order logic formulae, where concept and role

symbols are interpreted as predicates and individuals as constants. This function is

shown in Table 3.3. Concepts and roles are mapped respectively to formulae with one

or two free variables. For an expression E and its translation Ef , Ef (~t) denotes the
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Description Logic Expression FOL translation Cf

> true
⊥ false
A A(x)
¬C ¬Cf (x)
∃R.C ∃y :

(
Rf (x, y) ∧ Cf (y)

)
∀R.C ∀y :

(
Rf (x, y)→ Cf (y)

)
C1 u C2 Cf

1 (x) ∧ Cf
2 (x)

C1 t C2 Cf
1 (x) ∨ Cf

2 (x)
≥nR.C ∃x1, . . . , xn :

(∧
1≤i≤n

(
Rf (x, xi) ∧ Cf (xi) ∧∧

1≤j<i xj 6= xi
))

≤nR.C ∀x1, . . . , xn :
((∧

1≤i≤n+1R
f (x, xi) ∧ Cf (xi)

)
→∨

1≤i<j≤n+1 xi = xj
)

{a1, . . . , an} x = a1 ∨ . . . ∨ x = an
r r(x, y)
r− r(y, x)

C1 v C2 ∀x(Cf
1 (x)→ Cf

2 (x))

C1 ≡ C2 ∀x(Cf
1 (x)↔ Cf

2 (x))

R1 v R2 ∀x, y(Rf
1(x, y)→ Rf

2(x, y))

R1 ≡ R2 ∀x, y(Rf
1(x, y)↔ Rf

2(x, y))
trans(R) ∀x, y, z((Rf (x, y) ∧Rf (y, z))→ Rf (x, z))
C(a) Cf (a)
R(a, b) Rf (a, b)

Table 3.3: Translation from description logic expressions to first-order logic.
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result of mapping the free variables in E to ~t, where the first term in ~t is mapped

to x and the second to y. Given an ontology O, Of refers to the theory obtained

by replacing every axiom α by αf . O is satisfiable iff Of is satisfiable, and O |= α,

where α is any axiom, iff Of |= αf .

3.2 Uniform Interpolation

A signature S ⊆ Nc ∪Nr is any set of concept and role symbols. The signature sig(E)

denotes the set of concept and role symbols occurring in E, where E ranges over

concepts, axioms, TBoxes, RBoxes, ABoxes, ontologies and knowledge bases. If for a

concept C and a signature S we have sig(C) ⊆ S, we call C an S concept. In the same

way we define the notions S axiom, S TBox, S ontology and S knowledge base.

We now reformulate the definition of uniform interpolation given in Definition 2.3.1:

Definition 3.2.1. Let L be a description logic, K be a knowledge base and S be a

signature. KS is an L uniform interpolant of K for S iff the following conditions hold:

1. sig(KS) ⊆ S.

2. For every L axiom α with sig(α) ⊆ S, we have KS |= α iff K |= α.

Uniform interpolants of TBoxes and knowledge bases are defined accordingly.

It is worth noting that this notion of uniform interpolation differs from other defini-

tions found in the literature that usually only require TBox L axioms in the signature

to be preserved by the uniform interpolant (compare Lutz and Wolter, 2011; Ludwig

and Konev, 2013; Nikitina and Rudolph, 2014), whereas we require any L axiom in

the signature to be preserved by the uniform interpolant. This does not make a differ-

ence in practice, since the mentioned publications only consider uniform interpolants

of TBoxes, but not of knowledge bases with RBoxes or ABoxes. A TBox T on its

own only entails RBox axioms of the forms R v R, R ≡ R, and ABox axioms C(a)

for which T |= > v C. These entailments are either tautological or fully determined

by the TBox axioms entailed by T . Therefore, while more general, our notion of

uniform interpolants is compatible to the notions used in the literature on uniform

interpolation of TBoxes.
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3.3 Fixpoints

Let Nv be a set of concept variables that is disjoint with Nc, Nr and Ni. In description

logics with fixpoints, we additionally have concepts of the form X, X ∈ Nv (concept

variable), νX.C[X] (least fixpoint) and µX.C[X] (greatest fixpoint), where C[X] is a

concept in which X occurs only positively, that is, under an even number of negations.

In concepts of the forms νX.C[X] and µX.C[X], we say that the variable X is bound.

If every variable in a concept is bound, the concept is closed, otherwise it is open. For

all axioms of the form C1 v C2, C1 ≡ C2 and C(a) that occur in a TBox or an ABox,

we require the concepts C1, C2 and C to be closed.

A fixpoint of a function f is a value x for which f(x) = x. Intuitively, in the context

of concepts, we understand open concepts of the form C[X] as functions that take as

argument a concept C2 and return a concept C[C2] that is the result of replacing

every occurrence of X in C[X] by C2. If C[X] contains X only positively, C[X]

behaves like a monotone function with respect to the concept inclusion relation, that

is, O |= C1 v C2 implies O |= C[C1] v C[C2] for all concepts C1 and C2 and all

ontologies O. Furthermore, the relation v has both a minimal and maximal element,

which are the concepts ⊥ and >, respectively. These two properties, monotonicity

of C[X] and the existence of both a minimal and a maximal element, ensure, due to

the Knaster & Tarski fixpoint theorem, that C[X] always has a least and a greatest

fixpoint, even though it might not always be finitely representable without fixpoint

operators. µX.C[X] denotes the smallest concept Cµ with respect to v for which

C[Cµ] ≡ Cµ, and νX.C[X] denotes the largest concept Cν with respect to v for which

C[Cν ] ≡ Cν . For example, µX.∃r.X is equivalent to ⊥, and νX.∀r.X is equivalent

to >. νX.∃r.X, cannot be equivalently expressed by a finite concept, since we have

∃r.> v >, ∃r.∃r.> v ∃r.>, ∃r.∃r.∃r.> v ∃r.∃r.> and so on, which means νX.∃r.X is

only equivalent to an infinite concept of the form ∃r.∃r.∃r.∃r.∃r.∃r.∃r. . . .

We define the semantics of fixpoint expressions formally, following Calvanese et al.

(1999), and using the Knaster & Tarksi fixpoint theorem. Open concepts are inter-

preted using a valuation function ρ : Nv 7→ 2∆I from concept variables to subsets of

the domain. Given a valuation function ρ and a set E ⊆ ∆I , ρ[X/E ] is a valuation

function identical to ρ except that ρ[X/E ](X) = E . Based on an interpretation I
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and a valuation function ρ, we define the extension function ·Iρ , which maps open

concepts to subsets of ∆I in the same way as ·I , only that concept variables are inter-

preted according to the valuation function ρ. Furthermore, ·Iρ is defined for fixpoints

as follows:

(µX.C)Iρ =
⋂
{E ⊆ ∆I | CIρ[X/E] ⊆ E}

(νX.C)Iρ =
⋃
{E ⊆ ∆I | ρ ⊆ CIρ[X/E]}

Note that if C is a closed concept, the valuation function ρ has no influence on CIρ .

We can therefore extend the interpretation function defined in the last section to

incorporate fixpoints by setting CI = CIρ for closed concepts C.

For any description logic L defined in the last section, we denote by Lµ its extension

with least and greatest fixpoint expressions, and by Lν its extension with greatest

fixpoint expressions, which are only allowed to occur positively in the ontology.



Chapter 4

Practical Uniform Interpolation

for ALC

In this chapter, we introduce a new method for uniform interpolation of ALC ontolo-

gies, which overcomes the main problems of the existing methods for ALC presented

in Chapter 2. This method incorporates the central ideas for computing finite repre-

sentations of uniform interpolants in a goal-oriented manner, and forms the basis of all

uniform interpolation methods presented in later chapters. In this chapter, we intro-

duce central notions and definitions that are used to characterise calculi and methods

we present in later chapters, most notably the notions of “interpolation complete-

ness” and “uniform interpolation modulo direct cycles”. Furthermore, the proofs for

soundness, refutational completeness and interpolation completeness of the developed

calculi form the basis for corresponding proofs for other calculi introduced throughout

the thesis.

In order to infer the axioms that have to be included in the uniform interpolant,

we develop a new reasoning calculus. Based on observations in Section 2.5, we find

that the following features are desirable for a reasoning method, if we want to use it

to compute uniform interpolants in a practical manner.

1. It should be able to infer all axioms that have to be included in the uniform

interpolant.

2. It should not infer too many axioms that do not have to be included in the

uniform interpolant.

49
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3. It should represent axioms in a representation that can easily be translated into

a typical representation in the language under consideration.

4. It should be able to capture infinite entailments, which might have to be pre-

served in a uniform interpolant, in a finite way.

Feature 1 is a necessary condition for any method that is used to compute uniform

interpolants, and is captured in the notion of interpolation completeness. This notion is

defined formally in Section 4.4. Most reasoning methods are tailored towards specific

reasoning problems, such as deciding consistency or computing classification trees,

and do not satisfy this property. Moreover, methods for forgetting in first-order logic

may omit inferences that are necessary to represent the uniform interpolant in the

description logic under consideration.

From a theoretical perspective, Feature 2 is not required for the computation of

uniform interpolants. Due to the high worst-case complexity of uniform interpolation,

it has however to be fulfilled by any method that is supposed to compute uniform inter-

polants practically. We are interested in developing practical methods, and therefore it

is necessary that the calculus allows us to derive inferences in a goal-oriented manner.

A minimal subset of inferences that have to be included in a uniform interpolant is

defined formally in Section 4.4. A more implementation-oriented strategy for comput-

ing uniform interpolants is given in Chapter 8, where we discuss our implementations

of the methods presented in the thesis.

Features 3 and 4 are concerned with representation of the inferred axioms. We want

to avoid overhead caused by translations of the input and the output of the method

into suitable representations. Moreover, we have to represent any current results

in a finite way throughout the computation, even if the uniform interpolant is not

finitely representable in the input language. Since a finite representation of the uniform

interpolant is not always possible in ALC, we need to represent uniform interpolants

differently if we want to obtain finite results on all inputs. Note that in Feature 3, we

are not only interested in an easy translation into the language under consideration, but

we also want to represent the result in a form that is typical for ontologies. Ontologies

are usually represented as conjunctions of relatively small axioms, and optimally, our

uniform interpolants should have a similar form. Methods like the ones by Wang et al.
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(2014), which compute uniform interpolants in a disjunctive normal form, do not fulfil

this criterion. In Section 4.1, we introduce a normal form representation that allows

for both, easy translatability and finite representations.

The calculus and interpolation procedure presented in this chapter apply not only

to ALC ontologies, but to ALCν ontologies as well. ALCν has the uniform interpo-

lation property, that is, for every ALCν ontology O and every signature S, there is

a finite ALCν ontology that is the uniform interpolant of O for S. Since ALCν is a

strict super-language of ALC, this also implies that for every ALC ontology, we can

always compute a finite uniform interpolant in ALCν.

ALCν ontologies can be translated into normal form and back using simple rewrit-

ing rules. Furthermore, for a fixed input ontology, the representation gives us a finite

upper bound on the axioms that can be derived using our method, without leaving

out required inferences. This ensures termination of the method, as well as a finite

representation of the current result at any stage of the computation. The upper bound

on axioms that can be inferred is achieved using a bounded dynamic introduction of

new symbols during the computation of the uniform interpolant.

For applications that require the uniform interpolant to be represented in a lan-

guage without fixpoints, we describe two techniques for how uniform interpolants with

fixpoints can be represented in pure ALC. The first representation makes use of aux-

iliary concepts that represent direct cyclical patterns, and is formally captured in the

notion of “uniform interpolant modulo direct cycles”. The second representation is

based on depth-restricted approximation, as it is captured by the definition of bounded

forgetting by Zhou and Zhang (2011) (see Section 2.1).

4.1 The Normal Form

4.1.1 Normal Form Transformation

We present the normal form used by our method. The normal form is based on struc-

tural transformation and flattening techniques. For this, we define a set Nd ⊂ Nc of

definer symbols, definers for short, which play a special role in the method. Through-

out the paper, we denote definers by the letter D with possible subscripts or prime

symbols. Formally, we define ontologies in ALC normal form as follows.
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C1 v C2 =⇒ > v ¬C1 t C2 (4.1)

C1 ≡ C2 =⇒ > v ¬C1 t C2, > v ¬C2 t C1 (4.2)

> v C1 t ¬¬C2 =⇒ > v C1 t C2 (4.3)

> v C1 t ¬(C2 u C3) =⇒ > v C1 t ¬C2 t ¬C3 (4.4)

> v C1 t ¬(C2 t C3) =⇒ > v C1 t (¬C2 u ¬C3) (4.5)

> v C1 t (C2 u C3) =⇒ > v C1 t C2, > v C1 t C3 (4.6)

> v C1 t ¬(∃r.C2) =⇒ > v C1 t ∀r.¬C2 (4.7)

> v C1 t ¬(∀r.C2) =⇒ > v C1 t ∃r.¬C2 (4.8)

> v C1 t ∃r.C2 =⇒ > v C1 t ∃r.D, D v C2 (4.9)

> v C1 t ∀r.C2 =⇒ > v C1 t ∀r.D, D v C2 (4.10)

> v C1 t νX.C2 =⇒ > v C1 t A, A v C2[X/A] (4.11)

Figure 4.1: Transformation rules transforming any ALCν ontology into ALC normal
form.

Definition 4.1.1. An ALC literal is a concept of one of the following forms:

A | ¬A | ∃r.D | ∀r.D,

where A ∈ Nc, r ∈ Nr and D ∈ Nd. A literal of the form D, D ∈ Nd, is called positive

definer literal. A literal of the form ¬D, D ∈ Nd, is called negative definer literal.

An ALC clause is a concept inclusion of the following form:

> v L1 t . . . t Ln,

where every Li, 1 ≤ i ≤ n, is a literal. We usually omit the leading ‘> v’ and

assume that ALC clauses are represented as sets, that is, they do not contain duplicate

elements and the order of the literals is not important. The empty clause is denoted

by ⊥ and represents a direct contradiction. An ontology is in ALC normal form if

every axiom is an ALC clause.

We denote clauses using the letter C and clause sets using the letters N and M,

possibly using subscripts and prime symbols.

Any ALCν ontology can be transformed into ALC normal form using the trans-

formations in Figure 4.1, where C1, C2 and C3 are arbitrary, possibly empty, ALCν
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concepts, and D ∈ Nd is a fresh definer symbol. The rules are applied modulo com-

mutativity and associativity of t and u.

The transformations (4.1)–(4.8) are standard CNF transformations. The next two

transformations are structural transformations, which introduce one fresh definer sym-

bol D for every concept that is nested under a role restriction. The last transformation

is inspired by generalised Ackermann’s Lemma (see Section 2.2), but applied in the

other direction, that is, introducing a symbol instead of eliminating it. Given an ALCν

ontology O, we denote the result of these transformations by Cl(O). The following

theorem follows from known results in normal form transformations, as well as from

generalised Ackermann’s Lemma.

Theorem 4.1.2. Given any ALCν ontology O, any sequence of applications of the

rules in Figure 4.1 terminates and computes an ontology N = Cl(O). N is in ALC

normal form, and for every axiom α with sig(α) ⊆ sig(O), N |= α iff O |= α.

Proof. Transformation rules (4.1)–(4.10) are standard structural transformation rules.

The last rule, which eliminates greatest fixpoint expressions, is less common. We note

that the transformation looks as follows when represented in first order logic:

∀x
(
C1(x) ∨ νX(x′).C2(x)

)
⇒ ∀x

(
C1(x) ∨ A(x)

)
∧ ∀x

(
¬A(x) ∨ C2(x)[X/A]

)
We observe the similarity to the first equivalence stated in generalised Ackermann’s

Lemma, where corresponding subformulae occur in the opposite order (see Section 2.2):

∃X.∀~x
(
¬X(~x) ∨ Fp[X]

)
∧Gp[X] ≡ Gp[X/νX(~x).Fp[X])]

The fixpoint expression on the right in generalised Ackermann’s Lemma corresponds

to the fixpoint expression on the left in our transformation. It is now easy to see that

the transformation preserves all entailments of the original ontology that are not using

the concept symbol A.

Example 4.1.3. Consider the following ontology O1:

A v B t C

B v ∃r.B

C v ∀r.¬B.
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The obtained clause set Cl(O1) is the following:

1. ¬A tB t C

2. ¬B t ∃r.D1

3. ¬D1 tB

4. ¬C t ∀r.D2

5. ¬D2 t ¬B,

where D1 and D2 are definers introduced during the structural transformation.

4.1.2 Eliminating Introduced Definer Symbols

Our uniform interpolation method computes entailments in form ofALC clauses. How-

ever, the uniform interpolant itself should not contain definer symbols, since these are

not part of the desired signature. For this reason, we introduce a method for eliminat-

ing definer symbols that transforms clause sets back into ontologies without definer

symbols. First, we define a sufficient condition on clause sets that makes this trans-

formation possible.

Definition 4.1.4. A clause is normal if it contains at most one negative definer literal.

A set of clauses is normal if every clause in it is normal. Given a set of clauses N , we

use the notation Nn for the set of normal clauses in N .

The clauses generated by the transformation in Section 4.1.1 are all normal, given

that the input ontology does not contain definer symbols.

For any set of normal clauses Nn, we can eliminate the definers in it using the

rewrite rules shown in Figure 4.2. Observe that the cyclic definer elimination rule

introduces greatest fixpoint expressions to the ontology.

Given any set Nn of normal clauses, we denote the result of these transformations

by Ont(Nn).

Theorem 4.1.5. Given any set Nn of normal ALC clauses, O = Ont(Nn) is an ALCν

ontology without definer symbols. Moreover, for every axiom α with sig(α) ∩Nd = ∅,

O |= α iff Nn |= α.
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Declausification:

O ∪ {¬D t C1, . . . ,¬D t Cn}
O ∪ {D v C1 u . . . u Cn}

provided D occurs only positively in O

Non-cyclic definer elimination:

O ∪ {D v C}
O[D/C]

provided D 6∈ sig(C)

Definer purification:

O
O[D/>]

provided D occurs only positively in O

Cyclic definer elimination:

O ∪ {D v C[D]}
O[D/νX.C[X]]

provided D ∈ sig(C[D])

Figure 4.2: Rewrite rules to eliminate definers from normal clause sets.

Proof. It is easy to see that the declausification rule is equivalence preserving. Note

that for normal ALC clauses, the declausification rule only produces concept inclusions

in which no definer occurs negatively on the right-hand side.

For the remaining rules, we have to show that entailments that are not using definer

symbols are preserved. In second-order logic, we can eliminate any predicate D from

a formula F by replacing it with a quantified variable: F ′ = ∃X.F [D/X]. F ′ |= G iff

F |= G and D does not occur in G (see also Section 2.1). If a second-order formula is of

a particular form, existentially quantified predicate variables can be eliminated using

Ackermann’s Lemma or generalised Ackermann’s Lemma (see Section 2.2). The last

three rules in Figure 4.2 treat definers as existentially quantified predicate variables,

and make use of these lemmata to eliminate them.

For the non-cyclic definer elimination rule and the purification rule, we recall the

relevant equivalence of Ackermann’s Lemma.

∃X.∀~x
(
¬X(~x) ∨ F (~x, ~y)

)
∧Gp[X] ≡ Gp[X/F (~x, ~y)],

where X only occurs positively in Gp. If we consider first-order representations of the

non-cyclic definer elimination rule, we observe that D only occurs positively in O, and
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that D v C can be expressed in a form similar to the disjunction on the left in the

equation. It is then easy to see that the non-cyclic definer elimination rule corresponds

to an instance of the equivalence expressed by Ackermann’s Lemma.

For the definer purification rule, we adapt the above equivalence by replacing

F (~x, ~y) with true.

∃X.∀~x
(
¬X(~x) ∨ true

)
∧Gp[X] ≡ Gp[X/true],

The disjunction on the left is tautological. Therefore, Ackermann’s Lemma justifies

replacing existentially quantified predicate variables by true, if they occur only posi-

tively. This is what the definer purification rule does.

For the cyclic definer elimination rule, we recall the relevant equivalence of gener-

alised Ackermann’s Lemma:

∃X.∀~x
(
¬X(~x) ∨ Fp[X]

)
∧Gp[X] ≡ Gp[X/νX(~x).Fp[X])],

where X only occurs positively in Fp and Gp. We have the same correspondence

between the cyclic definer elimination rule and generalised Ackermann’s Lemma as

we had between the non-cyclic definer elimination rule and Ackermann’s Lemma, and

therefore the rule preserves all entailments that do not use the concept symbol D.

We obtain that the result of applying the rules from Figure 4.2 on a set Nn of

normal clauses is equivalent to the second-order formula ∃ ~D.Nn, where D ranges over

all definers occurring in Nn. Therefore, for every axiom α with sig(α)∩Nd = ∅, O |= α

iff Nn |= α.

4.1.3 Approximating Clause Sets into ALC

Depending on the application, ALCν is not always a suitable representation. State-of-

the-art reasoners, as well as the OWL standard, do not support description logics with

fixpoint expressions. Moreover, the semantics of fixpoint expressions is not intuitive

for all types of end-users of ontologies.

We can obtain a representation without fixpoints by omitting the cyclic definer

elimination rule in Figure 4.2 when eliminating definers. The remaining definer sym-

bols then serve as auxiliary concepts, which help preserving entailments of cyclic rela-

tions that could otherwise not be directly represented in ALC.
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The original definition of uniform interpolants requires them to be completely in

the desired signature, but ALC is not expressive enough to represent every uniform

interpolant finitely. For this reason, we introduce a generalised definition that allows

for finite representations of uniform interpolants in ALC using auxiliary concepts.

Definition 4.1.6. Let O be an ontology and S any signature. O is an S ontology

modulo direct cycles if for every concept symbol A 6∈ S there is exactly one axiom of

the form A v C[A], where C[A] contains A, but only positively and nested under role

restrictions, and A occurs only positively in the rest of the ontology.

O′ is an L uniform interpolant modulo direct cycles of O for S if it is an S ontology

modulo direct cycles and if for any L axiom α with sig(α) ⊆ S, O′ |= α iff O |= α.

If uniform interpolation is used for computing the logical difference between two

ontologies (see Section 1.1), the uniform interpolant has to be both completely in the

desired signature and processable by a reasoner. For applications like this, the only

option may be to approximate the uniform interpolant. A definer based representation

of the uniform interpolant facilitates the computation of these approximations.

Given an L uniform interpolant modulo direct cycles O for a signature S, where N ′d

is the set of cyclic concept symbols in S \ sig(O), and some positive integer value n

representing the approximation depth, we can compute an approximation of the ALC

uniform interpolant using the following algorithm:

1. Set O0 = O \ {D v C | D ∈ N ′d}.

2. For each i in 1, . . . , n:

(a) Set Oi := Oi−1.

(b) For each D v C ∈ O with D ∈ N ′d:

– Set Oi := Oi[D/C].

3. For each D v C ∈ O with D 6∈ S:

– Set OSn := On[D/>].

Observe that by definition of L ontologies modulo direct cycles, every concept D

with D 6∈ S has exactly one axiom of the form D v C. In Step 1 of the algorithm, we
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remove all axioms of this form from the ontology. We then stepwise approximate the

uniform interpolant by doing n replacements for each concept D with D 6∈ S. These

replacements are done by expanding the definitions of D, that is, the unique concept

inclusion axiomD v C we removed in the first step. This step is similar to what is done

by the non-cyclic definer elimination rule in Figure 4.2, only that D occurs positively

in C. Therefore, the result of this transformation still contains the definer D. Observe

that D is only allowed to occur positively in the remaining ontology. Therefore, this

replacement always ensures Oi |= α if Oi−1 |= α for all i > 0 and α with sig(α) ∈ S.

In other words, each incrementation step preserves more entailments of the uniform

interpolant. In the last step, we eliminate all symbols D 6∈ S by replacing them by >.

Since D occurs only positively in the ontology, this result is a lower approximation of

the uniform interpolant, and OS |= On, where OS is the uniform interpolant and On
the approximation.

4.2 The Refutation Calculus

Our method for computing uniform interpolants is based on a new sound and refuta-

tionally complete reasoning method for ALC ontologies. This method is based on a

calculus that infers entailments using a set of rules. In this section, we present this

calculus and prove that it is terminating, sound and refutationally complete. These

properties come in handy in the next section, where the calculus is extended to a

method for computing uniform interpolants of ALCν ontologies. Soundness and refu-

tational completeness of the reasoning method are used later to prove that the uniform

interpolation method works correctly.

The calculus introduces new symbols dynamically, which is why we have to adapt

the classical notion of soundness. Given a calculus Calc and a set of clauses N , we

refer to the saturation of N using Calc as Calc(N ). According to the traditional notion

of soundness, a calculus working on sets of clauses is sound if it only infers clauses

that are entailed by the initial clause set. In our context, it is sufficient to require that

inferences do not lead to new entailments modulo definer symbols.

Definition 4.2.1. Let Calc be a calculus. Calc is sound if for any set of clauses N and

any axiom α with sig(α) ∩Nd = ∅, Calc(N ) |= α only if N |= α. Calc is refutationally
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Resolution
C1 t A C2 t ¬A

C1 t C2

∀∃-Role Propagation

C1 t ∀r.D1 C2 t ∃r.D2

C1 t C2 t ∃r.D12

where D12 is a possibly new definer representing D1 uD2.

∃-Elimination
C1 t ∃r.D ¬D

C1

Figure 4.3: Rules of calculus ResALC.

complete if whenever ⊥ 6∈ Calc(N ), N is satisfiable. Calc is terminating if Calc(N ) is

a finite set for any finite set of clauses N .

4.2.1 The Rules of the Calculus

ResALC is the refutation calculus that underlies the uniform interpolation method

presented in this chapter. It is applied to ALCν ontologies in normal form, and uses

the rules that are shown in Figure 4.3.

All three rules, and most of the rules presented in the following chapters, are based

on the valid concept inclusion (C1tC2)u(C3tC4) v C1tC3t(C2uC4) (see Figure 4.4

for a visual illustration of this). Due to this inclusion, any rule is sound if its premises

are of the form C1tL1 and C2tL2, and its conclusion is entailed by C1tC2t(L1uL2).

For example, the resolution rule is sound because (A u ¬A) v ⊥ is a valid concept

inclusion, and so is C1 t C2 t (A u ¬A) v C1 t C2.

The same idea is followed by the ∀∃-role propagation rule. For role restrictions, we

have the valid concept inclusion (∀r.D1 u ∃r.D2) v ∃r.(D1 uD2). ∃r.(D1 uD2) is not

an ALC literal, since it contains a conjunction nested under a role restriction. For this

reason, the calculus introduces definer symbols dynamically.

A definer symbol D12 representing D1 u D2 is introduced by adding the two

clauses ¬D12 t D1 and ¬D12 t D2 to the current clause set. These two clauses are
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C1

C2

C3

C4

(C1 t C2) u (C3 t C4)

C1

C2

C3

C4

C1 t C3 t (C2 u C4)

Figure 4.4: Venn diagram illustrating |= (C1 tC2)u (C3 tC4) v C1 tC3 t (C2 uC4).

equivalent to the TBox axiom D12 v D1 uD2. In order to obtain a terminating pro-

cedure, we keep track of introduced definers, and reuse previously introduced definers

whenever possible. This is described in more detail in Section 4.2.2. In the remainder

of the thesis we keep the convention that for two definers Da and Db, we denote the

definer representing Da uDb by Dab, using the index to indicate which conjunction it

represents.

The unary clause ¬D expresses that the definer D is unsatisfiable. If D is unsat-

isfiable, concepts of the form ∃r.D are unsatisfiable as well. No domain element can

have an r-successor satisfying D, if D itself is unsatisfiable. Therefore, whenever we

have a unary clause of the form ¬D, we can use the ∃-elimination rule to eliminate

literals of the form ∃r.D from a clause.

4.2.2 Introducing Definers

In order to obtain a terminating calculus, that is, in order to ensure that only a finite

number of clauses can be derived from any finite set of clauses, we introduce definer

symbols only if necessary. This is done using an updated mapping conj : Nd 7→ 2N
∗
d

that maps definers to sets of base definers. The set N∗d of base definers denotes the

definer symbols that are present in the input clause set. These are the definer symbols

that have been introduced by the normal form transformation. Intuitively, conj maps
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each definer to the set of base definers it represents. In other words, if conj(D) =

{D1, . . . , Dn}, then ResALC(N ) |= D v D1 u . . . uDn.

Initially, conj maps every base definer Db ∈ N∗d to the singleton set {Db} consisting

just of the base definer itself. If a definer D12 representing the conjunction D1 uD2 is

part of the conclusion of a rule application, we check whether there is a definer D′12

in our clause set such that conj(D′12) = conj(D1) ∪ conj(D2). If yes, we reuse D′12 to

represent D1 uD2. Additionally, we add the two clauses ¬D′12 tD1 and ¬D′12 tD2 to

the current clause set, if they are not already present.

If there is no definerD′12 with conj(D′12) = conj(D1) ∪ conj(D2) in the current clause

set, we introduce D12 as new definer and add the two clauses ¬D12tD1 and ¬D12tD2

to the current clause set. Observe that this way, conj is always ensured to be an

injective function over the introduced definers.

Lemma 4.2.2. The ∀∃-role propagation rule using the described technique for reusing

definer symbols is sound.

Proof. The ∀∃-role propagation rule inferes from two clauses C1 = C ′1 t ∀r.D1 and

C2 = C ′2 t ∃r.D2 ∈ N ∗ the conclusion C = C ′1 t C ′2 t ∃r.D12. Suppose conj(D1) =

{D11, . . . , D1n} and conj(D2) = {D21, . . . , D2m}. Regardless of whether D12 has been

reused or is freshly introduced, conj(D12) = conj(D1) ∪ conj(D2). By Theorem 4.1.5,

eliminating definers as discussed in Section 4.1.2 preserves all entailments α with

sig(α) ∩ Nd = ∅. Eliminating all introduced definers in the two premises results in

C ′1t∀r.(D11u . . .uD1n) and C ′2t∃r.(D21u . . .uD2m), and eliminating all introduced

definers in the conclusion C results in C ′ = C ′1tC ′2t∃r.(D11u. . .uD1nuD21u. . .uD2m).

This conclusion is a logical consequence of the transformed premises.

Lemma 4.2.3. The calculus ResALC is sound.

Proof. We established soundness of the role propagation rule using our technique for

reusing definer symbols in Lemma 4.2.2. The soundness of the remaining rules has

been discussed in Section 4.2.1.

Lemma 4.2.4. ResALC is terminating, and the size of ResALC(N ) is bounded by

O(22n × 2n), where n = size(N ).



62 CHAPTER 4. Practical Uniform Interpolation for ALC

Proof. Let N be any set of clauses and n = size(N ). Denote by N∗c , N∗r and N∗d

respectively the concept, role and definer symbols occurring in N . Note that |N∗c |,

|N∗r | and |N∗d | are linear in n. Every definer in ResALC(N ) occurs in the domain of

conj. Since conj is injective, and the codomain of conj is 2N
∗
d , ResALC(N ) contains at

most nd = 2|N
∗
d | many definer symbols.

Every concept symbol can occur either negatively or positively in a literal, and

every definer symbol can occur in a literal of the forms D, ¬D, ∃r.D and ∀r.D. We

obtain the following upper bound for the number of distinct literals in ResALC(N ):

2×N∗c + 2× nd + 2×N∗r × nd (4.12)

= 2×N∗c + 2× 2|N
∗
d | + 2×N∗r × 2|N

∗
d | (4.13)

= O(2n) (4.14)

Since clauses are represented as sets, we can represent maximally O(22n) different

clauses using these literals, which means ResALC(N ) contains at most O(22n) clauses

that contain at most O(2n) literals each. Therefore, the size of ResALC(N ) is bounded

by O(22n × 2n).

Because of how definers are introduced, we have the following lemma regarding

positive definer literals that will become useful later on.

Lemma 4.2.5. Let N = Cl(O) be the normal form representation of the ALC ontol-

ogy O, and let C ∈ ResALC(N ) be a clause that contains a positive definer literal D.

Then, C is of the form ¬D′ tD, D′ ∈ Nd.

Proof. No clause in N contains any positive definer literals. Therefore, every clause

in N that contains a negative definer literal is of the form ¬D tC, where C does not

contain any positive definer literals. New definers are introduced together with clauses

of the form ¬D1 t D2, D1, D2 ∈ Nd. We show that, if we have a set of clauses such

that every clause is of the forms ¬D tC, C and ¬D1 tD2, where C does not contain

any positive definer literals, it is impossible to derive a clause which is not of the same

form.

1. Assume both premises of a rule are of the form ¬D tC or C, where C does not

contain any positive definer literal. Since the premises do not contain positive

definer literals, the conclusion also does not contain a positive definer literal.
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2. Assume one premise of a rule is of the form ¬D1tD2. The only rule that applies

to this clause is the resolution rule, which means the other premise must either

be of the form ¬D2 t C, ¬D2 tD3 or ¬D3 tD1, where C does not contain any

positive definer literals.

In both cases, the resolvent either does not contain a positive definer literal, or it is

of the form ¬D′1 t D′2. Therefore, no sequence of inferences can infer a clause that

contains a positive definer literal and is of a different form. We obtain that every

clause in ResALC(N ) either does not contain any positive definer literal, or it is of the

form ¬D1 tD2.

Example 4.2.6. Let O2 be the following ontology:

> v ∃r.A A v ∀r.¬A

We want to decide whether O2 is satisfiable. First, we compute the normal form

representation N2 = Cl(O2) of the ontology.

1. ∃r.D1

2. ¬D1 t A

3. ¬A t ∀r.D2

4. ¬D2 t ¬A

Initially, the mapping conj maps each introduced definer to a singleton set containing

itself.

conj(D1) = {D1}

conj(D2) = {D2}

We can apply ∀∃-role propagation on Clause 1 and Clause 3. The conclusion of this

rule requires a definer D12 representing D1 uD2. For this definer D12, we should have

conj(D12) = conj(D1) ∪ conj(D2) = {D1, D2}. Such a definer does not exist, so we

introduce it.

5. ¬A t ∃r.D12 (Role propagation 1, 3)

6. ¬D12 tD1 (D12 v D1)

7. ¬D12 tD2 (D12 v D2)
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We set conj(D12) = {D1, D2}. Another application of the role propagation rule on

Clauses 1 and 3 would reuse the definer D12, and therefore no different clause would

be inferred. We continue by applying resolution on the positive definer literals.

8. ¬D12 t A (Resolution 2, 6)

9. ¬D12 t ¬A (Resolution 4, 5)

10. ¬D12 (Resolution 8, 9)

The ∃-elimination rule can now be applied twice, resulting in a derivation of the empty

clause.

11. ¬A (∃-Elimination 5, 10)

12. ¬D1 (Resolution 2, 12)

13. ⊥ (∃-Elimination 1, 12)

We have inferred that O2 is unsatisfiable.

4.2.3 Refutational Completeness

In the last section, we proved soundness and termination of ResALC. In order to

prove refutational completeness, we have to show that whenever ResALC(N ) does not

contain the empty clause, N is satisfiable. We prove this by showing how, given

⊥ 6∈ ResALC(N ), a model for N can be constructed based on the clauses in ResALC(N ).

The proof is influenced by the model construction used in Bachmair and Ganzinger

(2001) to prove refutational completeness of propositional resolution.

Let N be any set of ALC clauses, N ∗ = ResALC(N ) its saturation, and ⊥ 6∈ N ∗.

We first define an ordering on the definer symbols in N ∗. Let ≺d be an ordering

such that D1 ≺d D2 if ¬D1 t D2 ∈ N ∗. Intuitively, this ordering represents the

subsumption hierarchy between introduced definers, in the sense that N ∗ |= D1 v D2

implies D1 ≺d D2. Note that a definer D12 representing D1 u D2 is introduced by

adding the two clauses ¬D12tD1 and ¬D12tD2. The ordering therefore ensures that

for every introduced definer D12 that represents D1 uD2, D12 ≺d D1 and D12 ≺d D2.

There is always an ordering ≺d that satisfies these properties, as the following lemma

shows.
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Lemma 4.2.7. Let ≺d be a relation between definers such that ¬D1 t D2 ∈ N ∗ iff

D1 ≺d D2. Then, ≺d is transitive and irreflexive.

Proof. Transitivity follows from the fact thatN ∗ is closed under resolution: ¬D1 tD2,

¬D2 tD3 ∈ N ∗ implies ¬D1 tD3 ∈ N ∗, due to resolution on D2. Irreflexivity follows

from how definers are introduced. The result of the normal form transformation does

not contain any clauses of the form ¬D1tD2. Clauses of this form are only introduced

if the definer D1 is freshly introduced and D2 is already present. Hence, ≺d cannot

have cycles, and is therefore irreflexive.

Let ≺s be any total ordering on the symbols (Nc ∪Nr) \Nd. Based on ≺d and ≺s,

we define a total ordering ≺l on literals that satisfies the following constraints.

1. A ≺l ¬A for all A ∈ Nc.

2. ∃r.D1 ≺l ∀r.D2 for all r ∈ Nr and D1, D2 ∈ Nd.

3. ¬D ≺l A and ¬D ≺l ∃r.D′, for all D,D′ ∈ Nd, A ∈ Nc \Nd and r ∈ Nr.

4. If D1 ≺d D2, then ¬D1 ≺l D2 and ∃r.D1 ≺l ∃r.D2.

5. If A1 ≺s A2, then ¬A1 ≺l A2.

6. If A ≺s r, then ¬A ≺l ∃r.D for all D ∈ Nd.

7. If r ≺s A, then ∀r.D ≺l A for all D ∈ Nd.

8. If r1 ≺s r2, then ∀r1.D1 ≺l ∃r2.D2 for all D1, D2 ∈ Nd.

That an ordering with these constraints always exists, is shown below. We first

give an intuitive idea of what the constraints express.

Constraints 1 and 2 determine the order between literals if the concept or role

symbol in the literal is the same. In the ordering, negative literals are larger than pos-

itive literals, and universal role restrictions are larger than existential role restrictions.

Constraint 3 states that definer literals are smaller than other literals. Between liter-

als of the same type (definer literals, concept literals, role restrictions), the ordering

is determined by ≺d and ≺s, as stated in the remaining constraints. Constraints 6, 7

and 8 are not strictly needed for the completeness proof. However, the fact that the
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ordering is determined by a total ordering ≺s on symbols in (Nc ∪Nr) \Nd is used in

Section 4.4 for showing the correctness of the uniform interpolation method.

How the ordering works is illustrated in the following running example.

Example 4.2.8. Let O3 be the following ontology.

> v A tB

B v ∃r.C

C v ∀r.A

The saturation N ∗3 = ResALC(N3), where N3 = Cl(O3), can be seen in Figure 4.5. We

follow the steps to create an ordering ≺l for the literals in N ∗3 .

The ordering ≺d on definer symbols has to obey D12 ≺d D1 and D12 ≺d D2 due to

Clause 8 and 9. This can be extended to the following total ordering:

D12 ≺d D1 ≺d D2

We fix the following ordering ≺s on the symbols in (Nc ∪Nr) \Nd.

A ≺s B ≺s C ≺s r

Based on ≺s and ≺d, we set the following ordering ≺l on literals:

D12 ≺l ¬D12 ≺l D1 ≺l ¬D1 ≺l D2 ≺l ¬D2

≺l A ≺l ¬A ≺l B ≺l ¬B ≺l C ≺l ¬C

≺l ∃r.D12 ≺l ∃r.D1 ≺l ∃r.D2

≺l ∀r.D12 ≺l ∀r.D1 ≺l ∀r.D2

One can verify that ≺l satisfies all required constraints, which in this case are the

following:

Constraint 1: D1 ≺l ¬D1, D2 ≺l ¬D2, D12 ≺l ¬D12

A ≺l ¬A,B ≺l ¬B,C ≺l ¬C

Constraint 2: ∃r.D1 ≺l ∀r.D1,∀r.D2,∀r.D12

∃r.D2 ≺l ∀r.D1,∀r.D2,∀r.D12

∃r.D12 ≺ ∀r.D1,∀r.D2,∀r.D12
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1. A tB (N = Cl(O3))

2. ¬B t ∃r.D1 (N = Cl(O3))

3. ¬D1 t C (N = Cl(O3))

4. ¬C t ∀r.D2 (N = Cl(O3))

5. ¬D2 t A (N = Cl(O3))

6. A t ∃r.D1 (Resolution 1, 2, B)

7. ¬B t ¬C t ∃r.D12 (∀∃-Role Propagation 2, 4)

8. ¬D12 tD1 (D12 v D1)

9. ¬D12 tD2 (D12 v D2)

10. ¬D1 t ∀r.D2 (Resolution 3, 4, C)

11. ¬D1 t ¬B t ∃r.D12 (Resolution 3, 7, C)

12. ¬D12 t C (Resolution 3, 8, D1)

13. A t ¬C t ∃r.D12 (∀∃-Role Propagation 4, 6)

14. ¬D1 t ¬B t ¬C t ∃r.D12 (∀∃-Role Propagation 4, 11)

15. ¬D12 t ∀r.D2 (Resolution 4, 12, C)

16. ¬D12 t A (Resolution 5, 9, D2)

17. ¬D1 t A t ∃r.D12 (∀∃-Role Propagation 6, 10)

18. ¬D12 t A t ∃r.D12 (∀∃-Role Propagation 6, 15)

19. ¬D12 t ¬B t ∃r.D12 (Resolution 7, 12, C)

20. ¬D12 t ¬B t ¬C t ∃r.D12 (∀∃-Role Propagation 7, 15)

21. ¬D1 t A t ¬C t ∃r.D12 (∀∃-Role Propagation 10, 13)

22. ¬D12 t ¬D1 t A t ∃r.D12 (∀∃-Role Propagation 10, 18)

23. ¬D12 t ¬D1 t ¬B t ∃r.D12 (∀∃-Role Propagation 10, 19)

24. ¬D12 t ¬D1 t ¬B t ¬C t ∃r.D12 (∀∃-Role Propagation 10, 20)

Figure 4.5: Saturation N ∗3 of the clausal representation N3 of the satisfiable example
ontology O3.
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Constraint 3: ¬D1 ≺l A,B,C, ∃r.D1,∃r.D2,∃r.D12

¬D2 ≺l A,B,C, ∃r.D1,∃r.D2,∃r.D12

¬D12 ≺l A,B,C, ∃r.D1,∃r.D2∃r.D12

Constraint 4: ¬D12 ≺l D1,¬D1 ≺l D2

∃r.D12 ≺l ∃r.D1 ≺l ∃r.D2

Constraint 5: ¬A ≺l B,¬B ≺l C

Constraint 6: A,B,C ≺l ∃r.D1,∃r.D2, ∃r.D12

In order to determine the ordering between two literals, we first compare the con-

cept symbol or role symbol, depending on whether the literal is a role restriction,

then the operator (negation, existential role restriction or universal role restriction),

and then, if the literal is a role restriction, we compare the definer symbol under the

role restriction. The ordering makes furthermore sure that definer literals are always

smaller than other literals.

If we represent literals as triples, ≺l corresponds to a lexicographic ordering. Let≺x
be a total ordering on symbols in Nc ∪Nr ∪ {ε,¬,∃, ∀} that extends ≺s and ≺d, such

that ε ≺x ¬, ∃ ≺x ∀ and definer symbols are smaller than other symbols. Let t be a

function that translates literals into triples according to the following rules.

t(A) = 〈A, ε, ε〉

t(¬A) = 〈A,¬, ε〉

t(∃r.D) = 〈r,∃, D〉

t(∀r.D) = 〈r,∀, D〉

≺l corresponds to the lexicographic ordering on the triple representations of the

literals: L1 ≺l L2 iff t(L1) ≺3
x t(L2), where ≺3

x is the ternary lexicographic extension

of ≺x. If we look at the triple representations of the literals in our example, we can

easily see that the total ordering we gave corresponds to a lexicographic ordering:

〈D12, ε, ε〉, 〈D2, ε, ε〉, 〈B, ε, ε〉, 〈r,∃, D12〉, 〈r,∀, D1〉,

〈D12,¬, ε〉, 〈D2,¬, ε〉, 〈B,¬, ε〉, 〈r,∃, D1〉, 〈r,∀, D2〉.

〈D1, ε, ε〉, 〈A, ε, ε〉, 〈C, ε, ε〉, 〈r,∃, D2〉,

〈D1,¬, ε〉, 〈A,¬, ε〉, 〈C,¬, ε〉, 〈r,∀, D12〉,
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Lemma 4.2.9. Given the orderings ≺d and ≺s, there is always an ordering ≺l on

literals that satisfies Constraints 1–8.

Proof. Let ≺l be an ordering such that L1 ≺l L2 iff t(L1) ≺3
x t(L2). We show that ≺l

satisfies all constraints. Constraint 1 is satisfied since ε ≺x ¬. Constraint 2 is satisfied

because ∃ ≺x ∀. Constraints 3 and 4 are satisfied because ≺x makes definer symbols

smaller than other symbols. Constraints 5–8 correspond to the cases where the triple

representations start with a different symbol.

A literal L is maximal in a clause C if for all literals L′ ∈ C with L 6= L′, L′ ≺l L.

≺l is extended to an ordering ≺c between clauses using the multiset extension

of ≺l, that is, C1 ≺c C2 if there is a literal L2 ∈ (C2 \C1) such that L1 ≺l L2 for every

literal L1 ∈ (C1 \C2). This ordering allows us to enumerate the clauses in N ∗. In the

following, we denote by Ci the ith clause in N ∗ according to this enumeration, that

is, Ci ≺c Ck implies i < k.

Example 4.2.10. Figure 4.6 lists the clauses of N ∗3 ordered with respect to ≺c, where

the maximal literal in each clause is in bold face. We inverted the order in which

the literals are displayed, starting from the largest instead of the smallest, to visualise

more clearly how the ordering is implemented.

The model construction now proceeds as follows. We build a candidate model

for N ∗ based on a number of model fragments, where each definer symbol D is repre-

sented by a model fragment ID. For each model fragment, the final candidate model

will have a corresponding domain element. For a definer D, the model fragment ID

contains the concept symbols and existential restrictions a domain element has to

satisfy if it satisfies the definer D.

Definition 4.2.11. A model fragment is a set of positive literals of the forms A

and ∃r.D, where A ∈ Nc, r ∈ Nr and D ∈ Nd. Given a model fragment I and a

literal L, I satisfies L, in symbols I |= L, if one of the following conditions hold:

1. L = A, A ∈ Nc, and L ∈ I.

2. L = ¬A, A ∈ Nc, and L 6∈ I.

3. L = ∃r.D, r ∈ Nr, D ∈ Nd, and ∃r.D′ ∈ I where either D′ = D or ¬D′tD ∈ N ∗.
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C1 = D1 t ¬D12 (Clause 8)

C2 = D2 t ¬D12 (Clause 9)

C3 = A t ¬D12 (Clause 16)

C4 = A t ¬D2 (Clause 5)

C5 = B t A (Clause 1)

C6 = C t ¬D12 (Clause 12)

C7 = C t ¬D1 (Clause 3)

C8 = ∃r.D12 t A t ¬D12 (Clause 18)

C9 = ∃r.D12 t A t ¬D1 (Clause 17)

C10 = ∃r.D12 t A t ¬D1 t ¬D12 (Clause 22)

C11 = ∃r.D12 t ¬B t ¬D12 (Clause 19)

C12 = ∃r.D12 t ¬B t ¬D1 (Clause 11)

C13 = ∃r.D12 t ¬B t ¬D1 t ¬D12 (Clause 23)

C14 = ∃r.D12 t ¬C t A (Clause 13)

C15 = ∃r.D12 t ¬C t A t ¬D1 (Clause 21)

C16 = ∃r.D12 t ¬C t ¬B (Clause 7)

C17 = ∃r.D12 t ¬C t ¬B t ¬D12 (Clause 20)

C18 = ∃r.D12 t ¬C t ¬B t ¬D1 (Clause 14)

C19 = ∃r.D12 t ¬C t ¬B t ¬D1 t ¬D12 (Clause 24)

C20 = ∃r.D1 t A (Clause 6)

C21 = ∃r.D1 t ¬B (Clause 2)

C22 = ∀r.D2 t ¬D12 (Clause 15)

C23 = ∀r.D2 t ¬D1 (Clause 10)

C24 = ∀r.D2 t ¬C (Clause 4)

Figure 4.6: The enumerated set N ∗3 , ordered by ≺c.
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4. L = ∀r.D, r ∈ Nr, D ∈ Nd, and there is no ∃r.D′ ∈ I such that D′ 6= D and

¬D′ tD 6∈ N ∗.

Given a model fragment I and a clause C, we say I satisfies C, in symbols I |= C, if

there is a literal L ∈ C such that I |= L.

Based on the enumerated clauses, we build a model fragment ID for each definer D

in N ∗, plus one model fragment Iε. Iε represents the root of the model, and is

represented by a domain element that does not satisfy any definer symbol. It is needed

in case N ∗ only has models in which no definer is satisfied. For definers D ∈ Nd with

¬D ∈ N ∗, we set ID = ∅. For the remaining definers and ε, the model fragment ID is

defined incrementally as follows.

1. ID0 = ∅ if D = ε, and ID0 = {D} if D ∈ Nd.

2. If IDi−1 |= Ci, then IDi = IDi−1, otherwise:

(a) If the maximal literal in Ci is of the form A, then IDi = IDi−1 ∪ {A}

(b) If the maximal literal in Ci is of the form ∃r.D′, then IDi = IDi−1 ∪ {∃r.D′}

3. ID = IDn , where n = |N ∗|.

If ¬D ∈ N ∗, then D is unsatisfiable, and we cannot build a model fragment for it.

This is why in this case, we leave ID empty . Otherwise, the model fragment ID is

built in n iterations starting from ID0 . ID is supposed to be a model fragment for D,

and therefore we initialise it with D if D is a definer, or with the empty set if D = ε.

In Step 2 we then check for each clause Ci, following the ordering ≺c represented

in the enumeration of clauses, whether it is already satisfied by the current model

fragment IDi−1. If this is not the case, and the maximal literal in Ci is of the form A or

∃r.D′, we ensure IDi |= Ci by adding this maximal literal to IDi .

Example 4.2.12. We initialise four model fragments, the empty Iε0 and one model

fragment for each definer D1, D2 and D12. The model construction processes the

clauses in the order as they are shown in Figure 4.6, and adds the maximal literal to

the model fragment whenever a clause is not satisfied by the current model fragment.
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As a result, we obtain the following four model fragments:

Iε = {B, ∃r.D1}

ID1 = {D1, B, C, ∃r.D12}

ID2 = {D2, A}

ID12 = {D12, D1, D2, A, C}

The first model fragment Iε is initialised with the empty set: Iε0 = ∅. The smallest

clause that is not satisfied by Iε0 is C5, in which the maximal literal is B. Therefore,

we have Iε5 = {B}. Most of the following clauses have at least one negative literal that

is different from ¬B, and are therefore satisfied by Iε5. The next smallest clause that

is not satisfied by Iε5 is C20. The maximal literal in C20 is ∃r.D1, and therefore Iε20 =

{B, ∃r.D1}. Iε20 satisfies all larger clauses, and therefore Iε = Iε20. The other model

fragments all start with a different initial literal set, depending on the definer they

represent, and have therefore varying content. Note for ID1 , that {∃r.D12} |= ∃r.D1

in our context, since ¬D12 t D1 ∈ N ∗. Therefore, ∃r.D1 is not added to this model

fragment.

One can verify that every model fragment satisfies its designated definer, as well

as all clauses in N ∗3 .

Before we show that the construction always results in a model fragment that satis-

fies all clauses, we prove monotonicity of the model construction, since this property is

used in the proofs that follow. Monotonicity has the following meaning in this context:

if a clause Ci is satisfied by a model fragment IDi , it is also satisfied by all following

model fragments IDj with j > i, and if a clause Ci is not satisfied by IDi , it is also not

satisfied by all following model fragments IDj with j > i. Each statement is proved in

its own lemma.

Lemma 4.2.13. If IDi |= Ci, then IDj |= Ci for all j > i.

Proof. Assume IDi |= Ci and j > i. By definition, Ci must contain at least one literal

L with IDi |= L. We distinguish the different cases for L.

1. Assume L is of the form A or ∃r.D1. In this case, IDi |= Ci implies either L ∈ IDi
or L = ∃r.D1 and ∃r.D2 ∈ IDi with ¬D2tD1 ∈ N ∗. Since the model construction
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only adds literals, but does not remove any, IDi ⊆ IDj . Therefore, either L ∈ IDj
or ∃r.D′ ∈ IDj with ¬D′ tD ∈ N ∗, and hence IDj |= Ci.

2. Assume L is of the form ¬A. We prove IDj |= Ci by contradiction and assume

IDj 6|= Ci. IDi |= L implies A 6∈ IDi and IDj 6|= L implies A ∈ IDj . Our model

construction only adds maximal literals to the model fragment. Therefore, there

must be a clause Ck with i < k < j, in which the maximal literal is A. According

to our ordering, A ≺l ¬A. But then, since A is maximal in Ck, we have a literal

in Ci that is larger than all literals in Ck, namely ¬A. This implies k < i. We

have a contradiction, based on the assumption IDj 6|= Ci. Therefore, IDj |= Ci.

3. Assume L is of the form ∀r.D1. Again, we prove IDj |= Ci by contradiction and

assume IDj 6|= Ci. If IDj 6|= Ci, there must be a literal ∃r.D2 ∈ IDj with D2 6= D1

and ¬D2 tD1 6∈ N ∗. Since IDi |= Ci, ∃r.D2 6∈ IDi . This implies that there is a

clause Ck with i < k < j, such that the maximal literal in Ck is ∃r.D2. But due

to the constraints on the ordering ≺l, ∃r.D2 ≺l ∀r.D1, and therefore Ck ≺ Ci

and k < i. We derived a contradiction starting from the assumption IDj 6|= Ci,

and therefore IDj |= Ci.

implies IDj |= C for all j > i.

Next we prove the other part of monotonicity, that is, if the model construction

fails to make a clause Ci satisfied by IDi , then Ci is also not satisfied by all subsequent

model fragments IDj with j > i. We formulate this lemma stronger than the other

monotonicity lemma, since this will be useful later on.

Lemma 4.2.14. Assume C ≺c Ci or C = Ci, and IDi 6|= C. Then, IDj 6|= C for

all j > i.

Proof. Suppose there is a clause C ≺c Ci with IDi 6|= C. We do the proof by contra-

diction and assume that there is a j > i with IDj |= C. Then, there is a literal L ∈ C

such that IDi 6|= L and IDj |= L.

We distinguish the different cases for L. Observe that since the model construction

only adds literals for subsequent model fragments, we have IDi ⊆ IDj .

1. L cannot be of the form ¬A, since then we would have A ∈ IDi and A 6∈ IDj ,

which contradicts IDi ⊆ IDj .
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2. L cannot be of the form ∀r.D, since then there would be a literal ∃r.D2 with

D2 6= D1 and ¬D2 t D2 ∈ N ∗ such that ∃r.D2 ∈ IDi and ∃r.D2 6∈ IDj , which

contradicts IDi ⊆ IDj .

3. Assume L is of the form A. Then, A 6∈ IDi and A ∈ IDj . This implies that there

is a clause Ck with i < k < j in which A is maximal. This is not possible, since

with our ordering this clause would be smaller or equal to C and Ci.

4. Assume L is of the form ∃r.D1. Then, there must be a clause ∃r.D2 ∈ (IDj \ IDi )

such that either D1 = D2 or ¬D2 t D1 ∈ N ∗. ∃r.D2 ∈ (IDj \ IDi ) implies that

there is a clause Ck with i < k < j, such that ∃r.D2 is maximal. If D1 = D2,

then ∃r.D1 = ∃r.D2. If ¬D2 t D1 ∈ N ∗, then D2 ≺d D1 and ∃r.D2 ≺l ∃r.D1.

In both cases, since ∃r.D2 is maximal in Ck, we obtain that either Ck = C or

Ck ≺l C, and also Ck = Ci or Ck ≺l Ci, which contradicts i < k. Hence, there

can be no literal ∃r.D2 ∈ (IDj \ IDi ) such that either D1 = D2 or ¬D2tD1 ∈ N ∗.

Therefore, IDj 6|= C.

We have shown that C cannot contain any literal L such that IDi 6|= L and IDj |= L.

Hence, there cannot be any clause C ≺ Ci such that IDi 6|= C and IDj |= C.

Now we have everything we need, and can show that the construction of the model

fragments is successful for each satisfiable definer. That is, we prove that each model

fragment satisfies all clauses in the clause set, unless it corresponds to an unsatisfiable

definer.

Lemma 4.2.15. Let D be a definer with ¬D 6∈ N ∗ or D = ε. Then, ID |= C for

all C ∈ N ∗.

Proof. The proof is by contradiction. Assume Ci is the smallest clause according to ≺c
for which ID 6|= Ci, and assume Ci is of the form C ′itL, where L is the maximal literal

in Ci. Since ID 6|= Ci, also ID 6|= L. We distinguish the cases for L.

1. L is of the form A or ∃r.D′. Then ID |= L follows directly from the model

construction and Lemma 4.2.13.

2. L is of the form ¬A, where A 6= D. ID 6|= ¬A implies A ∈ ID. If A ∈ ID and

A 6= D, there must be a clause Cj = C ′j tA in which A is maximal and for which
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IDj−1 6|= Cj. Since C ′j ≺c Cj, ID 6|= C ′j by Lemma 4.2.14. Due to the resolution

rule, there then is also a clause Ck = C ′i t C ′j that is the resolvent of Ci and Cj.

¬A is maximal in Ci, and A is maximal in Cj. Therefore, ¬A is larger than all

literals in Ck, and Ck ≺c Ci. We have both ID 6|= C ′i and ID 6|= C ′j, which implies

ID 6|= C ′itC ′j = Ck. But then, there is a clause Ck that is smaller than Ci and for

which ID 6|= Ck, which contradicts the initial assumption that Ci is the smallest

clause for which ID 6|= Ci.

3. L is of the form ¬D. Since ¬D 6∈ N ∗ by assumption of the lemma, ID0 is

initialised withD, and ID containsD by definition. Therefore, ¬D is not satisfied

by ID regardless of the other clauses in N ∗. Since ¬D 6∈ N ∗, C ′i is non-empty.

Moreover, since ¬D is maximal and due to how ≺l is defined, all literals in C ′i

are definer literals. Also, they are all negative definer literals, since otherwise,

by Lemma 4.2.5, Ci would be of the form ¬D tD′, which implies D ≺l D′, but

¬D is maximal in Ci.

Let ¬D1 be the maximal literal in C ′i, and let C ′i = C ′′i t ¬D1. ID 6|= Ci implies

D1 ∈ ID, which means there is a clause Cj = C ′j tD1 in which D1 is maximal,

and for which IDj−1 6|= Cj. Resolution on D1 results in a clause Ck = ¬DtC ′′i tC ′j.

Ck ≺c Ci, since ¬D1 is larger than all literals in C ′′i tC ′j. Furthermore, ID 6|= Ck,

since ID 6|= C ′j by Lemma 4.2.13 and ID 6|= ¬D t C ′′i by assumption. But

this contradicts the initial assumption that Ci is the smallest clause that is not

satisfied by ID.

4. L is of the form ∀r.D1. ID 6|= L implies that there is a literal ∃r.D2 ∈ ID with

D1 6= D2 and ¬D2tD1 6∈ N ∗. If ∃r.D2 ∈ ID, there is a clause Cj = C ′jt∃r.D2 in

which ∃r.D2 is maximal and for which IDj−1 6|= Cj. Together with Lemma 4.2.14,

this implies ID 6|= C ′j. Due to the role propagation rule, there is also a clause

Ck = C ′i t C ′j t ∃r.D12, where D12 represents D1 uD2. The latter implies that

there are the clauses ¬D12 t D1,¬D12 t D2 ∈ N ∗. Cj ≺c Ci, since for the

maximal literals we have ∃r.D2 ≺l ∀r.D1. Since ∃r.D12 ≺c ∃r.D2, also Ck ≺ Cj.

Note that Ij−1 6|= ∃r.D12, since otherwise we would not have have Ij−1 6|= Cj.

By Lemma 4.2.14, I 6|= ∃r.D12. But then, because also I 6|= C ′i t C ′j, I 6|= Ck.

This contradicts our initial assumption that CD
i is the smallest clause that is not
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satisfied by ID.

In all four cases we have a contradiction, and therefore, there cannot be a smallest

clause Ci with ID 6|= Ci. Hence, ID |= C for all clauses C ∈ N ∗.

Before we continue defining the actual candidate model, we note some further

properties of the generated model fragments, since these are used in later proofs.

Lemma 4.2.16. If ¬D ∈ N ∗, then no model fragment for N ∗ contains a literal of the

form ∃r.D.

Proof. Assume that ¬D ∈ N ∗ and that there is a model fragment ID1 such that

∃r.D ∈ ID1 . Literals of the form ∃r.D are only added to a model fragment ID1 if

there exists a clause Ci = C ′i t ∃r.D, where ∃r.D is maximal, such that ID1
i−1 6|= Ci.

By Lemma 4.2.14, we also have ID1 6|= C ′i in this case. Since C ′i t ∃r.D ∈ N ∗ and

¬D ∈ N ∗, the ∃-elimination rule applies, and there is also a clause C ′i ∈ N ∗. By

Lemma 4.2.15, ID |= C ′i. But this contradicts the earlier observation that ID 6|= C ′i.

Hence, our initial assumption that ∃r.D ∈ ID1 cannot be true, and no model fragment

for N ∗ contains a literal of the form ∃r.D if ¬D ∈ N ∗.

Lemma 4.2.17. If D2 ∈ ID1, where D2 ∈ Nd, then either D2 = D1, or there is a

clause ¬D1 tD2 ∈ N ∗.

Proof. By Lemma 4.2.5, positive definer literals only occur in clauses of the form

¬D tD′. By induction on the model construction, and the fact that ID1
0 = {D1}, we

can show that there is a sequence of clauses of the form ¬D1 t D′1, ¬D′1 t D′2, . . .,

¬D′n tD2 if D2 ∈ ID1 . By applying pair-wise resolution on these clauses we infer the

clause ¬D1 tD2, which is included in N ∗.

Observe that an additional consequence of this lemma is that D is always the

smallest definer literal in ID.

Based on the model fragments, we build a candidate model I, and show that it is

indeed a model of N ∗. I = 〈∆I , ·I〉 is defined as follows:

1. ∆I = {xD | D ∈ Nd ∪ {ε},¬D 6∈ N ∗}

2. For every A ∈ Nc, A
I = {xD | A ∈ ID}
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xε : B xD1 : D1, B, C

xD2 : D2, A xD12 : D12, D1, D2, A, C

r

r

Figure 4.7: The candidate model I3 built throughout Examples 4.2.8 and 4.2.18.

3. For every r ∈ Nr, r
I = {(xD1 , xD2) | ∃r.D2 ∈ ID1}

For every definer D ∈ N ∗ with ¬D 6∈ N ∗, the candidate model contains a cor-

responding domain element xD. Observe that for the remaining definers D, ID = ∅.

Therefore, they are not involved in the interpretations of concepts and roles, which are

defined following the elements of the model fragments. For the interpretation function

for roles, observe that by Lemma 4.2.16, we only have literals of the form ∃r.D2 ∈ ID1

if ¬D2 6∈ N ∗. Hence, if ∃r.D2 ∈ ID1 , there is always a domain element xD2 ∈ ∆I .

Example 4.2.18. For the model fragments we created in Example 4.2.8, the candidate

model I3 = 〈∆I3 , ·I3〉 has the following form:

∆I3 = {xε, xD1 , xD2 , xD12}

AI3 = {xD2 , xD12}

BI3 = {xε, xD1}

CI3 = {xD1 , xD12}

DI31 = {xD1 , xD12}

DI32 = {xD2 , xD12}

DI312 = {xD12}

rI3 = {(xε, xD1), (xD1 , xD12)}

A visualisation of this candidate model is shown in Figure 4.7. Let us recall the

ontology O3 from which the example started:

> v A tB

B v ∃r.C

C v ∀r.A
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It can easily be verified that the axioms of the ontology are satisfied by all elements

of the candidate model, and that I3 is a model of O3.

We prove that the model construction not only succeeds in this particular example,

but for every set of clauses N ∗ saturated using ResALC.

Lemma 4.2.19. I is a model for N ∗.

Proof. The proof is by contradiction. Assume Ci is the smallest clause in N ∗ that is

not satisfied by I. Then, there is a domain element xD such that xD 6∈ (Ci)
I . By

Lemma 4.2.15, ID |= Ci. Therefore, Ci contains a literal L such that ID |= L. Since

xD 6∈ (Ci)
I , xD 6∈ LI . We distinguish the different cases for L, and show that each

case contradicts xD 6∈ LI .

1. Assume L = A. ID |= A implies A ∈ ID. Hence, xD ∈ AI follows immediately

from the construction of the candidate model, which contradicts xD 6∈ LI .

2. Assume L = ¬A. ID |= ¬A implies A 6∈ ID. Again, xD 6∈ AI follows immediately

from the model construction, which contradicts xD 6∈ LI .

3. Assume L = ∃r.D1. ID |= ∃r.D1 implies ∃r.D2 ∈ ID with either D2 = D1 or

¬D2 t D1 ∈ N ∗. Additionally, by Lemma 4.2.16, ¬D2 6∈ N ∗, which ensures

xD2 ∈ ∆I . Therefore, by model construction, (xD, xD2) ∈ rI . By construction

of ID2 , also D2 ∈ ID2 , and hence xD2 ∈ DI2 . If D2 = D1, this directly implies

xD ∈ (∃r.D1)I . If D2 6= D1, ¬D2 t D1 ∈ N ∗. According to the ordering,

¬D2 tD1 ≺c Ci, and hence, due to the initial assumption, I |= ¬D2 tD1, and

also xD2 ∈ (¬D2 tD1)I . Together with xD2 ∈ DI2 , this implies xD2 ∈ DI1 . But

then xD ∈ (∃r.D1)I is satisfied, which contradicts xD 6∈ LI .

4. Assume L = ∀r.D1. xD 6∈ (∀r.D1)I implies that there is an edge (xD, xD2) ∈ rI

with xD2 6∈ DI1 . The latter additionally implies that D1 6∈ ID2 . With the model

construction, we only have (xD, xD2) ∈ rI if ∃r.D2 ∈ ID. By construction of ID2
0 ,

we further haveD2 ∈ ID2 . Since ID |= ∀r.D1, eitherD2 = D1 or ¬D2 tD1 ∈ N ∗.

D2 6= D1, since otherwise D1 ∈ ID2 . But then, since D2 ∈ ID2 and D1 6∈ ID2 ,

xD2 6∈ (¬D2 t D1)I , which contradicts the initial assumption that Ci is the

smallest clause not satisfied by I.
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Each case leads to a contradiction, which means that there cannot be a domain el-

ement xD ∈ ∆I such that xD 6∈ (Ci)
I . This contradicts the initial assumption that

there is a smallest clause Ci that is not satisfied by I. We obtain that I is a model

of N ∗.

Lemma 4.2.19 allows us to establish that ResALC is a sound and refutationally

complete decision procedure for ALCν ontology satisfiability.

Theorem 4.2.20. ResALC is sound, terminating and refutationally complete, and pro-

vides a decision procedure for ALCν ontology satisfiability.

Proof. By Theorem 4.1.2, any ALCν ontology O can be transformed into the equi-

satisfiable clause set Cl(O) that can be processed by ResALC. Lemma 4.2.3 establishes

soundness of ResALC and Lemma 4.2.4 termination. Finally, Lemma 4.2.19 estab-

lishes refutational completeness by showing how a model can be constructed from any

saturated set of clauses that does not contain the empty clause.

4.3 Refinements and Redundancy Elimination

Before we extend ResALC to a calculus for computing uniform interpolants, we intro-

duce refinements and redundancy elimination for ResALC as a decision procedure. The

refined calculus is used as basis for the uniform interpolation method, and for the

proofs of its correctness. Furthermore, redundancy elimination is necessary in order

to make the calculus practical, which is of particular importance since the overall aim

is to develop a practical method for computing uniform interpolants based on this

calculus.

If we look at the clauses used in Examples 4.2.8 to 4.2.18 to illustrate the model

construction (Figure 4.6), we observe that the majority of these clauses does not

contribute to the constructed model. As noted in the beginning of the chapter, we

want to avoid inferences that are not required, in order to obtain a practical method.

Another observation from the examples is that the calculus derives a lot of clauses that

contain more than one negative definer literal. The technique for eliminating definer

symbols presented in Section 4.1.2 can only deal with clauses that contain at most one

negative definer literal. If the calculus is to be used for uniform interpolation, we have
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to be able to eliminate all definers that are introduced by the method. As it turns

out, this is not a problem in practice, since inferences of clauses with more than one

negative definer can be omitted. Recall from Definition 4.1.4 that a clause is normal

if it contains at most one negative definer literal.

Definition 4.3.1. Given a calculus Calc, Calcnorm refers to a refinement of Calc such

that each rule of the calculus is only applied if the conclusion contains at most one

negative definer literal.

Lemma 4.3.2. Let N be a set of normal clauses, N ∗ ⊆ ResALC(N ) be some subset

of the saturation of N using our calculus, and Ci = ¬D1 t ¬D2 t Ci ∈ N ∗ be a

clause with more than one negative definer literal. Then, we obtain the same model

fragments if we base the construction on the clause set N ∗ \ {Ci} as we do if we base

the construction on N ∗.

Proof. Since the normal form transformation does not introduce clauses with more

than one negative definer literal, there are only two possibilities why Ci is in the

clause set: (1) Ci is the conclusion of a rule application on two clauses that each have

a different negative definer literal or (2) Ci is the conclusion of a rule application on

at least one clause that has more than one negative definer. If we can establish that

inferences as in Case 1 are not necessary, we do not have to consider Case 2, since it

is only possible if we perform inferences as in Case 1. We show that inferences as in

Case 1 indeed have no impact on the model generation.

Assume Ci is the result of applying a rule of the calculus on two clauses Cj1 =

¬D1 t C ′j1 and Cj2 = ¬D2 t C ′j2 . The model construction only adds literals to a

model fragment ID if IDi−1 6|= Ci. If Ci has an effect on the model fragments, there

must therefore be a definer D with IDi−1 6|= Ci. This implies IDi−1 6|= ¬D1 t ¬D2, and

therefore D1, D2 ∈ IDi−1. By Lemma 4.2.17, we then have for each a ∈ {1, 2} either

Da = D or ¬D tDa ∈ N ∗. By resolution on D1 or D2 or both, we obtain that

then, there are also the clauses Cj′1 = ¬D t C ′j1 ∈ N
∗ and Cj′2 = ¬D t C ′j2 ∈ N

∗. The

same rule with which Ci is inferred from Cj1 and Cj2 can be used to infer the clause

Ci′ = ¬D t C ′ from Cj′1 and Cj′2 . Since either Da = D or ¬D t Da ∈ N ∗ for Da,

a ∈ {1, 2}, either Da = D or D ≺d Da. Therefore, Ci′ ≺c Ci. Due to Lemma 4.2.15,

IDi′ |= Ci′ , and by monotonicity (Lemma 4.2.13), IDi−1 |= Ci. Therefore, Ci has no
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influence on the constructed model fragments, and if we remove Ci from the clause

set, we still obtain the same model.

Theorem 4.3.3. ResnormALC is sound and refutationally complete, and provides a decision

procedure for ALCν ontology satisfiability.

Proof. By Lemma 4.3.2, for every clause C with more than one negative definer literal

and for every model fragment ID, ID |= C. Hence, if we remove these clauses, the

model construction is still successful.

The next refinements add ordered resolution and redundancy elimination to the

calculus, in a similar way as it is done in Bachmair and Ganzinger (2001), and is used

in many popular resolution-based theorem provers.

We first refine ResALC using the ordering we defined in Section 4.2.3.

Definition 4.3.4. Given a calculus Calc and an ordering ≺l on literals, Calc≺l refers

to a refinement of Calc, in which all the rules of the calculus are only applied on definer

literals or on literals which are maximal according to ≺l.

Inspection of all proofs needed to establish Lemma 4.2.15 for refutational complete-

ness reveals that we only refer to rule applications on maximal literals in a clause.

Other rule inferences are therefore not required for refutational completeness, if no

other restrictions are applied on the calculus. The only proof which relies on in-

ferences on symbols which are not maximal is the proof for Lemma 4.3.2, which is

required to establish completeness of ResnormALC . This proof relies on applications of the

resolution rule on definer literals. These inferences are the only exceptions in Calc≺l

where the ordering ≺l can be ignored. Note that the only possible inference where both

literals are definer literals are resolution inferences. By Lemma 4.2.5, positive definer

literals only occur in clauses of the form ¬D t D. Intuitively, ignoring the ordering

for inferences on definer literals serves the purpose of supporting the mechanism for

introducing definers.

With the above observations, we can establish the following theorem.

Theorem 4.3.5. Let ≺l be any ordering on literals that satisfies the Constraints 1–6

on page 65. Then, Resnorm≺l
ALC is sound and refutationally complete, and provides a

decision procedure for ALCν ontology satisfiability.
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As in traditional resolution-based decision procedures, it is possible to extend

the method with redundancy elimination and further simplification techniques. For

our notion of redundancy, we make use of the relations between introduced definers.

Note that new definers are introduced by adding clauses of the form ¬D1 tD2. The

clause ¬D1tD2 is equivalent to the concept inclusion D1 v D2. This concept inclusion

can be used to define subsumption between existential and universal role restrictions,

as well as subsumption between clauses.

Definition 4.3.6. A literal L1 subsumes a literal L2, in symbols L1 vl L2, if either

L1 = L2, or if L1 = Qr.D1 and L2 = Qr.D2 for Q ∈ {∃,∀}, and there is a clause

¬D1 t D2 in the current clause set. A clause C1 subsumes a clause C2, in symbols

C1 vc C2, if every literal L1 ∈ C1 subsumes a literal L2 ∈ C2. A clause C is redundant

with respect to a clause set N , if N contains a clause C ′ with C ′ vc C. The reduction

of a clause C, which we denote by red(C), is obtained from C by removing every literal

that subsumes another literal in C.

The notion of subsumption as it is defined here follows the tradition used in the

literature on theorem proving and resolution. Note that while a clause is redundant

in a set of clauses if it is subsumed by another clause in N , a literal is redundant in

a clause C if it subsumes another literal in C. The reason is that a set of clauses is

essentially a conjunction of clauses, whereas a clause is a disjunction of literals. For

this reason, the reduction of a clause deletes subsuming literals, whereas subsumption

deletion in a clause set deletes subsumed clauses.

Example 4.3.7 (Subsumption and reduction). Assume D12 represents D1uD2, which

means we have the clauses ¬D12 t D1 and ¬D12 t D2. Then, the following relations

hold:

¬A tB vc ¬A tB t C,

∃r.D12 vl ∃r.D1,

∀r.D12 tB vc ∀r.D1 t A tB,

red(A t ∃r.D12 t ∃r.D2) = A t ∃r.D2.

In addition to subsumption and reduction, we also detect tautological clauses which

contain pairs of contradictory literals. This leads to the set of simplification rules
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Tautology Deletion: N ∪ {C t A t ¬A}

N

Subsumption Deletion: N ∪ {C, D}

N ∪ {C}
provided C vc D

Reduction: N ∪ {C}

N ∪ {red(C)}

Figure 4.8: Simplification rules.

shown in Figure 4.8. We denote the calculus Resnorm≺l
ALC extended with these rules

by Resnorm≺ls
ALC . It can be shown that the rules preserve soundness and refutational

completeness, as stated by the following theorem.

Theorem 4.3.8. Resnorm≺ls
ALC is sound and refutationally complete and provides a de-

cision procedure for ALCν ontology satisfiability.

Proof. Since the tautology deletion and the subsumption deletion rule only remove

clauses, they do not affect the soundness of the calculus. The soundness of the reduc-

tion rule follows from the facts that 1) if L1 vl L2 holds in N , then N |= L1 v L2, and

2) ifN |= L1 v L2, thenN |= L1tL2 v L2, in which caseN∪{C1tL1tL2} |= C1tL2.

We show that the refutational completeness is preserved by each rule by referring

to the candidate model construction in Lemma 4.2.15.

Tautology deletion: Assume C = C ′ tAt¬A. Since both A ∈ C and ¬A ∈ C, for

any literal set ID we have ID |= C. Therefore, the presence of C does not affect the

candidate model construction, and it can as well be removed from the clause set.

Subsumption deletion: Observe that L1 vl L2 implies either L1 = L2 or L1 ≺l L2,

where ≺l is the ordering used in the model construction for Theorem 4.3.8. Hence,

C1 vc C2 implies either C1 = C2 or C1 ≺c C2. Observe also that due to Defini-

tion 4.2.11, for any model fragment I, if C1 vc C2, I |= C1 implies I |= C2. There-

fore, C2 does not affect the candidate model construction and can as well be removed

from the clause set.

Reduction: Since red(C) vc C and subsumption deletion preserves refutational

completeness, reduction preserves refutational completeness as well.



84 CHAPTER 4. Practical Uniform Interpolation for ALC

4.4 The Interpolation Procedure

4.4.1 Extending the Calculus

The calculus ResALC is sound, refutationally complete and terminating. By Theo-

rem 4.3.3, refutational completeness is preserved if only clauses with at most one

negative definer literal are inferred. This allows us to restrict the calculus in such a

way that every saturated set of clauses can be translated back into an ontology with-

out definer symbols, following Theorem 4.1.5. Moreover, by Theorem 4.3.5, if we are

given a signature S, the calculus can be restricted using an ordering in such a way

that inferences on symbols which are not in S are performed before other inferences.

In order to compute a uniform interpolant, we want to use the calculus to saturate

the normal form representation of an input ontology until clauses outside of the desired

signature, modulo definers, can be removed. Elimination of the introduced definer

symbols should then result in the uniform interpolant for that signature. Whereas the

above features are desirable for using a calculus for this purpose, they are not sufficient,

since they are solely based on the notion of refutational completeness. Refutational

completeness is not sufficient for our purposes, since the only entailment it guarantees

to be derivable is the empty clause. To express the appropriateness of a calculus for

uniform interpolation, we need a stronger notion of completeness.

For any set of clauses N and signature S, denote by NS the subset of clauses C

in N that are in S modulo definers, that is NS = {C | sig(C) ⊆ S ∪Nd}. Recall from

Definition 4.1.4 that Nn denotes the subset of normal clauses in N , where a normal

clause is a clause with at most one negative definer symbol. Cl and Ont where defined

in Sections 4.1 and 4.1.2 as functions transforming ALCν ontologies without definers

into normal clause sets, and normal clause sets into ALCν ontologies without definers.

Definition 4.4.1. A calculus Calc is interpolation complete for a language L, if for

any L ontology O and signature S, Ont((N ∗n)S) is an L uniform interpolant of O for S,

where N ∗ = Calc(Cl(O)).

Theorem 4.4.2. ResALC is not interpolation complete for ALC.



4.4. The Interpolation Procedure 85

∀∀-Role Propagation

C1 t ∀r.D1 C2 t ∀r.D2

C1 t C2 t ∀r.D12

where D12 is a possibly new definer representing D1 uD2.

Figure 4.9: Additional rule for the interpolation complete calculus IntALC.

Proof. Consider the following ontology O4:

A v ∀r.B

A v ∀r.(¬B t C)

One can verify that O |= A v ∀r.C.

N ∗4 = ResALC(N4), where N4 = Cl(O4)), contains the following clauses:

1. ¬A t ∀r.D1 (Normal Form Transformation)

2. ¬D1 tB (Normal Form Transformation)

3. ¬A t ∀r.D2 (Normal Form Transformation)

4. ¬D2 t ¬B t C (Normal Form Transformation)

5. ¬D1 t ¬D2 t C (Resolution 2, 4)

Let S = {A, r, C}. Observe that the only clause inferred by ResALC, Clause 5, has

two negative definer literals. Therefore, (N ∗4 )n is equal to the initial clause set N4.

Consequently, N S4 = ((N ∗4 )n)S contains only Clause 1 and 3, which are marked with a

bold face number. D1 and D2 occur only positively in N S4 , and are therefore replaced

by> when Ont(N S4 ) is computed (see Section 4.1.2). O′4 = Ont(N S4 ) contains therefore

only one axiom, which is in fact a tautology:

> v ¬A t ∀r.>

Clearly, O′4 6|= A v ∀r.C, even though O4 |= A v ∀r.C. Hence, O′4 is not an ALC

uniform interpolant of O4 for S. Therefore, ResALC is not interpolation complete.

We need an additional rule for handling interactions between universal restrictions.

This rule, shown in Figure 4.9, is sufficient to transform ResALC into an interpolation

complete calculus for ALC.
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The ∀∀-role propagation rule is similar to the ∀∃-role propagation rule. Whereas

the ∀∃-role propagation rule propagates universally quantified information into exis-

tential role restrictions, the ∀∀-role propagation rule propagates universally quantified

information into universal role restrictions. Both rules may lead to the introduction of

new definer symbols. The soundness of the ∀∀-role propagation rule follows from a sim-

ilar observation as for the ∀∃-role propagation rule, namely from the valid entailment

|= (∀r.D1 u ∀r.D2) v (∀r.(D1 uD2)).

IntALC extends ResnormALC with the ∀∀-role propagation rule. Note that ResnormALC only

allows inferences with at most one negative definer literal. By Theorem 4.3.3, and since

we only add sound inferences to the calculus, IntALC is still sound and refutationally

complete. IntALC can be extended with redundancy elimination and ordered resolution,

but for current purposes this is not necessary. How redundancy elimination is used for

the computation of uniform interpolants is discussed later in this section.

The example used to prove Theorem 4.4.2 can be solved correctly using IntALC.

Example 4.4.3. We again consider the ontology O4:

A v ∀r.B

A v ∀r.(¬B t C)

N4 = Cl(O4) consists of the following clauses:

1. ¬A t ∀r.D1 (Normal Form Transformation)

2. ¬D1 tB (Normal Form Transformation)

3. ¬A t ∀r.D2 (Normal Form Transformation)

4. ¬D2 t ¬B t C (Normal Form Transformation)

Using IntALC, we cannot apply resolution on Clause 2 and Clause 4, because the

resulting clause would contain more than one negative definer literal. We can however

apply the ∀∀-role propagation rule on Clause 1 and Clause 3, with the effect that a

new definer for D1 uD2 is introduced. This makes further resolution steps possible.

5. ¬A t ∀r.D12 (∀∀-role propagation 1, 3)

6. ¬D12 tD1 (D12 v D1)

7. ¬D12 tD2 (D12 v D2)
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8. ¬D12 tB (Resolution 2, 6)

9. ¬D12 t ¬B t C (Resolution 4, 7)

10. ¬D12 t C (Resolution 8, 9)

The set of clauses is saturated with respect to IntALC. We denote it by N ∗4 . Again

we set S = {A, r, C}. The set (N ∗4 )S , that is, the clauses whose signatures are fully

in S ∪Nd, contains the clauses with a bold face number. Since only normal clauses

are derived in IntALC, (N ∗4 )S = ((N ∗4 )n)S . Therefore, there are no non-normal clauses

to remove. If IntALC is interpolation complete, Ont((N ∗4 )S) should be a uniform inter-

polant of O for S. Ont((N ∗4 )S) contains the following axioms:

> v ¬A t ∀r.>

> v ¬A t ∀r.(> u> u C),

which can be simplified to the following single axiom:

A v ∀r.C

This axiom is as expected. Indeed, Ont(N ∗S ) is an ALC uniform interpolant of O for S.

4.4.2 Interpolation Completeness of IntALC

In order to prove that IntALC is interpolation complete, we have to show that for any

computed result OS of O for S and any ALC axiom α in S, OS |= α iff O |= α. The

proof exploits the refutational completeness of Resnorm≺l
ALC , and shows that every proof

of O |= α constructed using Resnorm≺l
ALC can be transformed into a proof of OS |= α

constructed using Resnorm≺l
ALC .

We fix an ALC ontology O, a signature S and an ALC axiom α with sig(α) ⊆ S.

Since axioms of the form C ≡ D are logically equivalent to pairs of axioms of the form

C v D and D v C, we can restrict ourselves to the case where α is a concept inclusion

of the form C v D. Let OS be an ontology computed using the procedure described

in the last section, that is, by saturating the normalised ontology N = Cl(O) with

IntALC, removing all clauses with symbols outside S∪Nd, and eliminating all introduced

definers using the procedure described in Section 4.1.2. If IntALC is interpolation

complete, we should have O |= C v D iff OS |= C v D.
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Note that the ordering ≺l defined on page 65 is based on a total ordering ≺s on

(Nc∪Nr)\Nd. We can specify ≺s in such a way that symbols outside S are larger than

symbols in S. This way, we obtain a total ordering ≺l on literals such that L1 ≺l L2

whenever sig(L1) ⊆ S ∪ Nd and sig(L2) 6⊆ S ∪ Nd. By Theorem 4.3.5, the calculus

Resnorm≺l
ALC based on this ordering is refutationally complete.

O |= C v D can be proved by showing that O ∪ {> v ∃r∗.(C u ¬D)} is unsatis-

fiable, where r∗ is fresh. Let N = Cl(O), N S = Cl(OS) and M = Cl(∃r∗.(C u ¬D)),

where r∗ 6∈ sig(O). N ∪M is unsatisfiable iff O |= α. Interpolation completeness

can therefore be shown by proving that N S ∪ M is unsatisfiable iff N ∪M is un-

satisfiable. Because Resnorm≺l
ALC is refutationally complete, this is equivalent to proving

⊥ ∈ Resnorm≺l
ALC (N ∪M) iff ⊥ ∈ Resnorm≺l

ALC (N S ∪M).

Let N ∗ be the saturation of N by IntALC, as it is used for computing N S . For

simplicity, we may assume that the same definers are used in N S that are used in

the saturation of N for N ∗ and Resnorm≺l
ALC (N ∪M). Computing Resnorm≺l

ALC (N S ∪M)

corresponds to first computing N ∗ and then saturating the union of the resulting set

and M, where clauses in N ∗ with symbols outside S ∪ Nd are not used any more.

We have to make sure that all inferences on symbols in S that are required to infer ⊥

from N ∪ M have corresponding inferences in N ∗. Some of these inferences may

involve definers from M when Resnorm≺l
ALC is used. The main challenge is therefore to

show that these inferences have corresponding inferences in N ∗. For this, we show

that every introduced definer in Resnorm≺l
ALC (N ∪M) that was necessary for doing these

inferences has a corresponding definer in N ∗, and that by saturating with M, we

obtain similar clauses in Resnorm≺l
ALC (N S ∪M) as in Resnorm≺l

ALC (N ∪M). To capture this

formally, we introduce the notion of combined definers, which describes how definers

are introduced, and the notion of a subsuming context of a definer, to denote when

definers in Resnorm≺l
ALC (N ∪M) have corresponding definers in Resnorm≺l

ALC (N S ∪M).

Definition 4.4.4. Let N be any clause set. Two definers D1 and D2 are combined

in N by D, if there are two clauses ¬D tD1,¬D tD2 ∈ N .

A definer D1 occurs in N in a subsuming context to a definer D2 iff D1
c−→ D2,

where
c−→ is the smallest relation such that D1

s−→ D2 if for every clause of the form

C t Qr.D2 ∈ N , Q ∈ {∃,∀}, one of the following holds:

1. C t Qr.D1 ∈ N , or
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2. C = ¬D′2 t C ′ t Q′r.D1, Q′ ∈ {∃,∀}, and there is a definer D′2 with D′1
c−→ D′2.

Let D1 be a definer occurring in N1 and D2 be a definer occurring in N2. D1 occurs

in a subsuming context to D2 if D1 occurs in N1 ∪N2 in a subsuming context to D2.

Note that if a D1 occurs in a subsuming context to D2, and both are unsatisfiable,

we obtain similar clauses when applying the ∃-elimination rule, where definers in

negative definer literals might be replaced by definers in subsuming contexts. This

will be used to show that every sequence of ∃-elimination rule applications that is

used to infer the empty clause from N ∪M has corresponding inferences in N ∗ and

Resnorm≺l
ALC (N S ∪M).

In order to better structure the proofs on definers that will follow, we further

introduce the notion of the root distance of a definer.

Definition 4.4.5. Let N be a set of clauses and D be a definer occurring in N . The

root distance of D, in symbols rd(D), is the smallest number n such that there is a

sequence of clauses C tQr1.D1, ¬D1 tC1 tQr2.D2, . . ., ¬Dn−1 tCn−1 tQrn.D ∈ N ,

where C does not contain a negative definer literal.

If N is the result of transforming an ontology O without definer symbols into

normal form, the root distance of D is always defined, since each definer represents

some concept occurring in O, and there can be no infinite nesting of these concepts.

The same holds if N is the saturation of such a clause set with any calculus introduced

so far, since definers are introduced with clauses that give an upper bound on their

root distance. Every introduced definer D12 is introduced via an application of a role

propagation rule on two clauses of the form C1 t ∀r.D1 and C2 t Qr.D2, Q ∈ {∀,∃},

resulting in the clause C1 tC2 tQr.D12. rd(D12) ≤ rd(D) + 1, where D is any definer

occurring in a negative definer literal in C1 or C2.

The main challenge for proving interpolation completeness involves showing that

introduced definers involved in showing unsatisfiability of N ∪M have corresponding

definers that are used in the computation ofN ∗ and Resnorm≺l
ALC (N S∪M). The following

lemma establishes this for introduced definers that represent conjunctions over definers

from N .

Lemma 4.4.6. Let D1 and D2 be two definers occurring in ResnormALC (N ) that are

combined in ResnormALC (N ∪M) by a definer D3. Then, D1 and D2 are combined by a
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definer D′3 in N ∗, and either D′3 occurs in a subsuming context to D3, or there is a

clause ¬D′′3 tD′3 ∈ Resnorm≺l
ALC (N ∗∪M) , and D′′3 occurs in a subsuming context to D3.

Proof. Let D1, D2 and D3 be as in the lemma. Note that two definers D1 and D2 only

get combined by applications of a role propagation rule on role restrictions over D1

and D2. Observe that D1 and D2 must occur under role restrictions for the same role.

If they do not, no sequence of role propagations can lead to a rule application involving

both D1 and D2, and hence, they are not combined in Resnorm≺l
ALC (N ∪M).

If D1 and D2 are combined in Resnorm≺l
ALC (N ) by D3, then they are also combined

in N ∗ by D3, and the lemma trivially holds. Assume D1 and D2 are not combined in

Resnorm≺l
ALC (N ). There are two possibilities. (1) They both occur under a universal role

restriction. In this case, there are not combined because Resnorm≺l
ALC (N ) does not have

the ∀∀-role propagation rule. (2) They occur under role restrictions in clauses with

different negative definer literals. In this case, role propagation is not applicable due to

the restriction of Resnorm≺l
ALC that no clause with more than one negative definer literal

is inferred. If neither (1) nor (2) are satisfied, we can apply the ∀∃-role propagation

rule on the role restrictions containing D1 and D2, and D1 and D2 are combined in

Resnorm≺l
ALC (N ).

We distinguish the cases based on whether (2) is satisfied or not.

1. D1 and D2 occur under role restrictions in clauses C1, C2 ∈ Resnorm≺l
ALC (N ) such

that C1 and C2 do not contain different negative definer literals. Since D1 and D2

are not combined in Resnorm≺l
ALC (N ) by D3, they must both occur under a universal

role restriction, as observed earlier. The only way in which they can then be

combined in Resnorm≺l
ALC (N ∪M) is due to a clause C3t∃r.D4 ∈ Resnorm≺l

ALC (N∪M).

The combination of D1 and D2 then takes place due to the following inferences:

1. C1 t ∀r.D1

2. C2 t ∀r.D2

3. C3 t ∃r.D4

4. C1 t C3 t ∀r.D14 (∀∃-role propagation 1, 3)

5. ¬D14 tD1 (D14 v D1)

6. ¬D14 tD4 (D14 v D4)
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7. C1 t C2 t C3 t ∃r.D3 (∀∃-role propagation 4, 2)

8. ¬D3 tD14 (D3 v D14)

9. ¬D3 tD2 (D3 v D14)

10. ¬D3 tD1 (Resolution 5, 8)

Using IntALC, the ∀∀-role propagation rule can be applied on C1 and C2, and we

obtain the following clauses that are in N ∗:

1. C1 t ∀r.D1

2. C2 t ∀r.D2

3. C1 t C2 t ∀r.D′3 (∀∃-role propagation 1, 2)

4. ¬D′3 tD1 (D′3 v D1)

5. ¬D′3 tD2 (D′3 v D2)

Resnorm≺l
ALC (N ∗ ∪M) then contains the following clauses:

6. C3 t ∃r.D4

7. C1 t C2 t C3 t ∃r.D′′3 (∀∃-role propagation 3, 6)

8. ¬D′′3 tD4 (D′′3 v D4)

9. ¬D′′3 tD′3 (D′′3 v D′3)

10. ¬D′′3 tD1 (Resolution 4, 9)

11. ¬D′′3 tD2 (Resolution 5, 9)

D1 and D2 are combined by D′′3 in Resnorm≺l
ALC (N ∗ ∪ M), and D′′3 occurs in a

subsuming context to D3.

2. D1 and D2 occur under role restrictions in clauses in C1, C2 ∈ Resnorm≺l
ALC (N )

such that C1 and C2 contain two different negative definers literals ¬D′1 and

¬D′2. Let C1 = ¬D′1 t C ′1 t Qr.D1 and C2 = ¬D′2 t C ′2 t Qr.D1. D1 and D2

are combined in Resnorm≺l
ALC (N ∪ M) by a definer D3. Since definers only get

combined via applications of a role propagation rule, there must be a clause

C3 ∈ Resnorm≺l
ALC (N ∪M) which is of the form ¬D′3 t C ′3 t Qr.D3, and ¬D′3 t

D′1, ¬D′3 t D′2 ∈ Resnorm≺l
ALC (N ∪ M). That is, D′1 and D′2 are combined in

Resnorm≺l
ALC (N ∪ M) by D′3. Otherwise, since ResnormALC infers only clauses with
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at most one negative definer literal, D1 and D2 cannot get combined by any

sequence of role propagations. For the same reason, D1 and D2 can only be

combined in ResnormALC (N ∗ ∪ M) if D′1 and D′2 are combined by a definer D′′3

in Resnorm≺l
ALC (N ∗ ∪ M). If additionally D′′3 occurs in Resnorm≺l

ALC (N ∗ ∪ M) in a

subsuming context to D′3, the lemma holds for D1 and D2, either because we can

apply ∀∃-role propagation, or a similar sequence of rule applications as in Case 1.

In other words, whether the lemma holds for D1 and D2 is solely determined by

whether it holds for D′1 and D′2. For D′1 and D′2, again either Case 1 or Case 2

applies. If we can reduce the situation for D1 and D2 after a sequence of finitely

many steps to a situation for a pair of definers D0
1 and D0

2 on which Case 1

applies, we are done. Note that rd(D′1) ≤ rd(D1 − 1) and rd(D′2) ≤ rd(D2 − 1).

This means, after at most rd(D1) steps, we arrive at a pair of definers D0
1 and

D0
2 for which we have a situation as in Case 1. We obtain that D1 and D2 are

combined by a definer D′3 in Resnorm≺l
ALC (N ∗ ∪ M) that occurs in a subsuming

context to D3.

We have shown that in both cases, D1 and D2 are combined by a definer D′3 in

Resnorm≺l
ALC (N ∗ ∪M), and D′3 occurs in a subsuming context to D3.

If we look at the root distance of definers occurring in M, or that are combined

from at least one definer from M, we find an important property which is due to

how M is generated.

Lemma 4.4.7. Let ¬D1 t C t Qr.D2 be a clause occurring in Ni, where Ni =

Resnorm≺l
ALC (N ∪M) or Ni = Resnorm≺l

ALC (N S ∪ M), such that either D2 occurs in M

or ¬D2 tD ∈ Ni, where D occurs in M. Then, rd(D2) = rd(D1) + 1.

Proof. Note that for clause sets N ′ that are the direct result of normalisation, ¬D1 t

CtQr.D2 ∈ N ′ always implies rd(D2) = rd(D1)+1, due to how definers are introduced

by the normalisation. Note that because positive definer literals only occur in clauses

of the form ¬D′ tD (Lemma 4.2.5), saturation cannot decrease the root distance of

a definer. Saturation also cannot increase the root distance of a definer. The lemma

therefore holds for definers D2 occurring in M. Assume D2 is a definer such that

¬D2 tD ∈ Ni, where Ni is as in the lemma and D occurs in M.
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We note the special character of the clause set M: M = Cl(∃r∗.(C u ¬D)),

and therefore every clause in M is either of the form ∃r∗.D∗ or of the form ¬D t C.

Since r∗ does not occur in N , any non-empty clause that is inferred from a clause inM

using role propagation will contain at least one negative definer as well. New definers

only get introduced via the role propagation rule. Therefore, D2 must have been

introduced via an application of the role propagation rule, where at least one premise

contains a negative definer literal. Assume that D2 is such that it is introduced via role

propagation on the clauses ¬D1 tC1 tQr.D′2 and C2 tQr.D′′2 , where the lemma holds

for D1, D′2 and D′′2 . Resnorm≺l
ALC only infers clauses with at most one negative definer

literal, and therefore C2 does not contain any negative definer literal other than ¬D1.

Furthermore, as observed earlier, no inference can decrease the root distance of a

definer. We obtain rd(D2) = rd(D′2) = rd(D1+1). From this it follows that no sequence

of rule applications can lead to the introduction of a definer D2 that is as in the lemma

and that occurs in a clause ¬D1 t C t Qr.D2 such that rd(D2) 6= rd(D1) + 1.

Now that we established some properties about introduced definers, we can focus

on inferences on clauses that contain an introduced definer.

We can show that inferences on symbols outside S which are applied when com-

puting ResnormALC (N ∪M) have corresponding inferences that are applied when comput-

ing N ∗ and ResnormALC (N S ∪M).

Lemma 4.4.8. Let C ∈ Resnorm≺l
ALC (N ∪M) be the result of an inference on a literal

not in S ∪Nd. Then, either C ∈ N ∗, or N ∗ contains a clause C ′ that is the result of

replacing a negative definer literal ¬D in C by a negative definer literal ¬D′, and D′

occurs in a subsuming context to D or ¬D′′ t D′ ∈ Resnorm≺l
ALC (N ∗ ∪M), where D′′

occurs in a subsuming context to D.

Proof. Assume C is the result of an inference on two clauses C1 and C2, where for the

maximal literal L1 in C1 we have sig(L1) 6⊆ S ∪ Nd. If C ∈ Resnorm≺l
ALC (N ), C ∈ N ∗

follows trivially. Assume therefore C 6∈ Resnorm≺l
ALC (N ). It follows C1 6∈ Resnorm≺l

ALC (N )

or C2 6∈ Resnorm≺l
ALC (N ). Resnorm≺l

ALC prefers inferences on symbols that are not in S,

or with clauses of the form ¬D1 t D2. If C contains no negative definer literal, it

can therefore be inferred solely starting from the clauses in N , which contradicts

C 6∈ Resnorm≺l
ALC (N ). The same holds if C contains a negative definer literal ¬D
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where D occurs in Resnorm≺l
ALC (N ). C is therefore of the form ¬D tC ′, where D occurs

in Resnorm≺l
ALC (N ∪M) but not in Resnorm≺l

ALC (N ).

Since M only contains symbols that are in S ∪Nd, and at least one of C1 and C2

contains a symbol that is not in S ∪ Nd, C1 or C2 must be the result of inferences

involving clauses in N with symbols outside S ∪ Nd. These inferences only involve

clauses of the form ¬D′tD′′ and symbols that are not in S. Therefore, there must be

two definers D1 and D2 in N such that ¬D tD1, ¬D tD2 ∈ Resnorm≺l
ALC (N ∪M). By

Lemma 4.4.6, there are then two clauses ¬D′tD1, ¬D′tD2 ∈ N ∗, and either D′ occurs

in a subsuming context to D, or ¬D′′ t D′ ∈ Resnorm≺l
ALC (N ∗ ∪M) , where D′′ occurs

in a subsuming context to D. From this lemma also follows that for every definer Di

occurring inM for which ¬DtDi ∈ Resnorm≺l
ALC (N ∪M), ¬D′tDi ∈ IntALC(N ). Note

that this definer D′ satisfies the conditions given in the lemma.

Due to the ordering, C must be inferred in Resnorm≺l
ALC (N ∪M) starting with in-

ferences on these clauses ¬D t Di and clauses from N , followed by inferences on

symbols not in S that have at most one negative definer literal. Since for every

¬D tDi ∈ Resnorm≺l
ALC (N ∪M) we have ¬D′ tDi ∈ N ∗, we obtain that ¬D′ t C ′ can

be inferred in N ∗. ¬D′ t C ′ is the result of replacing ¬D in C by a negative definer

literal which is as specified in the lemma.

Lemma 4.4.9. For every clause ¬D ∈ Resnorm≺l
ALC (N ∪M), there is a clause ¬D′ in

N ∗ or in Resnorm≺l
ALC (N S ∪M), and D′ occurs in a subsuming context to D.

Proof. For definers D with ¬D ∈ Resnorm≺l
ALC (N ) or ¬D ∈ Resnorm≺l

ALC (M), the lemma

follows easily. Assume therefore ¬D 6∈ Resnorm≺l
ALC (N ) and ¬D 6∈ Resnorm≺l

ALC (M). As

we observed in the proof for Lemma 4.4.8, clauses in N can contribute to the un-

satisfiability of definers occurring in M, but clauses in M cannot contribute to the

unsatisfiability of definers occurring in N . Therefore, D is either a definer from M,

or there is a clause ¬D tD′ ∈ Resnorm≺l
ALC (N ∪M), where D′ occurs in M.

The proof is by contradiction, where we make use of the structure given by the root

distance defined in Definition 4.4.5. Let ≺rd be a total ordering on the definer symbols

in Resnorm≺l
ALC (N ∪M) such that D1 ≺rd D2 if rd(D1) < rd(D2). Assume D is the largest

unsatisfiable definer in Resnorm≺l
ALC (N∪M) according to≺rd such thatD does not occur in

Resnorm≺l
ALC (N ), and for which there is no unsatisfiable definer D′ in Resnorm≺l

ALC (N ∗S ∪M)
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in a subsuming context to D. By Lemma 4.4.6, Resnorm≺l
ALC (N ∗S ∪M) contains a de-

finer D′ that occurs in a subsuming context to D. By Lemma 4.4.8, there is further-

more such a definer such that for every clause ¬D t C ∈ Resnorm≺l
ALC (N ∪ M) that

is the result of an inference on a literal not in S, there is a corresponding clause

¬D′ t C ∈ Resnorm≺l
ALC (N ∪M). Let D′ be such a definer.

Let ≺c be a total order on clauses based on the multiset extension of ≺l, such

as we used it in the proof for refutational completeness of ResALC in Section 4.2.3.

Let ¬D t C ∈ Resnorm≺l
ALC (N ∪ M) be the largest clause according to ≺c such that

¬D′ t C 6∈ Resnorm≺l
ALC (N S ∪ M). By Lemma 4.4.8, ¬D t C is not the result of an

inference on a literal not in S ∪Nd. Therefore, ¬DtC is the result of an inference on

a literal in S ∪Nd. We distinguish the cases based on how ¬D t C is derived.

1. ¬DtC is inferred via resolution or ∀∃-role propagation on two clauses ¬DtC1

and ¬D t C2. Since inferences are only performed on maximal literals, ¬D t C

is smaller than both clauses according to ≺c. Because by assumption ¬D′ t C 6∈

Resnorm≺l
ALC (N S ∪ M), at least one of ¬D′ t C1 or ¬D′ t C2 does not occur in

Resnorm≺l
ALC (N S ∪M) either. But this contradicts the assumption that ¬D tC is

the largest such clause.

2. ¬D t C is inferred via ∃-elimination on two clauses ¬D t C t ∃r.D1 and ¬D1.

Because ¬D′ t C does not occur in Resnorm≺l
ALC (N S ∪ M), neither does ¬D′ t

C t ∃r.D1 nor ¬D1. Therefore, D1 has not been introduced solely by clauses

in N , and there must be a clause ¬D1 t D ∈ Resnorm≺l
ALC (N ∪M) such that D

occurs inM. By Lemma 4.4.7, we then have rd(D1) = rd(D) + 1 and D ≺rd D1.

By assumption, D is the largest definer according to ≺rd that does not fulfil

the lemma. Therefore, there is a definer D′1 with ¬D′1 ∈ Resnorm≺l
ALC (N S ∪M)

and D′1 occurs in a subsuming context to D1. We obtain ¬D′ t C t ∃r.D′1 ∈

Resnorm≺l
ALC (N S ∪ M), and hence, also ¬D′ t C ∈ Resnorm≺l

ALC (N S ∪ M). This

contradicts our assumption that ¬D′ t C 6∈ Resnorm≺l
ALC (N S ∪M)

We obtain that there is no largest clause according to ≺c such that ¬D′ t C 6∈

Resnorm≺l
ALC (N S ∪ M), and hence, ¬D′ ∈ Resnorm≺l

ALC (N S ∪ M). This contradicts the

assumption that there is a largest unsatisfiable definer D according to ≺rd such that D

does not occur in Resnorm≺l
ALC (N ) and for which there is no unsatisfiable definer D′ in
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Resnorm≺l
ALC (N S ∪M) in a subsuming context to D. Therefore, for every definer D with

¬D ∈ Resnorm≺l
ALC (N ∪M), there is such a definer D′.

We can finally establish the lemma for which we introduced the clause set M.

Lemma 4.4.10. N ∪M is unsatisfiable iff N S ∪M is unsatisfiable.

Proof. The lemma holds obviously for the case where M is unsatisfiable. Assume M

is unsatisfiable. We first prove that N S ∪M is unsatisfiable if N ∪M is unsatisfiable.

We distinguish two cases.

1. N is unsatisfiable. Due to the constraints on the ordering ≺l, for every clause C

that is not completely in S ∪ Nd, inferences in Resnorm≺l
ALC only apply on literals

in C that are also not in S ∪Nd. After all these inferences have been performed,

we can discard these clauses. Observe that all remaining inferences are also

possible from N S . Therefore, if N is unsatisfiable, ⊥ ∈ Resnorm≺l
ALC (N S).

2. N is satisfiable. Then, the clauses in M must contribute to inferring an incon-

sistency of N ∪M. Every clause inM is either of the form ∃r∗.D∗ or of the form

¬DtC, where r∗, D∗ and D do not occur inN . Therefore, the only way in which

the empty clause can be inferred from N ∪M if N is satisfiable, is by applying

the ∃-elimination rule on two clauses ∃r∗.D∗ and ¬D∗ in Resnorm≺l
ALC (N ∪M). By

Lemma 4.4.9, if ¬D∗ ∈ Resnorm≺l
ALC (N ∪M), then also ¬D∗ ∈ Resnorm≺l

ALC (N S∪M).

We obtain that if N ∪M is unsatisfiable, so is N S ∪M.

For the other direction, assume N S∪M is unsatisfiable. Since IntALC is sound, N S

only contains sound inferences from N . Therefore, if N S ∪M is unsatisfiable, so is

N ∪M. We obtain that N ∪M is unsatisfiable iff N S ∪M is unsatisfiable.

Because our construction started from a clause set M representing ∃r∗(C u ¬D),

where C and D are arbitrary ALC concepts with sig(C v D) ⊆ S, we obtain that

O |= C v D iff OS |= C v D, where sig(C v D) ⊆ S. This allows us to establish

interpolation completeness of IntALC.

Theorem 4.4.11. IntALC is interpolation complete for ALCν.

We note that in order to prove this result we exploited three major properties of

the calculi ResALC and IntALC. (1) We preserve refutational completeness if we restrict
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ResALC to inferences of clauses with at most one negative definer literal. (2) We

preserve refutational completeness if we additional restrict ResALC with an ordering

that makes literals outside of a given signature larger than other literals. (3) The

more complex property stated in Lemma 4.4.6 that any pair of definers from N that

are combined by a definer D in Resnorm≺l
ALC )(N ∪ M) are combined by a definer D′

in N ∗ = IntALC(N ), and D′ contributes to a definer in Resnorm≺l
ALC (N ∗ ∪ M) that

occurs in a subsuming context to D. This last lemma motivates the last modification

of the calculus we introduced in this chapter, the extension of ResnormALC by the ∀∀-

role propagation rule, and methods based on similar calculi to ResALC will need a

corresponding property.

4.4.3 Minimising Computed Uniform Interpolants

From the perspective of practicality, computing the saturated set IntALC(N ) com-

pletely is not feasible, and not necessary, to compute a uniform interpolant, since it

contains more entailments than are needed. IntALC(N ) can be seen more as an up-

per bound of the clausal representation of the uniform interpolant. While a more

detailed description on how to compute uniform interpolants in practice is given in

Chapter 8, we can already give a descriptive definition of a more tight set of clauses

that is sufficient to represent a uniform interpolant in clausal form.

Definition 4.4.12. Let N be a set of clauses and S a signature. The minimal

clausal representation of the ALCν uniform interpolant of N for S, which we de-

note by IntALC(N ,S)min, is the smallest subset of IntALC(N ) such that every clause

C ∈ IntALC(N ,S)min satisfies sig(C) ⊆ S ∪ Nd and is not redundant with respect

to IntALC(N ,S)min, and that contains all clauses from IntALC(N ) that additionally

satisfy one of the following conditions.

1. C ∈ N .

2. C is the result of applying a rule of IntALC on two clauses C1, C2 ∈ IntALC(ALC)

with sig(C1) ∩ (S ∪Nd) 6= ∅ or sig(C2) ∩ (S ∪Nd) 6= ∅.

3. C contains a definer D which occurs in another clause of the form ¬D t C ′ in

IntALC(N ,S)min.
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Condition 1 ensures that all clauses from the input set N are kept which are in

the desired signature. Condition 2 ensures that all entailments that are in the desired

signature, and are directly derived from clauses in IntALC(N ) that are not in the desired

signature, are kept. Note that, if we are only forgetting concept symbols, these are all

conclusions of the resolution rule, and if we are forgetting only role symbols, these are

all conclusions of the ∃-elimination rule.

Condition 3 ensures that IntALC(N ,S)min is closed under definer-occurrences. For

example, if IntALC(N ,S)min contains a clause C1 = ¬D t C ′1, then it should also

contain all clauses of the form C2 = C ′2 t Qr.D, Q ∈ {∀,∃}. Otherwise, C1 would not

contribute to the result of undoing the structural transformation.

IfN = Cl(O) for anALC ontologyO, then IntALC(N ,S)min is sufficient to compute

an ALCν uniform interpolant of O for S, as the following theorem shows.

Theorem 4.4.13. Let O be an ALCν ontology, S be a signature and N = Cl(O).

Then, OS = Ont(IntALC(N ,S)min) is an ALCν uniform interpolant of O.

Proof. Since IntALC is interpolation complete, OS = Ont(IntALC(N )S) is an ALCν

uniform interpolant of O for S. IntALC(N ,S)min contains all clauses in IntALC(N ) that

are inferences on symbols outside of S (Condition 2), and all clauses in the desired

signature that are already present inN (Condition 1). Condition 3 ensures additionally

that Cl(OS) contains the same definers as IntALC(N ,S)min modulo renaming. Hence,

it is possible to compute IntALC(N )S modulo definer names by saturating Cl(OS)

using IntALC. We obtain that all entailments of Ont(IntALC(N )S) are preserved, and

since OS is also in the desired signature, it is an ALC uniform interpolant of O

for S.

We conclude the chapter with some examples illustrating the uniform interpolation

procedure.
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4.5 Examples

Example 4.5.1 (Forgetting a concept symbol). O5 is the following ontology:

A v B t C

B v ∃r.B

C v ∀r.¬B

We want to compute the uniform interpolant for S5 = {A,C, r}. Normalisation results

in the following clause set N5 = Cl(O5).

1. ¬A tB t C (Normal Form Transformation)

2. ¬B t ∃r.D1 (Normal Form Transformation)

3. ¬D1 tB (Normal Form Transformation)

4. ¬C t ∀r.D2 (Normal Form Transformation)

5. ¬D2 t ¬B (Normal Form Transformation)

According to Condition 2 in Definition 4.4.12, we need to compute all resolvents on B

that can be derived from N5 using IntALC, modulo redundant clauses. Note that this

excludes clauses with more than one negative definer literal, since these are not inferred

by IntALC. We first apply resolution.

6. ¬A t C t ∃r.D1 (Resolution 1, 2)

7. ¬D2 t ¬A t C (Resolution 1, 5)

8. ¬D1 t ∃r.D1 (Resolution 2, 3)

We cannot resolve on Clauses 3 and 5, since the conclusion has more than one negative

definer literal. Theorem 4.3.3 shows that these inferences are not necessary if we only

want to derive normal clauses. We can however apply ∀∃-role propagation on Clause 2

and 4, which makes further applications of the resolution rule possible.

��9. ¬B t ¬C t ∃r.D12 (∀∃-Role Propagation 2, 4)

��10. ¬D12 tD1 (D12 v D1)

��11. ¬D12 tD2 (D12 v D2)

��12. ¬D12 tB (Resolution 3, 10)
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��13. ¬D12 t ¬B (Resolution 5, 11)

14. ¬D12 (Resolution 12, 13)

Clause 14 subsumes Clauses 10–13, and makes ∃-elimination on Clause 9 possible.

15. ¬B t ¬C (∃-Elimination 9, 14)

Clause 15 subsumes Clause 9. We saturate the remaining clauses.

��16. ¬A t C t ¬C (Resolution 1, 15, Tautology)

17. ¬D1 t ¬C (Resolution 3, 15)

In IntALC(N5,S1)min, only clauses that neither contain B nor a positive definer are

included. These are the Clauses 4, 6, 7, 8, 14 and 17 with a bold face number. After

eliminating all definers, we obtain the following set of axioms.

> v ¬C t ∀r.(¬A t C)

> v ¬A t C t ∃r.νX.(∃r.X u ¬C)

This set of axioms can be represented equivalently by the following ontology OS55 .

A v C t ∃r.νX.(∃r.X u ¬C)

C v ∀r.(¬A t C)

OS55 is an ALC uniform interpolant of O5 for S5.

Example 4.5.2 (Forgetting a role symbol). O6 contains the following axioms.

A v ∃r.(A tB)

B v ∀r.¬A

C v ∀r.¬B

We want to compute a uniform interpolant for S6 = {A,B,C}, that is, we want to

forget r.

Normalisation results in the following clausal representation N6 = Cl(O6):

1. ¬A t ∃r.D1 (Normal Form Transformation)

2. ¬D1 t A tB (Normal Form Transformation)
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3. ¬B t ∀r.D2 (Normal Form Transformation)

4. ¬D2 t ¬A (Normal Form Transformation)

5. ¬C t ∀r.D3 (Normal Form Transformation)

6. ¬D3 t ¬B (Normal Form Transformation)

According to Condition 2 in Definition 4.4.12, we have to infer all conclusions of

the ∃-elimination rule on r. In order to do so, we have to infer all unary clauses

of the form ¬D, D ∈ Nd. This clause cannot be derived for any of the existing

definers. Therefore, we have to trigger the introduction of new definers using the role

propagation rules.

7. ¬A t ¬B t ∃r.D12 (∀∃-Role Propagation 1, 3)

8. ¬D12 tD1 (D12 v D1)

9. ¬D12 tD2 (D12 v D2)

��10. ¬D12 t A tB (Resolution 2, 8)

11. ¬D12 t ¬A (Resolution 4, 9)

12. ¬D12 tB (Resolution 10, 11)

Clause 12 subsumes Clause 10. We cannot derive ¬D12, but we can trigger the intro-

duction of another definer D123 that is unsatisfiable.

13. ¬A t ¬B t ¬C t ∃r.D123 (∀∃-Role Propagation 5, 7)

��14. ¬D123 tD12 (D123 v D12)

��15. ¬D123 tD3 (D123 v D3)

��16. ¬D123 tB (Resolution 12, 14)

��17. ¬D123 t ¬B (Resolution 6, 15)

18. ¬D123 (Resolution 16, 17)

Clause 18 subsumes all other clauses that contain the negative definer literal ¬D123.

In addition, it makes the application of the ∃-elimination rule possible.

19. ¬A t ¬B t ¬C (∃-Elimination 13, 18)

Clause 19 is a clause in the desired signature S6, that has been inferred in one step

from a clause in IntALC(N6) that is not in S6. Therefore, Clause 19 is part of the result

set IntALC(N6,S6)min.
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By applying the ∀∀-role propagation rule on Clause 3 and 5, the introduction of

a definer D23 representing D2 uD3 is triggered. However, this definer does not occur

under an existential role restriction, and is therefore not immediately helpful. Applying

the ∀∃-rule on that clause and Clause 1 leads to a clause that has an existential role

restriction for a definer D231 representing D23uD1. The definer D231 is not introduced

as a new definer, if we follow the technique described in Section 4.2.2. Observe that

conj(D213) = {D1, D2, D3}. We also have conj(D123) = {D1, D2, D3}, which means we

would reuse this definer. Consequently, the conclusion of this derivation is Clause 13,

which we already inferred. In fact, we already inferred all clauses in IntALC(N6,S6)min.

These are the Clauses 2, 4, 6 and 18 that have a bold face number.

The only clause without a negative definer is Clause 18, and this clause does not

contain any role restrictions. Elimination of the definers would therefore simply delete

Clause 2, 4 and 6. Clause 18 is the sole axiom of the uniform interpolant:

> v ¬A t ¬B t ¬C

Alternatively, the uniform interpolant can be represented with the following equiv-

alent axiom:

A uB u C v ⊥

This is a uniform interpolant OS66 of O6 for S6.



Chapter 5

Extending the Method to SH

and SIF

In the last chapter, we introduced the ALC normal form and the calculi ResALC

and IntALC, together with extensions for ordered resolution and redundancy elimi-

nation. In this chapter, we extend the normal form and the calculi step by step to

incorporate role hierarchies (Section 5.1), transitive roles (Section 5.3) and functional

role restrictions (Section 5.4). Finally, in Section 5.5, we present a calculus for the de-

scription logic SIF that uses all these constructs except for role hierarchies. In order

to reason with the new expressivity, we introduce additional rules for each description

logic. For inverse roles, we furthermore give restrictions on the order in which rules are

applied. Functional role restrictions are simple forms of number restrictions, which

are discussed in Chapter 6. Section 5.4 therefore already prepares some key ideas

presented in Chapter 6.

After presenting the uniform interpolation method for ALCH in Section 5.1, we

discuss its extensions SH, ALCHF and ALCHI in isolation, since functional role

restrictions interact with transitive and inverse roles in non-trivial ways. Furthermore,

if a description logic supports both inverse roles and functional role restrictions, it

loses the finite model property. This means, there are SIF ontologies that have only

infinite models. For this reason, we have to adapt the model construction presented in

Chapter 4, which always creates a finite interpretation. This adaptation is presented in

Section 5.5, where refutational and interpolation completeness of the calculi for SIF is

proved. We finish this chapter with an overview of all rules introduced in this chapter.

103
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An overview of all calculi presented in the thesis can be found in the conclusion in

Chapter 9.

In the literature, several techniques have been proposed to encode some of the

additional constructs in SIF and SH into ALC ontologies using rewrite rules. For

transitivity axioms, such a rewriting can be found in Tobies (2001); Schmidt and Hus-

tadt (2003a), for inverse roles and functional roles, methods are presented in Calvanese

et al. (1998); Carral et al. (2014). However, these rewriting rules introduce additional

symbols and are developed with specific reasoning goals in mind, such as classifica-

tion or satisfiability checking. It is therefore not straightforward whether and how

these rewrite rules can be used to extend a uniform interpolation method for ALC

to a method for SIF . In contrast, our methods directly integrate the new expressiv-

ity into the calculi. This is also required since uniform interpolants have to preserve

entailments using these constructs.

Whereas for ALC ontologies, all uniform interpolants can be represented finitely

by extending the input language with fixpoint operators, it turns out that for some

description logics considered in this chapter, this is not sufficient. In particular, if

role hierarchies and transitive roles are involved, we can only compute uniform inter-

polants for signatures that contain all transitive roles of the input ontology, and if role

hierarchies and functional role restrictions are involved, we can only compute uniform

interpolants for signatures that include all role symbols of the role hierarchy. Whereas

it is likely that further language extensions can solve this problem, we focus on the

cases where uniform interpolants can be expressed using fixpoint operators as only

extension. For this reason, we define two restricted versions of interpolation complete-

ness, which we establish for the respective calculi for description logics with transitive

roles, functional role restrictions, and both.

Definition 5.0.3. A calculus Calc is interpolation complete for forgetting concepts in

a language L, if for any L ontology O and any signature S with Nr ⊆ S , Ont((N ∗n)S)

is an L uniform interpolant of O for S, where N ∗ = Calc(Cl(O)).

A calculus Calc is interpolation complete for forgetting intransitive roles and con-

cepts in a language L, if for any L ontology O and any signature S such that r ∈ S

for every role r with trans(r) ∈ O, Ont((N ∗n)S) is an L uniform interpolant of O for S,

where N ∗ = Calc(Cl(O)).
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∃-Monotonicity
C t ∃R.D R v S

C t ∃S.D

∀-Monotonicity
C t ∀R.D S v R

C t ∀S.D

Role Hierarchy
S v R R v T

S v T

Figure 5.1: Additional inference rules in ResALCH and IntALCH.

5.1 Role Hierarchies

5.1.1 ALCH without Redundancy Elimination

The description logic ALCH extends ALC with role inclusion and role equivalence

axioms of the forms r v s and r ≡ s, where r, s ∈ Nr. Whereas ALC ontologies only

have a TBox, in ALCH, ontologies may additionally have a non-empty RBox that

contains these types of axioms. RBox axioms are represented in the normal form by

clauses of the form r v s. This is sufficient, since role equivalence axioms r ≡ s are

logically equivalent to corresponding pairs of role inclusion axioms r v s and s v r.

Definition 5.1.1. An ALCH clause is either an ALC clause or a role inclusion axiom.

An ontology N is in ALCH normal form if every axiom in N is an ALCH clause.

ResALCH and IntALCH respectively extend ResALC and IntALC with the rules shown

in Figure 5.1. ResALCH extends ResALC by the ∃-monotonicity rule, which is sufficient

for refutational completeness. IntALCH extends IntALC by the ∃- and ∀-monotonicity,

as well as by the role hierarchy rule.

Note that the rules are defined in a general way, in the sense that they apply also

to roles of the form r−, even though these are not part of the normal form. We use

this representation throughout this chapter, in order to be able to reuse the rules as

formulated for description logics that allow for inverse roles.
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The monotonicity rules derive information based on ALC clauses and role inclu-

sions. Whereas the ∃-monotonicity rule replaces roles by their super-roles, the ∀-

monotonicity rule replaces roles by their sub-roles. The role hierarchy rule makes the

transitive closure of the role inclusions explicit in the saturated clause set.

By iterative application starting from a clause C t ∃r.D, the ∃-monotonicity rule

adds a clause C t ∃s.D for every super-role s of r in the transitive closure of the role

hierarchy. This is why the other two rules are not needed for refutational completeness,

and are not included in ResALCH. On the other hand, in case a role symbol is to be

eliminated, all three rules are needed for interpolation completeness.

To prove refutational completeness of ResALCH, the model construction presented

in the last chapter can be used without further adaptations. Recall that vN denotes

the reflexive-transitive closure of the partial ordering v induced by clauses of the

form r v s in N (see Section 3.1).

Lemma 5.1.2. Let N be any satisfiable set of ALCH clauses, and let I be an inter-

pretation built using the same procedure as presented in Section 4.2.3, but based on the

clause set N ∗ = ResALCH(N ) \ {r v s ∈ ResALCH(N )}. Then, I |= r v s for every

role inclusion r vN s in the transitive closure of the role hierarchy.

Proof. Due to the ∃-monotonicity rule, for every clause of the form C t ∃r.D ∈ N ∗

and every role s with r vN s, there is a corresponding clause C t ∃s.D ∈ N ∗. Since

these clauses determine which literals are added to the model fragments, for every

literal ∃r.D′ ∈ ID and every r vN s, there is also the literal ∃s.D′ ∈ ID. Literals

of this form determine which edges are added to the model I. Therefore, if there is

an edge (xD1 , xD2) ∈ rI and r vN s, then also (xD1 , xD2) ∈ sI . This establishes that

rI ⊆ sI whenever r vN s, and therefore that I |= r v s for every r vN s.

Theorem 5.1.3. ResALCH is sound, terminating and refutationally complete.

Proof. Termination follows from termination of ResALC (Lemma 4.2.4), since the in-

troduction of definer symbols has not changed. Soundness of the ∃-monotonicity rule

can be easily verified as well. For refutational completeness, assume that N is any

satisfiable set of ALCH clauses and N ∗ = ResALCH(N ). The candidate model I is

created based on N ∗ using the procedure presented in Section 4.2.3.
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Denote by N ∗ALC the set of all ALC clauses in N ∗, that is, all clauses which are

not role inclusion axioms. Since ResALCH only adds rules to ResALC, ResALC(N ∗ALC) =

N ∗ALC, that is, N ∗ALC is saturated with respect to ResALC. Hence, by Lemma 4.2.19,

I |= C for every clause C ∈ N ∗ALC. All remaining clauses in N ∗ \N ∗ALC are of the form

r v s. These clauses are satisfied in I by Lemma 5.1.2. Hence, I |= C for every clause

C ∈ N ∗, and therefore I is a model of N ∗. This establishes refutational completeness

of N ∗.

Theorem 5.1.4. IntALCH is interpolation complete for ALCHν.

Proof. Let O be an ALCHν ontology, S a signature, N ∗ = IntALCH(Cl(O)) and OS =

Ont(N ∗S ). If IntALCH is interpolation complete for ALCHν, OS is a ALCHν uniform

interpolant of O for S.

Note that the role hierarchy rule of IntALCH makes all entailments of the form

r v s explicit in N ∗. Therefore, any those entailments in S are preserved by OS.

That entailments of the form C v D and C ≡ D are preserved as well can be shown

in a similar fashion as for IntALC.

In order to prove interpolation completeness of IntALC in Theorem 4.4.11, the

following properties of ResALC and IntALC were exploited: (1) refutational completeness

is preserved if the calculus only infers clauses with at most one negative definer literal

(Theorem 4.3.3), (2) refutational completeness is preserved if we use ordered resolution

(Theorem 4.3.5), and (3) whenever two definers D1 and D2 in N = ResALC(O) are

combined in ResnormALC (N ∪M) by a definer D, whereM = Cl(∃r∗.C), r∗ 6∈ sig(O) and

sig(C) ⊆ S, then D1 and D2 are combined by a definer D′ in N ∗, and either D′ = D,

or ResALC(N ∗∪M) contains a clause ¬D′′tD′, and D′′ occurs in a subsuming context

to D in ResALC(N ∗ ∪M) (Lemma 4.4.6). If IntALCH enjoys the same properties, it

follows that we can adapt the proofs to show that OS preserves all entailments of the

form C v D with sig(C v D) ⊆ S.

For (1), we note that in ResALCH and IntALCH, nothing changes in the way definers

are used and introduced. For (2), we observe that the model construction used to prove

refutational completeness for ResALCH does not rely on a different ordering as the model

construction for ResALC. We can therefore refine ResALCH in the same way as ResALC,

and obtain a calculus Resnorm≺l
ALCH that is refutational complete. (3) regards definers

that are introduced when N ∪M is saturated. In order to be interpolation complete,
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inferences of the empty clause from N ∪M must have corresponding inferences of the

empty clause from N S ∪M. For this, it is crucial that every pair of definers from N

that is combined in N ∪M is combined in N ∗ by a corresponding definer. Which

definers are combined in a clause set is determined by which role propagation rules can

be applied on that clause set. Because of role hierarchies, in ALCH role restrictions

with different roles can interact. The monotonicity rules make sure that none of these

inferences get lost when clauses with role symbols outside S are removed from N ∗. We

consider both ways in which role restrictions with different role symbols can interact.

Suppose N ∗ = IntALCH(N ) contains a clause of the form C1 = C ′1 t ∃r.D1 and M

contains a clause of the form C2 = C ′2 t ∀s.D2. If r vN s, C ′1 t ∃s.D1 ∈ N ∗ due to

the ∃-monotonicity rule, and we can apply ∀∃-role propagation on this clause and C2.

Assume r 6∈ S. Then C ′1 t ∃s.D1 is still in N S due to the ∃-monotonicity rule, and

the same inference is possible on N S ∪M.

On the other hand, suppose N ∗ contains a clause of the form C1 = C ′1 t ∀r.D1

and M contains a clause of the form C2 = C ′2 t ∃s.D2 where s vN r. Then, the ∃-

monotonicity rule of ResALCH applies to C2 and we can obtain the clause C ′2t∃r.D1 such

that the ∀∃-role propagation rule can be applied on this clause and C1. Assume r 6∈ S.

Then, due to the ∀-monotonicity rule of IntALCH, the clause C ′1 t ∀s.D2 is included

in N S , and we can make a corresponding ∀∃-role propagation inference.

We see that IntALCH also enjoys property (3). Therefore, ResALCH and IntALCH en-

joy all properties that are needed for showing interpolation completeness, and IntALCH

is interpolation complete for ALCHν.

5.1.2 ALCH with Redundancy Elimination

The redundancy elimination rules in RessALC exploit the fact that a subsumption hierar-

chy is implied by clauses of the form ¬D1tD2. This is used to define subsumption be-

tween literals of the form ∃R.D or ∀R.D. This idea can be taken further in the presence

of role inclusion axioms. Since R v S |= ∃R.D v ∃S.D and R v S |= ∀S.D v ∀R.D,

we can extend the redundancy notion defined by Definition 4.3.6.

Definition 5.1.5. A literal L1 subsumes a literal L2 with respect to a clause set N ,

in symbols L1 vl L2, if one of the following conditions hold:
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∀∃-Role Propagation

C1 t ∀S.D1 C2 t ∃R.D2 R vN S

C1 t C2 t ∃R.D12

where D12 is a possibly new definer representing D1 uD2.

∀∀-Role Propagation

C1 t ∀R1.D1 C2 t ∀R2.D2 R vN R1 R vN R2

C1 t C2 t ∀R.D12

where D12 is a possibly new definer representing D1 uD2.

Figure 5.2: Modified role propagation rules for RessALCH.

1. L1 = L2.

2. L1 = ∃R.D1, L2 = ∃S.D2, R vN S and either D1 = D2 or ¬D1 tD2 ∈ N .

3. L1 = ∀R.D1, L2 = ∀S.D2, S vN R and either D1 = D2 or ¬D1 tD2 ∈ N .

A clause C1 subsumes a clause C2 (C1 vc C2) if every literal L1 ∈ C1 subsumes a

literal L2 ∈ C2. A clause C is redundant with respect to a clause set N if N contains

a clause C ′ with C ′ vc C. The reduction of a clause C, red(C), is obtained from C by

removing every literal that subsumes another literal in C.

With this notion of subsumption, conclusions of the monotonicity rules are redun-

dant with respect to the premises. In order to preserve completeness, we integrate

the monotonicity rules into the role propagation rules, which leads to the modified

set of rules shown in Figure 5.2. RessALCH uses the modified ∀∃-role propagation rule,

and the redundancy elimination rules introduced in Section 4.3, where the extended

definitions in Definition 5.1.5 are used.

Theorem 5.1.6. RessALCH is sound, terminating and refutationally complete.

Proof. We can directly reuse the model construction used to show refutational com-

pleteness of ResALC without adapting the underlying ordering.

Suppose N ∗ = RessALCH(N ) is the saturation of any set of ALCH clauses us-

ing RessALCH after removing redundant clauses, such that ⊥ 6∈ N ∗. As observed ear-

lier, N ∗ does not contain inferences of the ∃-monotonicity rule, since conclusions of
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this rule are subsumed by the premise. However, we can saturate N ∗ using the ∃-

monotonicity rule. Denote the resulting set by N ∗mon.

In N ∗mon, there is a literal C t ∃S.D for every clause C t ∃R.D with R vN S. The

model construction used to prove Theorem 4.2.20 can directly be applied on the set

of clauses N ∗mon \ {r v s ∈ N ∗} to build a candidate model I for N ∗. For the same

reason as for ResALC and ResALCH, I is a model of N ∗.

Due to Lemma 5.1.2 and Theorem 5.1.3, this implies that RessALCH is sound, ter-

minating and refutationally complete.

We can directly use the modified role propagation rules in IntALCH, since they

only integrate rules already present in the calculus. Note that we can use the same

technique as is defined in Definition 4.4.12 to compute a minimal clausal representation

IntALCH(Cl(O),S)min of theALCH uniform interpolant ofO for S. Required inferences

of the monotonicity rules are still included in the minimal clausal representation of

the uniform interpolant, since we only check redundancy against the resulting clause

set. This means, inferences made by the monotonicity rules can be included in the

uniform interpolant, even if they are redundant with respect to their premises.

In the following sections, we integrate the monotonicity rules into all rules where

necessary.

5.2 Transitive Roles

The description logic SH extends ALCH with transitivity axioms of the form trans(r),

which are part of the RBox of an SH ontology.

There are various known techniques to extend reasoning methods to description

logics with transitivity axioms. While tableau-reasoning allows for a direct way to

integrate transitivity into the calculus (see for example Halpern and Moses, 1992;

Baader and Sattler, 2001), another common technique is to rewrite the input TBox in

such a way that it can be processed by a reasoner that does not support transitive roles

(Tobies, 2001; Schmidt and Hustadt, 2003a; Hustadt et al., 2004a; Carral et al., 2014).

Our approach is to extend our calculus by a new rule. This rule has similarities to

rewriting rules that have been used before. For example, the transformation presented

in Schmidt and Hustadt (2003a) introduces similar clauses as our rule.
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We first motivate the limitations of our method. The following example indicates

that SHν is in general not expressive enough to represent uniform interpolants of SH

ontologies for all signatures.

Example 5.2.1. Consider the following SH ontology O:

s v r

r v t

trans(r)

O has an infinite set of entailments of the following form, where C is any concept:

O |= ∀t.C v ∀s.C

O |= ∀t.C v ∀s.∀s.C

O |= ∀t.C v ∀s.∀s.∀s.C
...

Since neither t nor s are transitive, it is not clear how a finite SHQν ontology in

sig(O) \ {r} can capture these entailments.

In contrast, if the signature S to interpolate for contains all transitive roles of

the ontology O, there is always a finite SHν uniform interpolant of O. Therefore,

the calculus we present in this section is only interpolation complete for forgetting

intransitive roles.

Since there is only one new type of axioms, the extension of the normal form is

straightforward.

Definition 5.2.2. An SH clause is either an ALCH clause or is of the form trans(r),

where r ∈ Nr. An ontology N is in SH normal form if every axiom in N is an SH

clause.

The calculi ResSH and IntSH extend ResALCH and IntALCH by the transitivity rule

shown in Figure 5.3, which introduces a new definer D′. For termination, this rule is

only applied if no corresponding definer has been introduced yet.

The transitivity rule is motivated as follows. Assume a domain element x of any

model satisfies ∀r.D, where r has a transitive sub-role s. Since s is transitive, every
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Transitivity Rule

C t ∀R.D trans(S) S vN R

C t ∀S.D′ ¬D′ tD ¬D′ t ∀S.D′

Figure 5.3: Transitivity rule of ResSH and IntSH.

element x′ that is connected to x by a chain of s-successors is also an s-successor of x.

Since s is a sub-role of r, every such x′ is also an r-successor of x, and has to satisfy D

as well. We express this information by introducing a new cyclic definer D′ such

that D′ v D. In interaction with the ∀∃-role propagation rule, this ensures that every

s-successor satisfying D′ has only s-successors that also satisfy D′. Because D′ v D,

all these s-successors also satisfy D. This way we express on a clausal level that if a

domain element x satisfies ∀r.D, every element x′ that is connected to x by a chain

of s-successors satisfies D as well.

Example 5.2.3. Consider the following ontology OSH.

A v ∀s.(A tB)

A v ∃r.∃r.¬B

r v s

trans(r)

We want to forget B, and compute a uniform interpolant for SSH = {A, r, s}. The SH

normal form of OSH consists of the following clauses:

1. ¬A t ∀s.D1

2. ¬D1 t A tB

3. ¬A t ∃r.D2

4. ¬D2 t ∃r.D3

5. ¬D3 t ¬B

6. r v s

7. trans(r)
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The transitivity rule is applied on Clause 1 and the two RBox axioms.

8. ¬A t ∀r.D′1 (Transitivity 1,6,7)

9. ¬D′1 tD1 (Transitivity 1,6,7)

10. ¬D′1 t ∀r.D′1 (Transitivity 1,6,7)

11. ¬D′1 t A tB (Resolution 2, 9)

In order to derive clauses that allow for inferences on B, several applications of the

∀∃-role propagation rule have to be performed.

12. ¬A t ∃r.D′12 (∀∃-role propagation 3, 8)

13. ¬D′12 tD′1

14. ¬D′12 tD2

15. ¬D′12 t ∃r.D3 (Resolution 4, 14)

16. ¬D′12 tD1 (Resolution 9, 13)

17. ¬D′12 t ∀r.D′1 (Resolution 10, 13)

18. ¬D′12 t A tB (Resolution 11, 13)

19. ¬D′12 t ∃r.D′13 (∀∃-role propagation 15, 17)

20. ¬D′13 tD′1

21. ¬D′13 tD3

��22. ¬D′13 t A tB (Resolution 11, 20)

23. ¬D′13 t ¬B (Resolution 5, 21)

24. ¬D′13 t A (Resolution 22, 23)

More rule applications are possible, but all further inference steps infer redundant

clauses and clauses that are not necessary for the uniform interpolant. The clauses

with a bold face number are in the clausal form of the uniform interpolant. Note that

due to Theorem 4.4.13, we can omit clauses that are not the direct result of resolution

on B, or do not contain a definer that has to be included in the clausal representation of

the uniform interpolant. In particular, we can omit the conclusions of the transitivity

rule (Clauses 8–10), since the definer D′ does not have to be included in the uniform

interpolant.
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After eliminating all definers, we obtain the following uniform interpolant OSSH.

A v ∃r.∃r.A r v s trans(r)

In order to prove refutational completeness of RessSH, we adapt the candidate model

construction to incorporate transitive roles. Let N be any set of SH clauses, N ∗ =

RessSH(N ) be the saturation of N , and suppose ⊥ 6∈ N ∗. Following the construction

presented in Section 4.2.3, together with the modifications for role hierarchies discussed

in Section 5.1.2, we build the interpretation I = 〈∆I , ·I〉 based on the clauses in N ∗.

In order to prove the refutational completeness of ResSH, I has to be extended to

incorporate transitivity axioms. Itrans = 〈∆I , ·Itrans〉 is defined as follows, where r∗

denotes the transitive closure of r.

1. For every A ∈ Nc, A
Itrans = AI .

2. For every r ∈ Nr, r
Itrans = rI ∪ {(x, x′) | (x, x′) ∈ (sI)∗, s vN r, trans(s) ∈ N}.

This modification ensures (i) that rItrans is transitive if trans(r) ∈ N and (ii) that for

all roles with s vN r, we still have sItrans ⊆ rItrans . This way, it ensures that I |= trans(r)

for all trans(r) ∈ N ∗, and I |= r v s for all r v s ∈ N ∗.

Lemma 5.2.4. For every clause C ∈ N ∗, Itrans |= C.

Proof. We already observed that Itrans |= C for all clauses C of the form r v s and

trans(r). Note that the satisfaction of concept symbols and existential restrictions is

unaffected by the modification, since we only add additional edges between individuals.

Therefore, if the maximal literal in C is of the form A, ¬A or ∃r.D, Itrans |= C

follows from the results in Lemma 4.2.19 and Lemma 5.1.2, which show that the

model construction for ResALC and ResALCH always succeeds. Itrans |= C also if the

maximal literal in C is of the form ∀r.D and there is no role s with trans(s) ∈ N and

s vN r, since in this case rItrans = rI .

The only remaining case is that the maximal literal in C is of the form ∀r.D

and there is a role s with trans(s) ∈ N and s vN r. We prove this case by con-

tradiction. Assume C is the smallest clause in N ∗ with Itrans 6|= C, the maximal

literal in C is of the form ∀r.D and there is a role s with trans(s) ∈ N and s vN r.

Assume C = C ′ t ∀r.D. Since Itrans 6|= C, there is a domain element xD1 ∈ ∆Itrans
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with xD1 6∈ CItrans . This implies xD1 6∈ (∀r.D)Itrans . Therefore, there must be a do-

main element xD2 with (xD1 , xD2) ∈ rItrans and xD2 6∈ DItrans . We can establish that

(xD1 , xD2) 6∈ rI , since (xD1 , xD2) ∈ rI would imply xD2 ∈ DI by Lemma 4.2.19. We

therefore have (xD1 , xD2) ∈ rItrans \ rI . This implies (xD1 , xD2) ∈ (tI)∗ for some role t

with trans(t) ∈ N and t vN r. Without loss of generality, we may assume that t = s.

Since (xD1 , xD2) ∈ (sI)∗, there is a chain of s-edges in I that connect xD1 with xD2 .

Due to our modification of the model construction in Section 5.1.2, and since s vN r,

we have an r-edge in I for every such s-edge of the chain.

Therefore, xD1 and xD2 are connected in I by a chain of r-edges along domain

elements xD′1 , xD′2 , . . . , xD′n , where D′1 = D1 and D′n = D2. An r-edge between two

domain elements xi and xi+1 is only added by the model construction if there is

corresponding model fragment ID
′
i with ∃r.D′i+1 ∈ ID

′
i for 1 ≤ i < n. If ∃r.D′i+1 ∈ ID

′
i ,

there must be clauses Cji = C ′ji t ∃r.D
′
i+1, where ∃r.D′i+1 is maximal and I

D′i
ji−1 6|= Cji .

For the first domain element of the chain, xD1 , we have xD1 6∈ (C ′)I . Therefore,

ID1 6|= C ′, since C ′ = C \{∀r.D}. We also have ID1 6|= C ′j1 , due to negative monotonic-

ity of the model construction (Lemma 4.2.14). Observe that, due to the transitivity

rule and the clause C = C ′ t ∀r.D, there are also the clauses Ctrans
1 = C ′ t ∀r.D′,

Ctrans
2 = ¬D′ t D and Ctrans

2 = ¬D′ t ∀r.D′. ∀∃-role propagation on Cj1 and Ctrans
1

produces the clause Ck = C ′ t C ′j1 t ∃r.Dk, with ¬Dk tD′ ∈ N ′. We have Ck = Cj1

and Dk = D′2, since otherwise Ck ≺c Ci1 , ∃r.Dk ∈ ID1
i1−1 and ID1

i1−1 |= Ci1 . Therefore,

¬D′2 tD′ ∈ N ∗ and ¬D′2 t ∀r.D′ ∈ N ∗.

Now, by induction on i starting from 2, we can show that ¬D′i t D′ ∈ N ∗ and

¬D′i t ∀r.D′ ∈ N ∗ for all 2 ≤ i ≤ n. Since I |= ¬Dji t ∀r.D′ due to completeness of

ResALCH, and D′i ∈ ID
′
i due to the construction of the model fragments, D′ ∈ ID′i+1 .

By Lemma 4.2.17, this implies ¬D′i+1 tD′ ∈ N ∗. Resolution on D′ and ¬D′ t ∀r.D′

results in ¬D′i+1 t ∀r.D′ ∈ N ∗.

For the last element of the chain, D′n = D2, and hence ¬D2tD′ ∈ N ∗. Resolution

on D′ and ¬D′ t D gives us ¬D2 t D ∈ N ∗, and therefore D ∈ ID2 and xD2 ∈ DI

by the model construction. Since the interpretations of concept symbols are the same

in Itrans, this implies xD2 ∈ DItrans . But this contradicts the observation that there is

a domain element xD2 such that (xD1 , xD2) ∈ rItrans and xD2 6∈ DItrans , and the initial

assumption that xD1 6∈ (∀r.D)Itrans .
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We obtain that Itrans |= C for all C ∈ N ∗, and that Itrans is a model of N ∗.

This lemma allows us to establish refutational completeness of RessSH.

Theorem 5.2.5. ResSH is terminating, sound and refutationally complete for SH.

To prove interpolation completeness of IntSH, there is not much to be done, since

interpolation completeness is already proved for IntALCH, and we cannot forget tran-

sitive roles with this calculus.

Theorem 5.2.6. IntSH is interpolation complete for forgetting intransitive roles and

concepts in SHν.

Proof. Let O be any SH ontology and S be any signature such that for all trans(r) ∈ O

we have r ∈ S. LetN = Cl(O) andN S = (IntSH(N )n)S . Let C be a concept such that

sig(C) ⊆ S and M = Cl(∃r∗.C), where r∗ 6∈ sig(O). We have to show that whenever

N ∪M is unsatisfiable, N S ∪M is unsatisfiable as well (see proofs for Theorem 4.4.11

and Theorem 5.1.4).

The only new rule in ResSH is the transitivity rule, which allows for inferences on

transitivity axioms. Due to the restriction on the signature, all these axioms are still

present in N S , and the role hierarchy rule ensures that N S preserves all entailments

of the form r v s, r, s ∈ S. Therefore, if the transitivity rule can be applied on any

clause in N ∪M, a similar application is possible in N S ∪M.

5.3 Inverse Roles

ALCHI extends ALCH with roles of the form r−, r ∈ Nr. Recall that given a role R,

we denote by Inv(R) its inverse, that is Inv(r) = r− and Inv(r−) = r. The normal form

for ALCHI is the same as for ALCH, only that we also allow roles of the form r−.

Observe that the following ALCHI axioms are equivalent:

> v C1 t ∀R.C2

> v C2 t ∀Inv(R).C1

This equivalence can be understood from the first-order logic representation of

both axioms. If we represent C1 and C2 using two unary predicates, and R using
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a binary predicate, both axioms are represented as ∀x, y : C1(x) ∨ R(x, y) ∨ C2(y)

(see Section 3.1). The equivalence cannot directly be expressed as a rule, since in

general, C1 and C2 might be complex concepts, and complex concepts under a role

restriction are not allowed in the normal form. Instead, we introduce further definers

for the concept that would occur under the universal role restriction. In order to

preserve termination of the calculus, this has to be done in a controlled way that

avoids the introduction of arbitrarily many new definer symbols. This is achieved by

using an additional normal form transformation step, which is applied directly after

the normal form transformation introduced in Section 4.1.1. For this, the following

transformation rule is used.

C t ∀R.D =⇒ ¬D∀R.D t C, D∀R.D t ∀R.D (5.1)

The transformation is sound according to our definition of soundness, because it

does not introduce any new entailments without definer symbols. The first clause is

equivalent to the concept inclusion D∀R.D v C, and the second axiom is of a form that

allows us to make use of the equivalence observed at the beginning of this section,

since the other than the universal restriction it only contains a concept symbol.

Using this transformation, we ensure that every universal restriction in the clause

set occurs in a clause of the form D∀R.D t ∀R.D. The transformation is applied once

for each universal restriction in each clause. For example, the clause At∀r.D1t∀r.D2

is transformed into the following set of clauses:

A t ∀r.D2 t ¬D∀r.D1 , D∀r.D1 t ∀r.D1

A t ∀r.D1 t ¬D∀r.D2 , D∀r.D2 t ∀r.D2

For the clause At∀r.D1t∀r.D2t∀r.D3, the transformation produces three different

clauses. Note that, in contrast to the standard normal form transformation, the output

of this transformation may not be a normal clause set according to Definition 4.1.4,

since clauses with more than one negative definer literal are possible. For instance,

the clause ¬D1 t ∀r.D2 is transformed to ¬D1 t ¬D∀r.D2 and D∀r.D2 t ∀r.D2.

For termination, it is crucial that the transformation is only applied once, as part

of the normal form transformation, and not during the application of the calculus.

This is why the transformation is used as part of the normal form transformation,



118 CHAPTER 5. Extending the Method to SH and SIF

Role Inversion
D1 t ∀R.D2

D2 t ∀Inv(R).D1

Figure 5.4: Role inversion rule of ResALCHI and IntALCHI .
.

and not as part of the calculus. Note that the normal form transformation still only

introduces linearly many definer symbols (one for each existential restriction and two

for each universal restriction).

The calculi ResALCHI and IntALCHI work on any set of clauses transformed this

way, and extend RessALCH and IntALCH by the role inversion rule shown in Figure 5.4.

This rule directly implements the equivalence we showed at the beginning of the sec-

tion, while preserving the normal form in its conclusion, thanks to the additionally

introduced definers. Since the number of definers after the normal form transforma-

tion is still linear in the input size, the number of introduced definer symbols is still

bounded by O(2n).

Example 5.3.1. Consider the following ontology OALCHI :

A0 v ∃r.B0

B0 v ∃r.B1 u (A1 tB2)

B1 v ∀r−.¬B2

One can verify that OALCHI |= A0 v ∃r.A1. This is visualised in Figure 5.5.

Every instance of A0 has an r-successor satisfying B0, and every instance of B0 has

an r-successor satisfying B1. Additionally, every B0 instance satisfies A1 tB2, due to

the second axiom in the ontology. Because of the third axiom of the ontology, every

instance of B1 has only r-predecessors that do not satisfy B2. As we can see in the

graph, every instance of B0 is an r-predecessor of an instance of B1. Hence, every

instance of B0 satisfies ¬B2, and by resolution with A1 t B2, we can conclude that

B0 v A1 and A0 v ∃r.A1.

In order to verify that our calculus infers the same conclusion, we compute the

uniform interpolant for SALCHI = {A0, A1, r}. The initial normal form transformation
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A0 B0, A1 tB2,¬B2,A1 B1,∀r−.¬B2
r r

Figure 5.5: Model of OALCHI , an ontology with inverse roles.

produces the following clause set:

1. ¬A0 t ∃r.D1

2. ¬D1 tB0

3. ¬B0 t ∃r.D2

4. ¬D2 tB1

5. ¬B0 t A1 tB2

6. ¬B1 t ∀r−.D3

7. ¬D3 t ¬B2

Clause 6 contains a universal role restriction. Hence, for ALCHI, we finish the normal

form transformation by adding the following clauses:

8. ¬D∀r−.D3
t ¬B1

9. D∀r−.D3
t ∀r−.D3

We apply IntALCHI to the clause set. Because we want to compute the uniform in-

terpolant for SALCHI = {A0, A1, r}, we have to infer all resolvents on B0, B1 and B2,

as well the transitive closure under definers. Clause 6 remains in the clause set as

resolvent of Clause 8 and 9. Note that inferred clauses with more than one negative

definer are not needed. We process the concepts B0, B1 and B2 one after the other.

10. ¬D1 t ∃r.D2 (Resolution 2, 3 on B0)

11. ¬D1 t A1 tB2 (Resolution 2, 5 on B0)

12. ¬D2 t ∀r−.D3 (Resolution 4, 6 on B1)

13. D3 t ∀r.D∀r−.D3
(Role Inversion 9)

��14. ¬D1 tD3 t ∃r.D2∀r−.D3
(∀∃-Role Propagation 10, 13)

��15. ¬D2∀r−.D3
tD2 (D2∀r−.D3

v D2)

��16. ¬D2∀r−.D3
tD∀r−.D3

(D2∀r−.D3
v D∀r−.D3

)

��17. ¬D2∀r−.D3
tB1 (Resolution 4, 15 on D2)
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��18. ¬D2∀r−.D3
t ¬B1 (Resolution 8, 16 on D′)

19. ¬D2∀r−.D3
(Resolution 17, 18 on B1)

20. ¬D1 tD3 (∃-Elimination 14, 19)

21. ¬D1 t ¬B2 (Resolution 7, 20 on D3)

22. ¬D1 t A1 (Resolution 11, 21 on B2)

All further inferences are redundant or produce clauses that are not needed for the

uniform interpolant. The clauses with a bold face number form the clausal form

representation of the uniform interpolant. After eliminating all definers, we obtain the

following ontology, which is a uniform interpolant of OALCHI for SALCHI :

A0 v ∃r.(∃r.∀r−.> u A1)

Because ∀r−.> is tautological, the uniform interpolant can be simplified to the follow-

ing uniform interpolant OSALCHI :

A0 v ∃r.(∃r.> u A1)

We see that OSALCHI |= A0 v ∃r.A1, as observed in the beginning of the example.

Before we prove to the completeness properties of RessALCHI and IntALCHI , we prove

the following lemma about sets saturated using ResALCHI .

Lemma 5.3.2. Let N be any set of clauses transformed using the above transfor-

mations, and let ∀R.D be any universal restriction occurring in N ∗ = ResALCHI(N ).

Then, there is a clause D∀R.Dt∀R.D ∈ N ∗ assigning a unique definer D∀R.D to ∀R.D,

such that for every clause Ct∀R.D ∈ N ∗, either C = D∀R.D or there is also the clause

C t ¬D∀R.D ∈ N ∗.

Proof. LetN ∗ be as in the lemma. In ResALCHI , the only rule that introduces universal

restrictions that are not in the initial clause set is the role inversion rule. (Note that

the ∀∀-role propagation rule is only part of IntALCHI , not of ResALCHI .) Let ∀R.D

be a universal role restriction occurring in N ∗. We distinguish two cases based on

why ∀R.D occurs in N ∗.

1. ∀R.D occurs in the initial clause set N in the clause Ct∀R.D. Then, the normal

form transformation adds the two clauses D∀R.D t∀R.D and ¬D∀R.D tC. Let ρ
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be a sequence of inferences involving C t ∀R.D and resulting in another clause

C ′ t ∀R.D. ρ can only involve inferences on literals in C. A similar sequence of

inferences is possible starting from the clause ¬D∀R.D t C, and resulting in the

clause C ′ t ¬D∀R.D ∈ N ∗.

2. ∀R.D occurs in a clause C t ∀R.D ∈ N ∗ that is the result of the role in-

version rule. Then C = D∀R.D, and the premise of the role inversion rule is

D t ∀Inv(R).D∀R.D. D∀R.D is a definer introduced by the initial normal form

transformation, which also introduces a clause of the form ¬D∀R.D t C1. Reso-

lution between D∀R.D t ∀R.D and ¬D∀R.D tC1 results in the clause C1 t ∀R.D.

Therefore, we have the two clauses C1 t ∀R.D and D∀R.D t ∀R.D, and we can

argue in the same way as for Point 1 that for every other clause C2t∀R.D ∈ N ∗,

we also have the clause C2 t ¬D∀R.D ∈ N ∗.

We have established that regardless of why ∀R.D occurs in N ∗, there is always a

corresponding definer D∀R.D, such that every clause Ct∀R.D ∈ N ∗ has a correspond-

ing clause ¬D∀R.D t C ∈ N ∗.

In order to prove the refutational completeness of RessALCHI , we consider a set of

clauses N and its saturation N ∗ = RessALCHI(N ) such that ⊥ 6∈ N ∗, and describe how

we can build a model for N ∗.

As in the refutational completeness proof of RessALCH, we first saturateN ∗ using the

∃-monotonicity rule (see Theorem 5.1.3). This step is necessary because conclusions

of the ∃-monotonicity rule are redundant according to our definition of redundancy

(see Definition 5.1.5), but enable us to build an interpretation that satisfies all role

inclusions. Then we build for each definer D occurring in N ∗ a model fragment ID

using the construction for ResALC presented in Section 4.2.3, where we treat roles of

the form r− as role symbols.

Since this time, literals of the form ∃r−.D can occur in the model fragments, we

have to adapt the construction of the candidate model I. The candidate model is now

defined as follows.

• For every atomic concept A, AI = {xD | A ∈ ID}.

• For every role r, rI = {(xD1 , xD2) | ∃r.D2 ∈ ID1} ∪ {(xD2 , xD1) | ∃r−.D2 ∈ ID1}.



122 CHAPTER 5. Extending the Method to SH and SIF

In candidate models for ResALC, all r-edges from a domain element xD1 to another

domain element xD2 are solely determined by the model fragment ID1 . For the candi-

date models defined here, the situation is different, since both literals in ID1 and ID2

can contribute to an R-edge from xD1 to xD2 . This affects the satisfiability of universal

restrictions, which cannot be solely determined on the basis of model fragments any

more. Instead, two model fragments have to be taken into account to decide whether

a literal of the form ∀R.D is satisfied by a domain element. For all remaining literals,

the situation is the same as for ResALC, and we do not have to reconsider these cases.

Lemma 5.3.3. I is a model for N ∗.

Proof. First observe that all clauses of the form R v S ∈ N ∗ are satisfied by the

candidate model for the same reasons as for candidate models for ResALCH and RessALCH

(see Lemma 5.1.3 and Theorem 5.1.6). For the remaining clauses, we do the proof by

contradiction.

Assume Ci is the smallest clause for which I 6|= Ci. We only consider the maximal

literal L in Ci and set Ci = C ′i t L. L cannot be of the form A, ¬A or ∃R.D1, since

then I 6|= L leads to a contradiction for the same reasons as for ResALCH.

Assume L = ∀R.D1. Since I 6|= Ci, also I 6|= ∀R.D1, and there must be an

individual xD ∈ ∆I such that xD 6∈ (C ′i)
I and xD 6∈ (∀r.D1)I . Since xD 6∈ (∀r.D1)I ,

there is a domain element xD2 ∈ ∆I such that (xD, xD2) ∈ RI and xD2 6∈ DI1 . The

model construction adds an edge (xD, xD2) to RI if ∃R.D2 ∈ ID or ∃Inv(R).D ∈ ID2 .

We consider both cases.

1. ∃R.D2 ∈ ID. Then both ∃R.D2 and ∀R.D1 are maximal in some clauses in N ∗,

and a contradiction arises for the same reasons as for ResALC. Observe that from

this it follows that, whenever ∀Q.D′′ is maximal in a clause C ′′ t ∀Q.D′′, and

there is an edge (x, xD′) ∈ QI due to a literal ∃Q.D′ ∈ I, then either x ∈ (C ′′)I

or xD′ ∈ (D′′)I .

2. ∃Inv(R).D ∈ ID2 . Then, there is a clause Cj = Cj
′ t ∃Inv(R).D in which

∃Inv(R).D is maximal, and ID2
j−1 6|= Cj.

Due to Lemma 5.3.2, since Ci = Ci
′ t ∀R.D1, either Ci

′ = D∀R.D1 , or we also

have the two clauses D∀R.D1 t ∀R.D1 ∈ N ∗ and Ci
′ t ¬D∀R.D1 ∈ N ∗. We show
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that in both cases, xD 6∈ (D∀R.D1)
I . If Ci

′ = D∀R.D1 , since xD 6∈ (Ci
′)I , we

have xD 6∈ (D∀R.D1)
I . If C ′i 6= D∀R.D1 , observe that ¬D∀R.D1 ≺l ∀R.D1, and that

∀R.D1 is maximal in Ci. Therefore, Ci
′ t ¬D∀R.D1 ≺c Ci, and Ci

′ t ¬D∀R.D1 is

satisfied by I, due to our initial assumption that Ci is the smallest clause such

that I 6|= Ci. Since xD 6∈ (Ci
′)I , from this it follows that xD ∈ (¬D∀R.D1)

I and

xD 6∈ (D∀R.D1)
I . We obtain that xD 6∈ (D∀R.D1)

I in all cases.

Since D∀R.D1 t ∀R.D1 ∈ N ∗, there is also the clause D1 t ∀Inv(R).D∀R.D1 ∈ N ∗,

either as conclusion of the role inversion rule, or because D∀R.D1 t ∀R.D1 is a

conclusion of the role inversion rule. From what we observed in Case 1, this clause

D1 t ∀Inv(R).D∀R.D1 , together with the assumption that (xD2 , xD) ∈ Inv(R)I is

due to ∃Inv(R).D ∈ ID2 , implies that either xD2 ∈ DI1 or xD ∈ (D∀R.D)I . We

have xD 6∈ (D∀R.D1)
I . Therefore, xD2 ∈ DI1 . But this contradicts that there is

an edge (xD, xD2) ∈ RI with xD2 6∈ DI1 . Hence, xD ∈ (∀R.D1)I and xD ∈ Ci.

We showed that xD2 ∈ DI1 in both cases. Therefore, x ∈ C for all x ∈ ∆ and all

C ∈ N ∗. Hence, I is a model of N ∗.

We obtain that for all sets N of ALCHI clauses with ⊥ 6∈ RessALCHI(N ), we can

build a model. Therefore, RessALCHI is refutationally complete.

Theorem 5.3.4. RessALCHI provides a sound and refutationally complete decision pro-

cedure for ALCHI ontology satisfiability.

Interpolation completeness of IntALCHI is established by the following theorem.

Theorem 5.3.5. IntALCHI is interpolation complete for ALCHIν.

Proof. Let O be any ALCHI ontology, S any signature, N = Cl(O) and let N S =

(IntALCHI(N )n)S . Let C be a concept such that sig(C) ⊆ S and M = Cl(∃r∗.C),

where r∗ 6∈ sig(O). We have to show that whenever we can infer ⊥ from N ∪M

using RessALCHI , we can derive ⊥ from N S ∪M using RessALCHI as well (see proofs for

Theorem 4.4.11 and Theorem 5.1.4).

In order to prove interpolation completeness of IntALC in Theorem 4.4.11, the fol-

lowing properties of ResALC and IntALC were exploited: (1) refutational completeness

is preserved if only clauses with at most one negative definer literal are inferred (The-

orem 4.3.3), (2) refutational completeness is preserved if we use ordered resolution
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(Theorem 4.3.5), and (3) inferences with additional sets of clauses that introduce new

definers can be simulated by first saturating the initial clause set with IntALC, and

then applying inferences with the second clause set (Lemma 4.4.6).

Property 2 is preserved by ResALCHI , since we did not make any new assumptions

on the ordering that underlies the model construction. For Property 3 the situation

is the same as for IntALC and IntALCH, since RessALCHI does not have any new role

propagation rules. The only new rule in ResALCHI and IntALCHI is the role inversion

rule, but this rule does not introduce new definers.

Regarding Property 1, we observe that the additional normal form transformation

step necessary for RessALCHI and IntALCHI may introduce clauses with more than one

negative definer. By computing the clause set N S = (IntALCHI(N )n)S , all clauses with

more than one negative definer literal are removed, since our technique for eliminating

definers only works on normal clause sets (see Section 4.1.2).

The additional transformation step is performed directly on the input clause set.

This means, every clause with more than one negative definer that is introduced when

processing N due to this step is also introduced when processing N S , unless the role

of the corresponding universal restriction is not in S. If the role is not in S, the

definers in question cannot interact with any definer in M, since M only contains

roles that are in S. Note that inferences that use the role hierarchy are preserved by

the monotonicity rules. Therefore, all clauses with more than one negative definer

literal required to infer the empty clause from N ∪M can also be generated from

N S ∪M. Hence, we can derive the empty clause from N S ∪M if we can do so from

N ∪M. This means that N S preserves all entailments in S of N , and that Ont(N S)

is the ALCHI uniform interpolant of O for S.

5.4 Functional Role Restrictions

The description logic ALCHF extends ALCH with functional role restrictions, which

are concept expressions of the form ≤1r.>. Since ALCHF is closed under negation,

this also makes it possible to express concepts of the form ≥2r.>, which are equivalent

to negations of functional role restrictions. ALCHF is the first example of a language L

where L uniform interpolants of ALC ontologies preserve more entailments than ALC
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uniform interpolants. As an example, take the following ALC ontology O1:

A v ∃r.B

A v ∃r.¬B

The ALC uniform interpolant of O1 for {A, r} is A v ∃r.>. This axiom entails

all ALC concept inclusions in the signature {A, r} that can be inferred from O1.

However, from the fact that no individual can satisfy both B and ¬B at the same time,

we can deduce that every instance of A has at least two r-successors. This information

cannot be expressed inALC, ALCH, SH orALCHI without using additional symbols,

but it can be expressed as an ALCHF concept inclusion, namely as A v ≥2r.>. In

fact, this axiom is an ALCHF uniform interpolant of O1 for {A, r}.

The interaction between role hierarchies and functional roles allows for more prob-

lematic cases when role symbols are to be eliminated. Take as example the following

ontology.

r1 v s

r2 v s

> v ≤1s.>

In the signature S = {r1, r2}, we have an infinite set of entailments of the following

form, where C is any ALCHF concept in S:

∃r1.C u ∃r2.> v ∃r2.C.

It is not clear how these entailments can be captured by a finite ontology, unless we

allow for additional expressivity such as Boolean role constructors, in particular role

conjunctions, which we are not considering in the context of this thesis. On the other

hand, if the desired signature contains all role symbols that are present in the original

ontology, a uniform interpolant can always be presented in ALCHFν.

We first extend the normal form to account for the new expressivity.

Definition 5.4.1. An ALCHF literal is a concept of one of the following forms:

A | ¬A | ∃r.D | ∀r.D | ≥2r.> | ≤1r.>,
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∃∃-Role Propagation

C1 t ∃R1.D1 C2 t ∃R2.D2 R1 vN S R2 vN S

C1 t C2 t ∃R1.D12 t ≥2S.>

where D12 is a possibly new definer representing D1 uD2.

≥2-Elimination I

C1 t ≥2R.> C2 t ≤1S.> R vN S

C1 t C2

≥2-Elimination II

C1 t ≥2R.> C2 t ∀S.D ¬D R vN S

C1 t C2

≤1-Monotonicity
C t ≤1R.> S v R

C t ≤1S.>
≥2-Monotonicity

C t ≥2R.> R v S

C t ≥2S.>

Figure 5.6: Additional inference rules in ResALCHF and IntALCHF .

where A ∈ Nc, r ∈ Nr and D ∈ Nd. An ALCHF clause is a role inclusion or an axiom

of the form > v L1t . . .tLn, where L1, . . . , Ln are ALCHF literals. An ontology O is

in ALCHF normal form if every axiom in O is an ALCHF clause. Given an ALCHF

ontology O, we denote the ALCHF normal form representation of O by Cl(O).

RessALCHF and IntALCHF extend respectively RessALCH and IntALCH by the rules

shown in Figure 5.6, where RessALCHF additionally uses the ∀∀-role propagation rule.

As for the ∀∃- and the ∀∀-role propagation rules, most of these rules are motivated

by the valid concept inclusion (C1 t C2) u (C3 t C4) v (C1 t C3 t (C2 u C4)) (see

Section 4.2.1).

For the ∃∃-role propagation rule, assume we have a model with a domain element x

that has at least one R1-successor x1 satisfying D1 and at least one R2-successor x2

that satisfies D2. Assume further that R1 vN S and R2 vN S, as stated in the premise

of the rule. Either x1 = x2, in which case x satisfies ∃R1.(D1 u D2), or x1 6= x2, in

which case x satisfies ≥2S.>. Therefore, we have |= (C1 t∃R1.D1)u (C2 t∃R2.D2) v
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(C1 t C2 t ∃R1.(D1 uD2) t ≥2S.>).

For the ≥2-elimination rule I, observe that ≥2R.> u ≤1S.> is unsatisfiable in

any clause set N with R vN S. Similarly, if ¬D ∈ N ∗ and R vN S, the concept

≥2R.> u ∀S.D is unsatisfiable in N , which justifies the ≥2-elimination rule II. In

order for the latter to work properly, we have to make sure that all clauses of the

form C t ∀r.D with ¬D ∈ N ∗ are derived. It is for this reason that ResALCHF

uses additionally the ∀∀-role propagation rule from IntALCH. The intuition of the

monotonicity rules is the same as in ResALCH.

We have the following lemma.

Lemma 5.4.2. The calculi ResALCHF and IntALCHF are sound and terminating.

Example 5.4.3. Assume we have the following ontology OALCHF :

A v ∃r1.B

A v ∃r2.¬B

r1 v r

r2 v r

We want to compute the uniform interpolant for SALCHF = {A, r1, r2, r}.

We obtain the following set of clauses NALCHF :

1. ¬A t ∃r1.D1

2. ¬D1 tB

3. ¬A t ∃r2.D2

4. ¬D2 t ¬B

5. r1 v r

6. r2 v r

We have to infer all inferences on B, for which we have to introduce a definer repre-

senting D1 uD2. Such a definer is introduced when we apply the ∃∃-role propagation

rule on Clause 1 and 3.

��7. ¬A t ≥2r.> t ∃r1.D12 (∃∃-role propagation on 1, 3, 5, 6)

��8. ¬D12 tD1 (D12 v D1)

��9. ¬D12 tD2 (D12 v D2)
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Note that with the same premises, we can also infer a clause similar to Clause 7 that

uses the role r2 instead of r1 in the last literal. In this particular case, this inference

is not important, as the clause becomes redundant in a few more inference steps.

��10. ¬D12 tB (Resolution 2, 8)

��11. ¬D12 t ¬B (Resolution 4, 9)

12. ¬D12 (Resolution 10, 11)

13. ¬A t ≥2r.> (∃-elimination 7, 12)

All clauses required by the uniform interpolant have been inferred. After all definers

have been eliminated, we obtain the following ontology:

A v ∃r1.>

A v ∃r2.>

A v ≥2r.>

r1 v r

r2 v r

This is the ALCHF uniform interpolant of OALCHF for SALCHF .

To prove the refutational completeness of ALCHF , we have to extend several

elements used in the model construction, in order to accommodate the new types of

literals in the language. This time, we cannot reuse the construction of the model

fragments used for ResALC. Instead, we have to define entailment of model fragments

in ALCHF and use a more refined ordering.

Let N ∗ = RessALCHF(N ) be the saturation of any set N of normal ALCHF clauses

such that ⊥ 6∈ N ∗. We specify ≺d to be a total ordering on definer symbols as in

Section 4.2.3, that is, ≺d is any ordering that satisfies D1 ≺d D2 if ¬D1 t D2 ∈ N ∗.

We further define a non-reflexive ordering ≺r on the role symbols such that r ≺r s

iff r vN s and not s vN r. ≺c is an arbitrary total ordering on the concept symbols

in Nc. We define ≺l as an ordering on literals that satisfies the following constraints:

1. A ≺l ¬A for all A ∈ Nc.

2. If A1 ≺c A2, then ¬A1 ≺l A2
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3. ∃r.D1 ≺l ≥2r.> ≺l ∀r.D2 ≺l ≤1r.> for all r ∈ Nr and D1, D2 ∈ Nd.

4. ¬D ≺l A and ¬D ≺l ∃r.D′, for all D,D′ ∈ Nd, A ∈ Nc \Nd and r ∈ Nr.

5. If r ≺r s, then ≥2r.> ≺l ≥2s.>, ≤1r.> ≺l ≤1s.>, ∃r.D1 ≺l ∃s.D2 and

∀r.D1 ≺l ∀s.D2 for all D1, D2 ∈ Nd.

6. If D1 ≺d D2, then ¬D1 ≺l D2, ∃r.D1 ≺l ∃r.D2 and ∀r.D1 ≺l ∃r.D2 for all r ∈ Nr.

These constraints fully correspond to the constraints we put on the ordering used

in the original model construction (see page 65), only that instead of one ordering

≺s on symbols in (Nc ∪ Nr) \ Nd, we now use two separate orderings for concept

and for role symbols. Whereas for the description logics we considered until now, the

ordering between role symbols is arbitrary, the current ordering depends on the role

hierarchy. For the same reasons as for the original ordering, an ordering fulfilling these

constraints therefore always exists.

In order to incorporate the expressivity of ALCHF , the definition of model frag-

ments and satisfiability in model fragments has to be adapted as well.

Definition 5.4.4. A model fragment literal is a concept of the forms A, ∃r.D, ≥2r.>

and ≥2r.D, where A ∈ Nc, r ∈ Nr and D ∈ Nd. A model fragment is a set of model

fragment literals. Given a model fragment I and an ALCHF literal L, I satisfies L,

in symbols I |= L, if one of the following conditions hold:

1. L = A, A ∈ Nc, A ∈ I.

2. L = ¬A, A ∈ Nc, and A 6∈ I.

3. L = ∃r.D, r ∈ Nr, D ∈ Nd, and ∃s.D′ ∈ I or ≥2s.D′ ∈ I, where s vN r and

either D′ = D or ¬D′ tD ∈ N ∗.

4. L = ∀r.D, r ∈ Nr, D ∈ Nd, and there are no model fragment literals of the forms

∃s.D′, ≥2s.D′ or ≥2r.> in I such that s vN r, D′ 6= D and ¬D′ tD 6∈ N ∗.

5. L = ≥2r.> and (1) there are two model fragment literals of the form ∃s.D in I

such that s vN r, or (2) there is a model fragment literal of the form ≥2s.> or

≥2s.D in I such that s vN r.
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6. L = ≤1r.>, there are no model fragment literals of the forms ≥2s.D or ≥2s.>

in I such that s vN r, and all model fragment literals of the form ∃s.D′ ∈ I

with s vN r have the same definer D′.

Given a model fragment I and a clause C, we say I satisfies C, in symbols I |= C, if

there is a literal L ∈ C such that I |= L.

Except for the fact that this definition incorporates literals of the form ≥2r.>

and ≤1r.> there are two notable changes in this definition. First, we use a notion

of model fragment literals which differs from ALCHF literals in that it also covers

concepts of the form ≥2r.D. In former sections, we only used literals in the model

fragments that are concepts in the language under consideration. Second, the definition

of satisfiability of clauses takes into account the role hierarchy in N . For the model

constructions used in earlier sections, it is not necessary to take the role hierarchy into

account, since literals of the form ∃s.D are added for every literal ∃r.D with s vN r

if the clause set is saturated using the ∃-monotonicity rule. This ensures that all role

axioms of the clause set are satisfied by candidate model. However, when constructing

a candidate model for clause sets with functional role restrictions, we have to ensure

that only as few literals of the forms ∃r.D and ≥2r.> as needed are added.

We describe how model fragments ID for definers D ∈ Nd and for the special

symbol ε are constructed. As before, if ¬D ∈ N ∗, ID = ∅. If ¬D 6∈ N ∗, ID is defined

incrementally as follows.

1. ID0 = ∅ if D = ε, ID0 = {D} if D ∈ Nd.

2. If IDi−1 |= Ci, then IDi = IDi−1, otherwise:

(a) If the maximal literal in Ci is of the form A, then IDi = IDi−1 ∪ {A}.

(b) If the maximal literal in Ci is of the form ∃R.D′, then IDi = IDi−1∪{∃R.D′}.

(c) If the maximal literal in Ci is of the form ≥2R.>, and ∃R′.D′ ∈ IDi−1 for

some R′ vN R and D′ ∈ Nd, then IDi = (IDi−1 \ {∃R.D′}) ∪ {≥2R.D′}.

(d) If the maximal literal in Ci is of the form ≥2R.>, and there is no literal

∃R′.D′ ∈ ID for any R′ vN R and D′ ∈ Nd, then IDi = IDi−1 ∪ {≥2R.>}.

(e) If the maximal literal in Ci is of the form ∀R.D′, then IDi is the result of re-

placing every literal of the form ≥2R′.> in IDj , where R′ vN R, by ≥2R′.D′.
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3. ID = IDn , where n = |N ∗|.

As for the model construction presented in Section 4.2.3, we show the construction

monotone.

Lemma 5.4.5. If IDi |= Ci then IDj |= Ci for all j > i.

Proof. Assume IDi |= Ci. We show that in this case IDj |= Ci for all j > i. If IDi |= Ci,

there must be a literal L ∈ Ci such that IDi |= L. We distinguish the different cases

for L.

1. Assume L is of the form A. Then A ∈ IDi , and no step in the construction

removes literals of the form A. Therefore, IDj |= A and also IDj |= Ci for all

j > i.

2. Assume L is of the form ¬A. Then ¬A ∈ IDi . A is only added to a subsequent

model fragment IDj if there is a clause Cj with Cj ≺c Ci in which the maximal

literal is A. Such a clause cannot exist with the constraints of the ordering, and

therefore IDj |= L for all j > i.

3. Assume L is of the form ∃R.D1. Then, IDi contains a literal of the form ∃S.D2 or

≥2S.D2, where S vN R and either D2 = D1 or ¬D1tD2 ∈ N ∗. If ≥2S.D2 ∈ IDi ,

then ≥2S.D2 ∈ IDj for all j > i, since literals of this form are never removed

from the current model fragment. If ∃S.D2 ∈ IDi , for all j > i we either have

∃S.D2 ∈ IDj or ≥2S.D2 ∈ IDj (due to Step 3c in the construction of model

fragments). In both cases, IDj |= L and IDj |= C.

4. Assume L is of the form ≥2R.>. Then either ≥2S.> ∈ IDi or ≥2S.D ∈ IDi ,

where S vN R. In the latter case, ≥2S.D ∈ IDj for all j > i. In the former case,

it is possible that ≥2S.> is replaced by a literal of the form ≥2S.D (see Step 3e

in the construction of model fragments), in which case ≥2S.> is still satisfied.

We obtain IDj |= L and IDj |= C for all j > i.

5. Assume L is of the form ∀R.D1 and let j > i. We show IDj |= ∀R.D1 by

contradiction and assume IDj 6|= ∀R.D1. If IDj 6|= ∀R.D1, IDj must contain a

literal L2 of the form ∃S.D2, ≥2S.> or ≥2S.D2, where S vN R, D2 6= D1 and

¬D2 tD1 6∈ N ∗.
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(a) Assume L2 is of the form ∃S.D2 or ≥2S.>, and L2 ∈ IDj . Then, there must

be a clause Ck with i < k ≤ j such that L2 is the maximal literal in Ck.

However, since S vN R, we have L2 ≺l L. Therefore, such a clause cannot

exist.

(b) Assume L2 is of the form ≥2S.D2. Such a literal can only be in IDj if

there is a clause Ck, i < k ≤ j, such that the maximal literal in Ck is

of the form ∀S.D2, and ≥2S.> ∈ IDk (see Step 3e of the construction of

model fragments). As observed earlier, ≥2S.> is only added for clauses

smaller than Ci. But then, since IDi |= L by assumption, ≥2S.> 6∈ IDi . We

obtain that ≥2S.> 6∈ IDk for any k > i, and consequently ≥2S.> cannot be

replaced by another literal for Ck. Therefore, IDj |= ∀R.D1 and IDj |= C.

6. Assume L is of the form ≤1R.> and let j > i. IDj 6|= L if there are two literals

of the form ∃R1.D1, ∃R2.D2 ∈ IDj , where R1 vN R and R2 vN R, or if there

is one literal of the form ≥2S.> ∈ IDj or ≥2S.D′ ∈ IDj . If there is a literal L′

of the forms ∃S.D′ or ≥2S.> in (IDj \ IDi ), where S vN R, there must be a

clause Ck with k > i in which L′ is maximal. Since S vN R, we have L′ ≺l L,

and therefore, such a clause cannot exist. For the same reason, we cannot have

≥2S.D ∈ IDj . We obtain IDj |= L and IDj |= C for all j > i, which contradicts

our initial assumption.

We obtain for every clause Ci, I
D
i |= Ci implies IDj |= Ci for all j > i.

Lemma 5.4.6. If IDi 6|= Ci, then for all j > i and C ′i ⊆ Ci, I
D
j 6|= C ′i.

Proof. Since for all C ′i ⊆ Ci, I
D
j 6|= Ci implies IDj 6|= C ′i, it is sufficient to consider the

case where C ′i = Ci.

Assume there is a clause Ci with IDi 6|= Ci. We do the proof by contradiction and

assume there is a model fragment IDj with j > i such that IDj |= Ci. If IDj |= Ci, there

must be a literal L ∈ Ci such that IDj |= L. We distinguish the different cases for L.

1. If L is of the form A, ∃R.D′ or ≥2R.>, there must be a clause Ck, k > i, where A,

∃S.D′ or ≥2S.> is maximal and S vN R. With the constraints of the ordering,

this is impossible.
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2. Assume L is of the form ¬A. If IDi 6|= ¬A, then A ∈ IDi . The model construction

does not remove literals of the form A from subsequent model fragments, and

therefore IDj 6|= ¬A for all j > i, which contradicts the initial assumption.

3. Assume L is of the form ≤1R.>. If IDi 6|= L, either there are two literals of the

form ∃S1.D1,∃S2.D2 ∈ IDi such that S1 vN R, S2 vN R and D1 6= D2, there is

a literal ≥2S.D′ ∈ IDi with S vN R, or there is a literal ≥2S.> ∈ IDi . Only a

literal of the latter form might be removed for a subsequent clause, but only to

be replaced by a literal ≥2S.D′, in which case ≤1R.> is still not satisfied by the

model fragment. We obtain IDj 6|= L, which contradicts our initial assumption.

4. Assume L is of the form ∀R.D1. Then, IDi contains a literal L1 of the form ∃S.D2,

≥2S.> or ≥2S.D2, where S vN R, D1 6= D2 and ¬D2 tD1 6∈ N ∗. L1 cannot be

of the form ∃S.D2 or ≥2S.D2, since then also L1 ∈ IDj . Therefore, L1 is of the

form ≥2S.>. ≥2S.> 6∈ IDj then implies that there is a clause Ck, i < k ≤ j, in

which the maximal literal is of the form ∀S ′.D2, S vN S ′, ¬D2 tD1 ∈ N ∗, and

for which IDk−1 6|= Ck, since then ≥2S.> is replaced in IDk by ≥2S.D2. Note that

¬D2tD1 implies that D2 was introduced by an application of a role propagation

rule. Since D1 occurs in the literal ∀R.D1 and D2 occurs in the literal ∀S ′.D2,

this must have been an application of the ∀∀-role propagation rule. We obtain

that that S ′ vN R. But then ∀S ′.D2 ≺l ∀R.D2, and ∀S ′.D2 cannot be maximal

in a clause larger than Ci, which contradicts earlier observations.

We obtain for every clause Ci that IDi 6|= Ci implies IDj 6|= Ci for all j > i.

Using these lemmata, we can show that for any definer D or ε, given that ¬D 6∈ N ∗,

the constructed model fragments ID satisfy all clauses in N ∗.

Lemma 5.4.7. Let D any definer with ¬D 6∈ N ∗ or D = ε. Then, ID |= C for

all C ∈ N ∗.

Proof. We do the proof by contradiction and assume Ci is the smallest clause for which

ID 6|= Ci. Denote the maximal literal in Ci by L and let Ci = C ′iuL. Because ID 6|= Ci,

also ID 6|= L. We distinguish the cases for L.

1. L is of the form A, ∃R.D′ or ≥2R.>. Then ID |= L follows directly from the

model construction and Lemma 5.4.5.
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2. L is of the form ¬A. Since the model construction is monotone, we have a contra-

diction for both A 6= D and A = D for the same reasons as in the corresponding

proof for Lemma 4.2.15.

3. L is of the form ∀R1.D1. ID 6|= L implies that ID contains a literal of the form

∃R2.D2, ≥2R2.> or ≥2R2.D2 with R2 vN R1, D1 6= D2 and ¬D2 t D1 6∈ N ∗.

We distinguish the cases for these different forms of literals.

(a) If ∃R2.D2 ∈ ID, there must be a clause Cj = C ′j t ∃R2.D2, in which

∃R2.D2 is maximal and for which IDj−1 6|= Cj. Together with Lemma 5.4.6,

IDi 6|= C ′j. Due to the ∀∃-role propagation rule, there are also the clauses

Ck = C ′i t C ′j t ∃R2.D12,¬D12 tD1 and ¬D12 tD2 in N ∗. Cj ≺c Ci, since

for the maximal literals we have ∃R2.D2 ≺l ∀R1.D1. Because ∃R2.D12 ≺c
∃R2.D2, also Ck ≺ Cj. However, because IDj−1 6|= Cj, we cannot have

∃R2.D12 ∈ ID. With ID 6|= C ′i and ID 6|= C ′j, we obtain ID 6|= Ck, which

contradicts the initial assumption that Ci is the smallest clause for which

ID 6|= Ci.

(b) Assume ≥2R2.> ∈ ID. Then, there must be a clause Cj = C ′j t ≥2R2.>,

where≥2R2.> is maximal and IDj−1 6|= Cj. Observe that≥2R2.> ≺l ∀R1.D1.

Therefore, if ≥2R2.> ∈ IDj , also ≥2R2.> ∈ IDi−1. But then, due to Step 3e

in the model fragment construction, in IDi , ≥2R2.> is replaced by ≥2R2.D1.

Hence, ≥2R2.> ∈ ID is impossible.

(c) Assume there is a literal ≥2R2.D2 ∈ ID with R2 vN R1, D2 6= D1 and

¬D2 tD1 6∈ N ∗. Observe that since ID 6|= Ci, by Lemma 5.4.5 also IDi 6|=

Ci. Therefore, ≥2R2.D2 must already be contained in IDi , and there must

be a clause Cj = C ′j t ∀R3.D2 ∈ N ∗ smaller than Ci with IDj−1 6|= Cj and

R2 vN R3, in which ∀R3.D2 is maximal. Because of Lemma 5.4.6, this

implies ID 6|= C ′j. Due to the ∀∀-role propagation rule and since R2 vN R1

and R2 vN R3, we then also have a clause Ck = C ′i t C ′j t ∀R2.D12 ∈ N ∗,

with ¬D12 tD1, ¬D12 tD2 ∈ N ∗. Ck ≺c Cj, and since ID 6|= C ′i, I
D 6|= C ′j

and ≥2R2.D2 ∈ ID, we further obtain that ID 6|= Ck. This contradicts our

initial assumption that Ci is the smallest clause with ID 6|= Ci.

4. L = ≤1R1.>. There are two possibilities.
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(a) ≥2R2.> ∈ ID or ≥2R2.D
′ ∈ ID, where R2 vN R1. In each case, there

then must be a clause Cj = C ′j t ≥2R2.> ∈ N ∗ with IDj−1 6|= Cj. This

implies ID 6|= C ′j due to Lemma 5.4.6. The ≥2-elimination rule I produces

the clause Ck = C ′i tC ′j from Ci and Cj, and Ck ≺c Ci. Since ID 6|= Ci and

ID 6|= C ′j, also ID 6|= Ck, which contradicts the assumption that Ci is the

smallest clause with ID 6|= Ci.

(b) There are two literals ∃R2.D2,∃R3.D3 ∈ ID with D2 6= D3, R2 vN R1 and

R3 vN R1. This implies the existence of two clauses Cj = C ′j t ∃R2.D2,

Ck = C ′k t ∃R3.D3 with IDj−1 6|= Cj and IDk−1 6|= Ck. We then also have

ID 6|= C ′j and ID 6|= C ′k, due to Lemma 5.4.6, and ¬D2 t D3 6∈ N ∗ and

¬D3 t D2 6∈ N ∗, since otherwise either IDj−1 |= Cj or IDk−1 |= Ck. ∃∃-role

propagation on Cj and Ck produces the clause C ′j tC ′kt∃R2.D23t≥2R1.>

with ¬D23 t D2,¬D23 t D3 ∈ N ∗, and via ≥2-elimination I with Ci the

clause Cl = C ′itC ′jtC ′kt∃R2.D23. ∃R2.D23 cannot be maximal in Cl, since

otherwise Cl ≺c Cj, IDl |= ∃R2.D23, and ∃R2.D2 is not added to ID. But

then ID 6|= ∃R2.D23, and because also ID 6|= C ′i tC ′j tC ′k, we have ID 6|= Cl.

Furthermore, Cl ≺c Ci, because ≤1R1.> 6∈ Cl and all other literals in Cl

are smaller than ≤1R1.>. But then the initial assumption that Ci is the

smallest clause with ID 6|= Ci is contradicted.

There can be no smallest clause Ci such that ID 6|= Ci, and hence, we obtain ID |= Ci

for all clauses Ci ∈ N ∗.

In order to satisfy the new types of literals of the form ≥2r.D that can occur in

model fragments, we also have to adapt the construction of the final candidate model,

which we do by using two domain elements per definer instead of one. The candidate

model I = 〈∆I , ·I〉 is defined as follows.

1. ∆I = {x1
D, x

2
D | D ∈ Nd ∪ {ε}}

2. For all A ∈ Nc, A
I = {x1

D, x
2
D | A ∈ ID}

3. For all r ∈ Nr, r
I = {(xiD1

, x1
D2

) | i ∈ {1, 2},∃r′.D2 ∈ ID1 , r′ vN r}

∪{(xiD1
, xjD2

) | i, j ∈ {1, 2},≥2r′.D2 ∈ ID1 , r′ vN r}

∪{(xiD, xjε) | i, j ∈ {1, 2},≥2r′.> ∈ ID, r′ vN r}.
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The model construction is similar to the one for ALC, only that two individuals x1
D

and x2
D are used for each definer D in order to satisfy literals of the form ≥2r.D, and

two individuals x1
ε and x2

ε are used to satisfy literals of the form ≥2r.>.

In addition, since the set of clauses is not saturated using the ∃-monotonicity rule

this time, we explicitly make sure that role inclusion axioms r v s are satisfied. It

is therefore easy to verify that I is a model for N ∗. This allows us to establish

refutational completeness of RessALCHF .

Theorem 5.4.8. RessALCHF is terminating, sound and refutationally complete.

For interpolation completeness, observe that Lemma 4.4.6, which is concerned with

combined definers, also holds for IntALCHF . Since IntALCHF has a rule for any possible

combination of role restrictions, whether two definers D1 and D2 are combined solely

depends on the roles under which they occur, and the negative definer literals that are

in the same clause as the role restrictions. Note that the additional set M used to

prove interpolation completeness in Theorem 5.4.10 and Theorem 5.1.4 cannot contain

role inclusions, since M is the clausal normal form representation of an axiom of the

form > v ∃r∗.C.

However, another property we exploited for proving interpolation completeness of

IntALC and IntALCH is that we can choose an arbitrary ordering ≺s between role and

concept symbols and refine the corresponding calculi ResALC and ResALCH based on

this ordering. For RessALCHF , this is not possible, since such an ordering has to take

into consideration the role hierarchy. However, it is still possible to refine RessALCHF

in such a way that inferences on concept symbols A 6∈ S are preferred over inferences

on other literals. For this reason, IntALCHF is interpolation complete for forgetting

concept symbols, that is, it can be used to compute uniform interpolants for every

signature S with Nr ⊆ S.

Theorem 5.4.9. IntALCHF is interpolation complete for forgetting concept symbols in

ALCHFν.

Note that if an ontology does not contain role inclusion axioms, an ordering can

be chosen independent of the role symbols. Therefore, we can establish that IntALCHF

is interpolation complete for ALCFν.

Theorem 5.4.10. IntALCHF is interpolation complete for ALCFν.
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Example 5.4.11 (Role Forgetting inALCF). Consider the following ontologyOALCF .

A1 v ∃r.B1

A2 v ∃r.B2

B1 uB2 v ⊥

> v ≤1r.>

We want to compute the ALCF uniform interpolant for SALCF = {A1, A2}. We obtain

the following normal form NALCF = Cl(OALCF):

1. ¬A1 t ∃r.D1

2. ¬D1 tB1

3. ¬A2 t ∃r.D2

4. ¬D2 tB2

5. ¬B1 t ¬B2

6. ≤1r.>

We begin by applying the ∃∃-role propagation rule on Clause 1 and Clause 2, which

leads to the introduction of a new definer D12.

7. ¬A1 t ¬A2 t ∃r.D12 t ≥2r.> (∃∃-Role Propagation 1, 3)

8. ¬D12 tD1 (D12 v D1)

9. ¬D12 tD2 (D12 v D2)

10. ¬D12 tB1 (Resolution 2, 8)

11. ¬D12 tB2 (Resolution 4, 9)

12. ¬D12 t ¬B2 (Resolution 5, 10)

13. ¬D12 (Resolution 11, 12)

We also have to infer all entailments in the signature from clauses involving the role

symbol r. This is achieved using the ∃-elimination rule and the functional role restric-

tion resolution rule.

14. ¬A1 t ¬A2 t ≥2r.> (∃-Elimination 7, 13)

15. ¬A1 t ¬A2 (Functional Role Restriction Resolution 6, 14)
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After eliminating all definer symbols, we obtain the following ontology, which is the

ALCF uniform interpolant of OALCF for SALCF .

A1 u A2 v ⊥

5.5 Bringing It All Together: SIF

As mentioned in the introduction, in order to obtain a refutationally and interpola-

tion complete calculus for SIF , it is not sufficient to combine the rules from RessSH,

RessALCHF and RessALCHI . Role hierarchies bring a problem of a different nature when

combined with functional role restrictions and inverse roles, which we will discuss

shortly at the end of this chapter. Functional role restrictions have to be treated

differently when combined with inverse roles. The following example illustrates this.

Example 5.5.1. Consider the following ALCIF axiom, which contains both inverse

roles and functional role restrictions.

A v ∃r.(∃r−.¬A u ≤1r−.>)

We argue that A is unsatisfiable. The axiom states that every instance of A must have

an r-successor that has an r-predecessor satisfying ¬A. Moreover, this r-successor has

at most one r-predecessor, which can only be the instance of A itself. In other words,

if A could have an instance, this instance would also have to satisfy ¬A, which is a

contradiction.

The interplay between inverse roles is crucial for the unsatisfiability of A. However,

the only rule in IntALCHI that deals with inverse roles applies to universal restric-

tions exclusively, of which there are none in this axiom. Hence, the combined rules

of IntALCHI and IntALCHF are not sufficient to infer the unsatisfiability of A.

The problem is that the rules for functional role restrictions we have seen so far

only deal with existential role restrictions and number restrictions, whereas the rule for

inverse roles only deals with universal restrictions. This way, the rules cannot interact,

and the combined calculi cannot properly detect interactions between functional and

inverse roles. One way to overcome this might be to add rules dealing with inverse roles

occurring in existential role restrictions and number restrictions. However, it turns out
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Universalisation Rule:

C1 t ∃R.D C2 t ≤1R.>
C1 t C2 t ∀R.D

Figure 5.7: Universalisation rule in ResSIF and IntSIF .

that an easier approach is to add an additional rule for functional role restrictions.

This rule is the universalisation rule shown in Figure 5.7.

The universalisation rule derives from a functional role restriction and an existential

role restriction a universal one. The conclusion of this rule can be used both in the

premise of the role inversion rule and in the premise of the transitivity rule. Soundness

of the rule can be argued as follows. If a domain element x in an interpretation I has

an R-successor that satisfies D (x ∈ (∃R.D)I), and if x has at most one R-successor

(x ∈ (≤1R.>)I), then every R-successor of x satisfies D, since there is only one

(x ∈ (∀R.D)I). Therefore, the following concept inclusion is valid, which verifies the

soundness of the universalisation rule:

(∃R.D u ≤1R.>) v ∀R.D

We adapt the definition of the normal form, which additionally makes sure that

transitivity axioms are correctly handled.

Definition 5.5.2. A SIF literal is a concept of the form A, ¬A, ∃R.D, ∀R.D, ≤1R.>

or ≥2R.>, where A ∈ Nc, D ∈ Nd, R is of the form r or r− and r ∈ Nr. A SIF

clause is an RBox axiom of the form trans(R), where R is a role, or a TBox axiom

of the form > v L1 t . . . t Ln, where each Li, 1 ≤ i ≤ n, is a SIF literal. A SIF

ontology N is in SIF normal form if every axiom in N is a SIF clause, and if for

every clause trans(R) ∈ N , there is a corresponding clause trans(Inv(R)) ∈ N .

In the proof for refutational completeness of RessALCHI , we used of Lemma 5.3.2,

which states that for every universal restriction ∀R.D occurring inN ∗ = ResALCHI(N ),

there is a unique clause of the form D∀R.D t ∀R.D ∈ N ∗ assigning the definer D∀R.D

to ∀R.D. This lemma could be proved because in RessALCHI , the role inversion rule is

the only rule that infers universal restriction literals that are not already present in

the input clause set.
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In ResSIF , we have three additional rules that introduce universal restriction liter-

als, namely the transitivity rule, the universalisation rule and the ∀∀-role propagation

rule. The latter is only part of the calculus to enable inference of the ≥2-elimination

rule II, and can be ignored in this context. The other rules on the other hand produce

universal restrictions that are needed in the premise of the role inversion rule. In order

to preserve a property like the one stated in Lemma 5.3.2, we therefore impose a spe-

cific ordering in which rules are applied. As a result, the input clause set is processed

in several stages, where redundancy elimination can be applied in any stage:

1. The initial clause set N is obtained by transforming the input ontology O into

the clause set Cl(O), where for each clause trans(R), the clause trans(Inv(R)) is

added.

2. The clause set N ∀ is obtained by saturating N using the transitivity and the

universalisation rule.

3. The clause set ND∀ is obtained from N ∀ by adding for every clause C t ∀R.D

in N ∀ the clauses ¬D∀R.D t C and D∀R.D t ∀R.D.

4. ResSIF(N ) is obtained from ND∀ by saturating ND∀ using all rules of ResSIF

that have not been used in the second stage, that is, all rules of ResSIF except the

transitivity and the universalisation rule. In other words, ResSIF(N ) is obtained

from ND∀ using the rules of ResALCHI and ResALCHF .

The following example illustrates the different stages of the calculus.

Example 5.5.3. We apply ResSIF on the axiom given in Example 5.5.1.

A v ∃r.(≤1r−.> u ∃r−.¬A)

In Stage 1, we translate this axiom into normal form NALCIF :

1. ¬A t ∃r.D1

2. ¬D1 t ≤1r−.>

3. ¬D1 t ∃r−.D2

4. ¬D2 t ¬A
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In Stage 2, we saturateNALCIF using the transitivity rule and the universalisation rule.

In this example, the only rule that can be applied is the universalisation rule. N ∀ has

therefore the following additional clause:

5. ¬D1 t ∀r−.D2 (Universalisation 2, 3)

In Stage 3, we use the second structural transformation step to add additional clauses

for every universal restriction occurring in N ∀ALCIF . In our example, this is the uni-

versal restriction in Clause 5. As a result, ND∀
ALCIF contains additionally the following

clauses:

6. ¬D3 t ¬D1

7. D3 t ∀r−.D2

We are now in the last stage, Stage 4, in which we apply all remaining rules of the

calculus.

8. D2 t ∀r.D3 (Role Inversion 7)

9. ¬A t ∀r.D3 (Resolution 4, 8)

10. ¬A t ∃r.D13 (∀∃-Role Propagation 1, 9)

11. ¬D13 tD1 (D13 v D1)

12. ¬D13 tD3 (D13 v D3)

14. ¬D13 t ¬D1 (Resolution 6, 14)

15. ¬D13 (Resolution 11, 14)

16. ¬A (∃-Elimination 11, 16)

We have inferred that A is unsatisfiable, which is as expected.

5.6 Refutational Completeness of RessSIF

In contrast to the description logics we considered so far, SIF does not have the finite

model property. This is illustrated by the following ontology O∞:

> v ∃s.B

B v ¬A u ∃r.A

A v ∃r.A

> v ≤1r−.>
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B,¬A A A A · · ·r r r r

s

s

s

s

Figure 5.8: Infinite model of O∞.

O∞ is satisfiable, but it only has infinite models, such as the one shown in Figure 5.8.

In the model construction approach we used so far, each definer D in the clause set

is represented by one or two domain elements. For ontologies like O∞, this approach

has to fail, since the number of definers in a saturated set of clauses is always finite.

We illustrate this problem with an example.

The saturation RessSIF(N∞), where N∞ is the normal form representation of O∞,

is the following, where elements of N∞ use bold face numbers:

1. ∃s.D1

2. ¬D1 tB

3. ¬B t ¬A

4. ¬B t ∃r.D2

5. ¬D2 t A

6. ¬A t ∃r.D2

7. ≤1r−.>

8. ¬D1 t ¬A (Resolution 2, 3)

9. ¬D1 t ∃r.D2 (Resolution 2, 4)

10. ¬D2 t ¬B (Resolution 3, 5)

11. ¬D2 t ∃r.D2 (Resolution 5, 6)

The model constructions presented in Section 4.2.3 and Section 5.4 both create the
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xε xD1 : D1, B xD2 : D2, A
s r

s

s r

Figure 5.9: Model candidate for N ∗ generated by method for ResALC.

following model fragments for these clauses:

Iε = {∃s.D1}

ID1 = {D1, B,∃r.D2,∃s.D1}

ID2 = {D2, A,∃r.D2, ∃s.D1}

As a result, we obtain the candidate model shown in Figure 5.9. The domain

element xD2 has two incoming r-edges, one from xD1 and one from itself, and does

therefore not satisfy ≤1r−.>. Hence, it is not a model of O∞.

The problem with the previous model construction approaches is that we reuse

domain elements. In order to satisfy existential role restrictions of the form ∃r.D in

the model fragments, we always use the same domain element xD as r-successor. An

alternative approach is to build the candidate model incrementally, starting from a

root element xε, and add new domain elements for every existential role restriction in

the corresponding model fragment, possibly expanding the candidate model into an

infinite tree.

We describe this incremental model construction in detail. Model fragments are

created using the technique for RessALCHF described in Section 5.4. Moreover, we de-

fine a modification function on model fragments. This is necessary due to pairs of

clauses of the form ¬D1 t C1 t ∃r.D2 and ¬D2 t C2 t ∃r−.D1. Suppose we have

a domain element xD1 for D1, and we add an r-successor xD2 based on ID2 to sat-

isfy ¬D1 t C1 t ∃r.D2. The clause ¬D2 t C2 t ∃r−.D1 is already satisfied by xD2 ,

since xD2 has xD1 as an r-predecessor satisfying D1. Accordingly, we do not need to

add another r−-successor for xD2 .

It is impossible to determine which existential role restrictions can be ignored if each
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model fragment is processed independently. In our example, since we build the candi-

date model incrementally, it might be that the domain element xD2 for D2 is created

before any domain element for D1, in which case we do have to add an r−-successor. It

is however crucial that we do not add more successors to any element than necessary,

since this can lead to concepts of the form ≤1r.> not being satisfied by the candidate

model.

To represent this mechanism concisely, we define a function
·←− that takes as ar-

guments two model fragments I1, I2 and a role R, and returns a new model frag-

ment I1
R←−I2. Intuitively, I1

R←−I2 represents individuals with an incoming R-edge from

an individual that satisfies the literals in I2. I1
R←−I2 is defined as follows:

I1
R←−I2 = I1 \ {∃Inv(R).D | D ∈ I2,∃R.D′ ∈ I2 or ≥2R.D′ ∈ I2, D

′ ∈ I1}

If there is a domain element x2 satisfying the literals in I2, and an R-edge be-

tween x2 and another domain element x1, then x1 already satisfies ∃Inv(R).D, given

D ∈ I2. Therefore, we can ignore the literal ∃Inv(R).D in the model construction.

Furthermore, we define the union I1 ∪ I2 of two interpretations I1 and I2. Given

the interpretations I1 = 〈∆I1 , ·I1〉 and I2 = 〈∆I2 , ·I2〉, we define the union I1 ∪ I2

of I1 and I2 as 〈∆I1∪I2 , ·I1∪I2〉, where ∆I1∪I2 and ·I1∪I2 are defined as follows for all

A ∈ Nc and r ∈ Nr:

∆I1∪I2 = ∆I1 ∪∆I2

AI1∪I2 = AI1 ∪ AI2

rI1∪I2 = rI1 ∪ rI2

We now describe the construction of the candidate model I. The candidate model

is defined using the function I(x, I), which takes a domain element x and a model

fragment and returns a tree-shaped interpretation. x is the root of this tree, and I

contains the literals x should satisfy in the interpretation. The definition of I(x, I)

is inductive in the sense that it depends on other interpretations I(xD, ID) for each

definer D which occurs in a literal of the form ∃R.D or ≥2R.D.

Given a domain element x and a model fragment I, the interpretation I(x, I) is
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defined as follows:

∆I(x,I) = ∆I
succ(I,x) ∪ {x},

AI(x,I) =

A
Isucc(I,x) if A 6∈ I

AI
succ(I,x) ∪ {x} if A ∈ I.

rI(x,I) = rI
succ(I,x)

∪ {(x, xD) | ∃r.D ∈ I} ∪ {(xD, x) | ∃r−.D ∈ I}

∪ {(x, x1
D), (x, x2

D) | ≥2r.D ∈ I, } ∪ {(x1
D, x), (x2

D, x) | ∃r−.D ∈ I},

where the domain elements xD, x1
D and x2

D refer to the respective domain elements in

the successor interpretation union Isucc(I,x), which is defined as follows:

Isucc(x,I) =
⋃

∃R.D∈I

I(xD, I
D R←− I) ∪

⋃
≥2R.D∈I

(
I(x1

D, I
D R←− I) ∪ I(x2

D, I
D R←− I)

)
,

where it is assumed that the different interpretations involved in the successor inter-

pretation union have disjoint domains. Intuitively, the successor interpretation union

Isucc(x,I) is the union of successor interpretations I(xD, I
D R←− I), where D is referenced

in I via a role restriction on R.

Given I = I(x, I), we refer to x as the root element of I, and I as the initial model

fragment of I. The definition of I(x, I) is inductive, since it refers via the successor

interpretation union to the successor interpretations I(xD, I
D R←−I) for any definer for

which there is a literal ∃R.D in the initial model fragment. The domain ∆I(x,I) there-

fore consists of all domain elements present in any successor interpretation, plus the

domain element x.

Due to the inductive nature of this definition, xD ∈ I(xD, I
D R←−I), and therefore

there is one domain element xD ∈ I(x, I) for every existential restriction ∃R.D ∈ I.

The interpretation for each concept symbol A contains the successor interpretations

of A and, if A ∈ I, additionally the root element x. This way it is ensured that x

satisfies all concept symbols in the model fragment. Note that for every satisfiable

definer D, D ∈ ID. Therefore, the definition ensures that xD ∈ DI(xD,I
D

R←−I) and

xD ∈ DI(x,I). Recall that due to Lemma 4.2.16, no model fragment contains a literal

∃R.D for a definer D with ¬D ∈ N ∗. For this reason, the model construction never

uses domain elements xD if the corresponding definer D is unsatisfiable.
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Figure 5.10: Model candidate for N∞∗ built using the new method.

Similar to the interpretation of concept symbols, for each role symbol r the inter-

pretation takes the successor interpretations of r, and adds a relation (x, xD) for every

∃r.D. Since xD ∈ D, this ensures that x ∈ (∃r.D)I(x,I) if ∃r.D ∈ I. The same holds

for inverse roles and literals of the form ≥2R.D.

The special definer ε serves as the root of the candidate model. This candidate

model is defined as I = I(xε, I
ε). For the clause set N∞∗ given earlier, the corre-

sponding interpretation is shown in Figure 5.10. Even though this interpretation is

more complex than the model shown in Figure 5.8, every element has at most one

r-predecessor. Therefore, every element satisfies ≤1r−.>. Indeed, the interpretation

is a model of N∞∗. The graph additionally visualises an important property of inter-

pretations generated this way. They have the form of a tree with the root element as

its root, and every domain element xD has at most one edge that is not due to the

elements in ID.

We prove that also in the general case, I(xε, I
ε) is a model for all clauses in N ∗

that are not transitivity axioms.

Lemma 5.6.1. Let N be any set of SIF clauses, N ∗ = RessSIF(N ), and I = I(xε, I
ε)
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the candidate model built using the above construction based on the clauses in N ∗.

Then, I |= C for every clause C ∈ N ∗ that is not of the form trans(R).

Proof. The proof by contradiction. Let C be the smallest clause, according to ≺c,

for which I 6|= C. Then, there is a domain element x ∈ ∆I such that x 6∈ CI . Let

Ix = I(x, Ix) be the corresponding interpretation that has x as a root element.

We do a case analysis based on the maximal literal L in C, where C = C ′ t L.

Observe that since x 6∈ CI , we also have x 6∈ LI .

1. L is of the form A or ¬A. A contradiction arises for the same reasons as in the

refutational completeness proof of ResALC (see Lemma 4.2.15).

2. L is of the form ∃R.D or ≥2r.>. We cannot have ∃R.D ∈ Ix, since then

the model construction would ensure that x ∈ (∃R.D)I , which contradicts our

assumption. Therefore, ∃R.D 6∈ Ix. The construction of model fragments ID

ensures that every clause is satisfied by ID (Lemma 5.4.7). Therefore, Ix must be

the result of the operator
·←−, that is, Ix = ID

′ Inv(R)←−−− Ip, D ∈ Ip, and ∃R.D has

been removed from ID
′

for Ix. This implies that Ix is a successor interpretation

of an interpretation Ip = I(xp, Ip), and that there is a literal ∃Inv(R).D′ ∈ Ip

such that D′ ∈ Ix. In this case, there is an edge (x, xp) ∈ RI . If D ∈ Ip, Ix

does not contain the literal ∃R.D. But then also xp ∈ DI and x ∈ (∃R.D). This

contradicts x 6∈ LI .

3. L is of the form ∀R.D. x 6∈ (∀R.D)I implies that there is an edge (x, x2) ∈ RI

with x2 6∈ DI . This edge can be created in two ways by the model construction.

(a) There is a literal ∃R.D′ ∈ Ix with D′ 6= D and ¬D′ t D 6∈ N ∗. In this

case, the situation is the same as for ResALCH, and we have a contradiction for

the same reason as in the proof for Lemma 5.4.7. (b) There is a predecessor

interpretation Ip = I(Ip, xp) of Ix with ∃Inv(R).D′ ∈ Ip and D′ ∈ Ix. Then, the

situation is the same as for RessALCHI (see Theorem 5.3.4), since the only new

rules that introduce universal restrictions ∀R.D that do not already occur in N

are the transitivity rule and the universalisation rule, and these are applied in

the first stage, before the additional introduction of definer symbols. Therefore,

both cases contradict the assumption that I 6|= C.
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4. L is of the form ≤1R.>. x 6∈ (≤1R.>)I implies that there are two different

individuals x1 and x2 with (x, x1), (x, x2) ∈ RI .

(a) x1 and x2 are both root nodes of a successor interpretation of Ix. This

implies that Ix contains two literals ∃R.D1 and ∃R.D2, or one literal of the

form ≥2R.D. We then have a contradiction for the same reasons as in the

proof for Lemma 5.4.7, which was used to show refutational completeness

of RessALCHF .

(b) x1 is the root node of an interpretation I1 = I(I1, x1), of which Ix is a

successor interpretation. Note that due to the tree-shape of the interpreta-

tions built, Ix cannot be the successor interpretation of a second interpre-

tation. Therefore, x2 must be the root node of a successor interpretation

I2 = I(I2, x2) of Ix. Consequently, ∃Inv(R).D1 ∈ I1 or ≥2Inv(R).D1 ∈ I1,

where D1 ∈ Ix, and ∃R.D2 ∈ Ix, where D2 ∈ I2. Note that ≥2R2.D2 ∈ Ix
is impossible, since we already showed that this leads to a contradiction.

Since ∃R.D2 ∈ Ix, there is a clause C ′2 t ∃R.D2 ∈ N ∗ such that ∃R.D2 is

maximal and Ix 6|= C2, due to the monotonicity of the model construction

of model fragments for RessALCHF (see Lemma 5.4.6).

Observe that ≤1R.> must occur as literal already in the original clause

set N , possibly in a different clause C ′′t≤1R.>, since there is no rule that

infers new functional role restrictions. Similarly, the literal ∃R.D2 either

occurs in a clause in N , or can be generated by subsequent ∀∃-role propa-

gation rules on a clause C ′′2 t ∃R.D′2 present in N . (If ∃R.D2 occurs in the

conclusion of the existential role combination rule, since C ′t≤1R.> ∈ N ∗,

the universalisation rule applies to one of the premises, deriving a clause

where the existential role restriction is replaced by a universal role restric-

tion, so that an alternative derivation infers ∃R2.D2 using only universal

role propagations.) Either D′2 = D2 or ¬D2 tD′2 ∈ N ∗.

C ′′ t≤1R.> and C ′′2 t ∃R′2.D′2 are both in the initial clause set N . Hence,

in Stage 2, the clause C ′′ t C ′′2 t ∀R.D′2 is derived. Because of the sec-

ond definer introduction in Stage 3, we have the clauses D3 t ∀R.D′2 and

¬D3 t C ′′ t C ′′2 ∈ N ∗. A similar sequence of rule applications that infers
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C ′ t ≤1R.> from C ′′ t ≤1R.> can be used to infer ¬D3 t C ′ t C ′′2 from

¬D3tC ′′tC ′′2 . Analogously, one can derive the clause ¬D3tC ′tC ′′′2 such

that C ′′′2 ⊆ C ′2. (The subset relation holds since the ∀∃-role propagation

rule may add additional literals that are not in C ′2.) Since Ix 6|= C ′ and

Ix 6|= C2, and since ¬D3 t C ′ t C ′′2 ≺c C, this establishes Ix 6|= D3.

Because ∃Inv(R).D1 ∈ I1, there is a clause C1 t ∃Inv(R).D1 such that

I1 6|= C1. Due to the role inversion rule and D3 t ∀R.D′2, N ∗ contains

the clause D′2 t ∀Inv(R).D3. The ∀∃-role propagation rule infers C1 tD′2 t

∃Inv(R).D13, ¬D13tD1, ¬D13tD3 ∈ N ∗. As noted earlier, either D′2 = D2

or ¬D2tD′2 ∈ N ∗. In both cases, C1 tD2 t ∃Inv(R).D13 ∈ N ∗: in the first

case because D′2 = D2, in the second case by resolution on D′2.

Since Ix 6|= D3, and Ix |= ¬D13 t D3 (the clause is smaller than C), we

have Ix 6|= D13. The only way in which x1 ∈ (∃Inv(R).D13)I can be true is

therefore due to another successor x′ with (x1, x
′) ∈ Inv(R)I with x′ ∈ DI13.

But this is successor is only generated if I1 |= ∃Inv(R).D13, in which case

∃Inv(R).D1 is not added to I1 in the model fragment construction. We

therefore establish I1 6|= ∃Inv(R).D13. We have C1 t D2 t ∃Inv(R).D13 ∈

N ∗. C1 t D2 t ∃Inv(R).D13 ≺c C, which due to our original assumption

implies I1 |= C1 t D2 t ∃Inv(R).D13. This, together with I1 6|= C1 and

I1 6|= ∃Inv(R).D13, allows us to conclude that I1 |= D2.

I1 |= D2, and Ix is a successor interpretation of I1 via the role Inv(R).

Therefore, Ix = Ix
Inv(R)←−−−I1. By definition, this means Ix contains no ele-

ment of the set {∃R.D′ | D′ ∈ Ix,∃Inv(R).D′′ ∈ I1 or ≥2Inv(R).D′′ ∈ I1,

D′′ ∈ I1}. Set D′ = D2 and D′′ = D1, and we obtain that ∃R2.D2 6∈ Ix. But

this contradicts that x has a second R-successor x2, which means ≤1R.>

is satisfied by x.

We established that x 6∈ (≤1R.D)I leads to a contradiction in all cases.

All cases for maximal literals in C lead to a contradiction, which means there cannot

be a smallest clause C ∈ N ∗ such that I 6|= C. Hence, we have for all clauses C ∈ N ∗

that are not of the form trans(R) that I |= C.

In order to extend I to an interpretation Itrans that also satisfies the transitivity
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axioms in N ∗, we use the same trick as in Section 5.2, which is by adding the transitive

closure to transitive roles. Note that transitive roles that are transitive are not allowed

to occur in concepts of the form ≤1R.> (see Section 3.1). The additional edges in

Itrans therefore do not affect the satisfaction of concepts of the form ≤1R.>. Hence,

Itrans satisfies all clauses in N ∗, and we have the following lemma.

Lemma 5.6.2. Itrans satisfies all clauses in N ∗.

Based on this lemma, we can establish refutational completeness of RessSIF . Inter-

polation completeness of IntSIF can be established in the same way as for the earlier

calculi, since the only new rule, the universalisation rule, does not introduce new defin-

ers nor clauses with more than one negative definer. Note also that due to the absence

of role hierarchies in IntSIF , forgetting role symbols does not create a problem.

Theorem 5.6.3. RessSIF is sound and refutationally complete, and provides a decision

procedure for SIF ontology satisfiability.

Theorem 5.6.4. IntSIF is interpolation complete.

5.6.1 On the Incompleteness for SHIF

It might be surprising that we did not include role hierarchies in the calculus presented

in this section, as all the other calculi apply to description logics with role hierarchies.

It turns out that role hierarchies cause an additional problem when combined with

both inverse role and functional role restrictions, which is not easily solved with a

calculus of the kind we are using throughout the thesis. This is illustrated by the

following ontology OSHIF :

A v ∃r1.B r1 v s13

B v ∃r−2 .C r3 v s13

C v ∃r3.D r2 v s23

A v ∃r4.E r3 v s23

> v ≤1s−13.> r2 v s24

> v ≤1s23.> r4 v s24

> v ≤1s24.> D u E v ⊥
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A

B

C

DE

r1 r2 r3r4

Figure 5.11: Interpretation of OSHIF that does not satisfy the role hierarchy.

Without the role hierarchy, the interpretation in Figure 5.11 would be model for

OSHIF . Together with the role hierarchy and the functional role restrictions, we see

that in a model, the nodes for B and C would have to collapse into one node, and

so would the nodes for E, B and D. Therefore, every instance of A would have a

successor that satisfies both D and E. However, due to the last axiom in the ontology,

such a successor cannot exist in a model for OSHIF . From this it follows that A is

unsatisfiable in OSHIF . Our calculus, even if extended with monotonicity rules, is not

able to detect this unsatisfiability, and it cannot be used to prove that > v ¬A is

an entailment. The problem is that while our calculus is able to transfer information

about definer literals using the role propagation roles, it cannot propagate information

about role symbols in the same way. This problem does not only affect our calculus,

but also shows the incompleteness of other saturation based reasoning methods for

description logics that have been published in the literature. The method presented

in Kazakov (2009), defined for the description logic Horn SHIQ, which is expressive

enough to represent this ontology, also fails to detect the unsatisfiability of A. A

solution might be to use a language that can represent conjunctions of roles, which we

did not consider in the context of this thesis.

We conclude the chapter with an overview of the rules introduced in this chapter,

which is shown in Figure 5.12 and Figure 5.13. For each rule, we mention for which

calculus it was first introduced, and whether its application is restricted to Stage 2 of

the derivation.
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Resolution (ResALC)
C1 t A C2 t ¬A

C1 t C2

∃-Elimination (ResALC)
C1 t ∃R.D ¬D

C1

∃-Monotonicity (ResALCH)

C t ∃R.D R v S

C t ∃S.D

∀-Monotonicity (IntALCH)

C t ∀R.D S v R

C t ∀S.D

Role hierarchy (IntALCH)

S v R R v T

S v T

∀∃-Role Propagation (RessALCH)

C1 t ∀R.D1 C2 t ∃S.D2 S vN R

C1 t C2 t ∃S.D12

where D12 is a possibly new definer representing D1 uD2.

∀∀-Role Propagation (IntALCH, ResALCHF)

C1 t ∀R1.D1 C2 t ∀R2.D2 S vN R1 S vN R2

C1 t C2 t ∀S.D12

where D12 is a possibly new definer representing D1 uD2.

Transitivity (ResSH, only used in Stage 2 in ResSIF)

C t ∀R.D trans(S) S vN R

C t ∀S.D′ ¬D′ tD ¬D′ t ∀S.D′

Figure 5.12: Complete set of rules introduced in this chapter, Part 1.
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Role Inversion (ResALCHI)

D1 t ∀R.D2

D2 t ∀Inv(R).D1

∃∃-Role Propagation (ResALCHF)

C1 t ∃R1.D1 C2 t ∃R2.D2 R1 vN S R2 vN S

C1 t C2 t ∃R1.D12 t ≥2S.>

where D12 is a possibly new definer representing D1 uD2.

≥2-Elimination I (ResALCHF)

C1 t ≥2R.> C2 t ≤1S.> R vN S

C1 t C2

≥2-Elimination II (ResALCHF)

C1 t ≥2R.> C2 t ∀S.D ¬D R vN S

C1 t C2

Universalisation (ResSIF , only used in Stage 2)

C1 t ∃R.D C2 t ≤1R.>
C1 t C2 t ∀R.D

Figure 5.13: Complete set of rules introduced in this chapter, Part 2.



Chapter 6

Uniform Interpolation with

Cardinality Restrictions

In Chapter 5, we extended the calculi ResALC and IntALC stepwise to develop a uniform

interpolation method for SIF . In this chapter, we generalise the rules of these calculi

in order to deal with number restrictions. IntALCHF has several rules that deal with the

interactions between literals of the form ∃R.D, ∀R.D, ≤1R.> and ≥2R.>. In SHQ,

these literals can be equivalently represented using only two types of role restrictions,

namely number restrictions of the form ≥nr.D and ≤nr.D. These number restrictions

also cover all new concepts we can express in SHQ. Rather than extending IntALCHF

by new rules, we therefore formulate a new calculus with fewer rules, which generalises

the rules of IntALCHF .

In Section 5.4, we observed that due to functional role restrictions, an ALCHF

uniform interpolant can preserve more information from the input ontology than an

ALCH uniform interpolant. This is even more the case with qualified number restric-

tions, as we illustrate with the following ALC ontology Obike.

Bicycle v ∃hasWheel.FrontWheel u ∃hasWheel.RearWheel

FrontWheel v Wheel u ¬RearWheel

RearWheel v Wheel u ¬FrontWheel

Since RearWheel and FrontWheel are disjoint concepts, we can infer from this ontology

that each bicycle has at least two wheels. Accordingly, an SHQ uniform interpolant
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of Obike for Sbike = {Bicycle, hasWheel,Wheel} is the following:

Bicycle v ≥2hasWheel.Wheel

By contrast, for ALCHF and ALCH, the uniform interpolants are expressed in the

following axioms, which preserve less information:

Bicycle v ≥2hasWheel.> u ∃hasWheel.Wheel (ALCHF)

Bicycle v ∃hasWheel.Wheel (ALCH)

In applications where numbers of successors are important, SHQ uniform inter-

polation can therefore also contribute if the ontology is expressed in a less expressive

description logic.

Even though SHF and SHQ are of the same complexity class for standard rea-

soning tasks (Tobies, 2001), number restrictions interact in more complex ways than

the role restrictions we have seen so far. This becomes intuitive when one looks at the

first-order logic representations of number restrictions (see Section 3.1):

> v ≥nr.D ⇐⇒ ∀x∃y1, . . .∃yn
[( ∧

1≤i≤n

(
r(x, yi) ∧D(yi)

)
∧

∧
1≤i<j≤n

yi 6= yj

)]
> v ≤nr.D ⇐⇒ ∀x∀y1, . . .∀yn+1

[( ∧
1≤i≤n+1

(
r(x, yi) ∧D(yi)

)
→

∨
1≤i<j≤n+1

yi = yj

)]
When using unary encoding, number restrictions actually represent first-order logic

formulae of quadratic size. This is reflected in our calculus by the number of clauses

that can be inferred from just a single pair of clauses. In fact, our calculus allows us

to infer up to an additional exponential more clauses than the other calculi presented

in the thesis.

For reasoning with number restrictions, different techniques have been proposed in

the literature. In resolution based approaches, a common way is to express number

restrictions using inequations between terms, as in the first-order logic representation.

This approach is followed by all consequence-based reasoning methods we presented

in the related work section (see Section 2.7.2), but also for example by the hyper-

tableau algorithm used by HermiT (Motik et al., 2009). For uniform interpolation

however, this approach is problematic, because it is not easy to transform clauses with

inequalities back into axioms with number restrictions.
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In tableau-based reasoning, a simple approach is to create n successor-nodes in

the current branch for ≥-restrictions, and to non-deterministically merge successor-

nodes for ≤-restrictions (see for example Baader and Sattler, 2001). If the numbers

occurring in the ontology are large, this can lead to the addition of a large number

of nodes to the current branch, and to a large number of branching points in the

tableau. A more advanced approach, presented in Farsiniamarj and Haarslev (2010), is

to encode interactions between number restrictions as inequation systems and combine

the tableau-reasoner with an inequation solver. This increases the practicality if large

numbers are used in the ontology. However, as we argued in Chapter 3 and 4, tableau-

based methods are not well-suited for a practical computation of uniform interpolants,

and it is not straightforward how these approaches can be used in a resolution-based

framework.

For these reasons, instead of using an existing solution, we develop a new way of

dealing with number restrictions that is compatible to the reasoning approaches we

have presented so far. Our assumption is that the majority of axioms in SHQ on-

tologies do not use number restrictions, and that the numbers occurring in number

restrictions are usually small. That this is a reasonable assumption is for example

reflected in the NCBO BioPortal repository, a well-known repository of real-life on-

tologies that we discuss in more detail in Chapter 8. There are 74 ontologies in this

repository that use cardinality restrictions. On average, only 2.3% of the axioms in

these ontologies contain a cardinality restriction. Moreover, only 2.8% of all cardi-

nality restrictions in the repository use a cardinality larger than 2. Out of the 5,529

cardinality restrictions that occur in the complete repository, only 14 use a cardinality

that is larger than 6.

Ideally, our calculus for SHQ should therefore behave in a similar way as IntALCHF

on axioms that are purely in ALCHF , unless if entailments can be inferred that are

only expressible in SHQ. At the same time, it should generalise rules in IntALCHF

instead of adding new rules, to avoid the resulting calculus to become too complex.

The calculi presented in this chapter follow all these requirements.
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6.1 The Refutation Calculus

We start by generalising the normal form to incorporate number restrictions. Every

role restriction can equivalently be expressed as a number restriction, which is why

the normal form for SHQ does not use any other types of role restrictions. At the

same time, it turns out that we need more expressivity on concepts that occur under

role restrictions.

Definition 6.1.1. An SHQ literal is a concept of one of the following forms:

A | ¬A | ≥nr.D | ≤mr.¬D,

where A ∈ Nc, r ∈ Nr, n ≥ 1, m ≥ 0 are natural numbers and D = D1 t . . . tDn

is a disjunction of definer symbols. The empty disjunction of definer symbols is ex-

pressed as ⊥. A literal of the form ¬D,D ∈ Nd, is called negative definer literal. An

SHQ clause is a role inclusion of the form r v s, a transitivity axiom of the form

trans(r), or a clause of the form > v L1t. . .tLn, where each Li, 1 ≤ i ≤ n, is an SHQ

literal. An ontology is in SHQ normal form if every axiom in it is an SHQ clause.

Note that in contrast to the normal forms presented in former chapters, this normal

form allows for disjunctions of definers under role restrictions. Even though such

literals are not introduced by the normal form transformation, this flexibility is used

by the rules of the calculus.

Seemingly, the normal form allows for nested negations. More precisely, un-

der a ≤-restriction there is always a negated disjunction. This is necessary since

≤-restrictions implicitly contain a negation by themselves. This becomes appar-

ent from their first-order logic representation (see above), and from the equivalence

¬(≥nr.C) ≡ ≤(n− 1)r.C. The negation in literals of the form ≤mr.¬D ensures

that SHQ ontologies in normal form correspond to formulae in negation normal form.

Note that universal restrictions of the form ∀r.D are represented as literals of the form

≤0r.¬D in SHQ normal form.

In ResALC and ResALCHF , new symbols representing conjunctions of definers are

introduced dynamically. We use the same mechanism in ResSHQ. Since the normal

form allows for disjunctions of definers under a role restriction, a single rule application

can lead to the introduction of several definers. If Da = Da1 t . . . t Dan and Db =
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Db1 t . . . tDbm, then Dab represents the conjunction of Da and Db iff

Dab =

Da1b1t . . . tDa1bmt
...

. . .
...

tDanb1t . . . tDanbm

where each Daibj, 1 ≤ i ≤ n, 1 ≤ j ≤ m, is a possibly introduced definer represent-

ing Dai uDbj. Even though this matrix looks big, we do not expect large disjunctions

to occur in inferences from realistic ontologies. This is due to the same assumption we

made in the introduction of this chapter, namely that only a minor part of the input

ontology uses cardinality restrictions, and that only small cardinalities are used.

The rules of the refutation calculus ResSHQ are shown in Figure 6.1. The first

two rules are adaptations of corresponding rules in ResSH. The resolution rule is

unchanged, and the transitivity rule is adjusted to the syntax of the SHQ normal

form. Recall that in SHQ, transitive roles or roles with transitive sub-roles are only

allowed to occur in existential and in universal role restrictions (see Section 3.1). Due

to the normal form, this means they are only to be expected in number restrictions of

the form ≥1r.D or ≤0r.¬D. For this reason, we do not need a more general rule for

transitive role axioms.

The last two rules, the ≥-resolution rule and the ≥-elimination rule, adapt the

∃-elimination rule to the generalised context of the SHQ normal form. Using the

∃-elimination of ResALC, the conclusion C is inferred from the two premises C t ∃r.D

and ¬D. The ≥-resolution and the ≥-elimination rule generalise this idea to number

restrictions that can contain several definer symbols. The ≥-resolution rule is used to

eliminate unsatisfiable definers from a ≥-restriction. If all definers in a ≥-restriction

have been eliminated in this way, the literal is of the form ≥nr.⊥, and it is eliminated

using the ≥-elimination rule.

The two remaining rules are the ≥-combination rule and the ≥≤-combination

rule. These correspond to the role propagation rules in IntALCHF . Before we prove

their soundness in detail, we show how they relate to the rules in IntALCHF . This may

also give us some understanding on the mechanics of the calculus.

The ∀∃-role propagation rule of ResALC has as premises two clauses C1 t ∀r.D1

and C2 t ∃r.D2 and as conclusion the clause C1 t C2 t ∃r.D12. If represented in

SHQ normal form, the premises are of the form C1 t≤0r.¬D1 and C2 t≥1r.D2, and
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Resolution:
C1 t A C2 t ¬A

C1 t C2

Transitivity:

C t ≤0r1.¬D trans(r2) r2 vN r1

C t ≤0r2.¬D′ ¬D′ tD ¬D′ t ≤0r2.¬D′

where D′ is a new definer symbol.

≥-Combination:

C1 t ≥n1r1.D1 C2 t ≥n2r2.D2 r1 vN r r2 vN r

C1 t C2 t ≥(n1 + n2)r.(D1 t D2) t ≥1r1.D12
...

C1 t C2 t ≥(n1 + 1)r.(D1 t D2) t ≥n2r1.D12

where D12 represents D1 u D2.

≥≤-Combination:

C1 t ≥n1r1.D1 C2 t ≤n2r2.¬D2 r1 vN r2 n1 > n2

C1 t C2 t ≥(n1 − n2)r1.D12

where D12 represents D1 u D2.

≥-Resolution:
C t ≥nr.(D tD) ¬D

C t ≥nr.D

≥-Elimination:
C t ≥nr.⊥

C

Figure 6.1: Inference rules of the calculus ResSHQ.
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the conclusion is of the form C1tC2t≥1r.D12. We can see that the ∀∃-role propagation

rule, translated to SHQ normal form, is an instance of the≥≤-combination rule, where

n1 = 1 and n2 = 0.

Similarly, the ∃∃-role propagation rule of ResALCHF is related to the ≥-combination

rule. The ∃∃-role propagation rule infers from the premises C1t∃R.D1 and C2t∃R.D2

the conclusion C1 t C2 t ≥2R.> t ∃r.D12. The corresponding derivation in ResSHQ

infers from the premises C1 t ≥1R.D1 and C2 t ≥1R.D2 the conclusion C1 t C2 t

≥2R.(D1 t D2) t ≥1R.D12. Clearly, C1 t C2 t ≥2R.(D1 t D2) t ≥1R.D12 |= C1 t

C2 t≥2R.>t ∃R.D12. However, the conclusion of the ≥-combination preserves more

information in the ≥2R-restriction, due to the higher expressivity of SHQ.

Finally, the two ≥2R.>-elimination rules in ResALCHF can be simulated in ResSHQ

in several steps.

The ≥2R.>-elimination rule I in ResALCHF infers from the two clauses C1t≥2R.>

and C2 t ≤1R.> the clause C1 t C2. In SHQ normal form, the premises are of the

following form:

1. C1 t ≥2R.D1 (Premise 1)

2. C2 t ≤1R.¬D2 (Premise 2)

3. ¬D2

Note that the unsatisfiable definer D2 is necessary since we cannot express ≤1R.>

directly in SHQ normal form. Using the ≥≤-combination rule, we infer the following

clauses:

4. C1 t C2 t ≥1R.D12 (≥≤-Combination 1, 2)

5. ¬D12 tD1 (D12 v D1)

6. ¬D12 tD2 (D12 v D2)

Since D2 is unsatisfiable, so is D12, and the last literal in Clause 4 can be eliminated

using resolution, ≥-resolution and ≥-elimination.

7. ¬D12 (Resolution 3, 6)

8. C1 t C2 t ≥1R.⊥ (≥-Resolution 4, 7)

9. C1 t C2 (≥-Elimination 8)



6.1. The Refutation Calculus 161

The last clause corresponds to the conclusion of the ≥2R.>-elimination rule I.

The≥2R.>-elimination rule II in ResALCHF has three clauses as premises, which are

of the forms C1 t ≥2R.>, C1 t ∀R.D1 and ¬D1, and as conclusion the clause C1tC2.

We derive the same conclusion using the rules of ResSHQ, if we represent > using the

definer D>:

1. C1 t ≥2R.D> (Premise 1)

2. C2 t ≤0R.¬D1 (Premise 2)

3. ¬D1 (Premise 3)

4. C1 t C2 t ≥2R.D>1 (≥≤-Combination 1, 2)

5. ¬D>1 tD> (D>1 v D1)

6. ¬D>1 tD1 (D>1 v D1)

7. ¬D>1 (Resolution 3, 6)

8. C1 t C2 t ≥2R.⊥ (≥-Resolution 4, 7)

9. C1 t C2 (≥-Elimination 8)

Clause 9 corresponds to the conclusion of the second ≥2R.>-elimination rule

of ResALCHF .

We established that ResSHQ is a true generalisation of ResSH and ResALCHF . It

remains to show that the new rules are actually sound. We prove the soundness of the

≥-combination rule and the ≥≤-combination rule in two lemmata.

Lemma 6.1.2. The ≥-combination rule is sound.

Proof. The four premises of the rule are C1 t ≥n1r1.D1, C2 t ≥n2r2.D2, r1 v r and

r2 v r. Since ((A t B) u (C tD) |= (A t C t (B u C)), it is sufficient to prove that

the following concept inclusion follows from the role inclusions r1 v r and r2 v r, for

all 0 ≤ i < n2.

≥n1r1.D1 u ≥n2r2.D2 v ≥(n1 + n2 − i)r.(D1 t D2) t ≥(1 + i)r1.(D1 u D2) (6.1)

Let I be a model of the role inclusions and x ∈ ∆I a domain element of the model

such that x ∈ (≥n1r.D1)I and x ∈ (≥n2r.D2)I . Since I is a model, there must be two

sets of domain elements X1, X2 ⊆ ∆I , such that the following properties are fulfilled.
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1. (x, xi) ∈ rI for all xi ∈ (X1 ∪X2)

2. X1 ⊆ DI1 and X2 ⊆ DI2

3. #X1 ≥ n1 and #X2 ≥ n2

X1 contains the r1-successors of x satisfying D1 and X2 contains the r2-successors

of x satisfying D2. Without additional information, it is impossible to know how

many elements are in the intersection X1 ∩ X2. Suppose that we additionally have

x ∈ (≤mr.(D1 t D2))I , where m is any number with m < n1 + n2. Under this as-

sumption, since X1 ⊆ DI1 and X2 ⊆ DI2 , we can deduce that (X1 ∪ X2) ≤ m. This

allows us to compute the minimal size of the intersection X1 ∩X2.

#(X1 ∩X2) = #X1 + #X2 −#(X1 ∪X2) ≥ n1 + n2 −m

For elements xi ∈ (X1 ∩ X2)I , we have xi ∈ (D1 u D2)I . Hence, we can establish

that x has at least (n1 + n2 −m) r1-successors that satisfy D1 u D2, in other words,

that x ∈ (≥(n1 + n2−m)r1.(D1 uD2))I . Since this was deduced from the assumption

that x ∈ (≤mr.(D1 t D2))I , we can conclude that in every model I in which x ∈

(≥n1r1.D1)I , x ∈ (≥n2r2.D2)I , I |= r1 v r and I |= r2 v r, x satisfies the following

concept.

¬(≤mr.(D1 t D2)) t ≥(n1 + n2 −m)r1.(D1 u D2) (6.2)

This concept is equivalent to the following.

≥(m+ 1)r.(D1 t D2) t ≥(n1 + n2 −m)r1.(D1 u D2) (6.3)

Since m < n1 +n2, we can set m = n1 +n2−i−1, where 1 ≤ i < n1 +n2. Concept (6.3)

can then be rewritten in the following way using i.

≥(n1 + n2 − i)r.(D1 t D2) t ≥(1 + i)r1.(D1 u D2) (6.4)

We established that if x satisfies (≥n1r1.D1u≥n2r2.D2), it also satisfies Concept (6.4).

Therefore, Entailment (6.1) follows from the role inclusions, and the ≥-combination

rule is sound.

Lemma 6.1.3. The ≥≤-combination rule is sound.
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Proof. Observe that from the premises C2 t ≤n2r2.¬D2 and r1 vN r2 of the rule,

C2 t ≤n2r1.¬D2 can be deduced. It is therefore sufficient to consider the case where

the premises of the rule use the same role.

To validate soundness of the ≥≤-rule, we have to prove that the following concept

inclusion is valid for any n2 < n1.

≥n1r.D1 u ≤n2r.¬D2 v ≥(n1 − n2)r.(D1 u D2) (6.5)

Let I be a model with a domain element x ∈ ∆I that satisfies the concept on the left-

hand side of the entailment. We have x ∈ (≥n1r.D1 u ≤n2r.¬D2)I . Let X be the set

of all r-successors of x, that is X = {xi | (x, xi) ∈ rI}. Let X1 = X ∩ DI1 contain the

r-successors of x that satisfy D1, and X2 = X ∩DI2 contain the r-successors of x that

satisfy D2. Since x ∈ (≥n1r.D1)I , #X1 ≥ n1. Furthermore, since x ∈ (≤n2r.¬D2)I ,

#(X \X2) ≤ n2.

Since n1 ≥ n2, X1 and X2 have to overlap. In addition, since X1 ⊆ X and

#(X \ X2) ≤ n2, also #(X1 \ X2) ≤ n2. This way, we obtain a lower bound for the

number of elements in X1 ∩X2.

#(X1 ∩X2) = #X1 −#(X1 \X2) ≥ n1 − n2 (6.6)

We have X1∩X2 ⊆ (D1uD2)I , and can establish that x has at least n1−n2 r-successors

that satisfy D1 uD2. Therefore, x ∈ (≥(n1− n2)r.(D1 uD2))I . Hence, Entailment 6.5

is valid, and the ≥≤-combination rule is sound.

These lemmata, together with the earlier observations concerning the other rules,

allow us to establish soundness of the calculus.

Theorem 6.1.4. ResSHQ is sound.

However, ResSHQ is not terminating, since the ≥-rule can be applied arbitrary

often, such that clauses with increasing cardinalities in ≥-restrictions are inferred.

In order to obtain a terminating calculus, we extend ResSHQ with redundancy elim-

ination techniques, for which adapt the redundancy notions of RessALCH defined in

Definition 5.1.5.

Definition 6.1.5. A definer symbol D1 subsumes a definer symbol D2, in symbols

D1 vd D2, if either D1 = D2 or there is a clause ¬D1 tD2 in the current clause set.
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A disjunction D1 of definer symbols subsumes a disjunction D2 of definer symbols, in

symbols D1 vd D2, if every definer symbol in D1 subsumes a definer symbol in D2. A

literal L1 subsumes a literal L2, in symbols L1 vl L2, if one of the following conditions

hold:

1. L1 = L2

2. L1 = ≥n1r.D1, L2 = ≥n2s.D2, r vN s, n1 ≥ n2, and D1 vd D2.

3. L1 = ≤n1r.¬D1, L2 = ≤n2s.¬D2, s vN r, n1 ≤ n2 and D1 vd D2.

A clause C1 subsumes a clause C2 (C1 vc C2) if every literal L1 ∈ C1 subsumes a

literal L2 ∈ C2. A clause C is redundant with respect to a clause set N , if N contains

a clause C ′ with C ′ vc C. The reduction of a clause C, denoted by red(C), is obtained

from C by removing every literal that subsumes another literal in C.

In addition to the notion of redundancy used in RessALC, as defined in Defini-

tion 4.3.6, this definition takes into account disjunctions of definers and numbers

that occur in number restrictions. The redundancy elimination rules are the same

as for RessALC. With these techniques, we obtain termination for RessSHQ.

Theorem 6.1.6. RessSHQ is terminating.

Proof. We already established that at most 2n definer symbols are introduced by the

calculus, where n is the number of definer symbols occurring in the initial set of clauses

(see Lemma 4.2.4 and note that the way new definers are introduced is the same as in

ResALC). Since the normal form does not allow for nested disjunctions under number

restrictions, this also gives us a finite bound on the number of definer disjunctions

occurring in the clause set. (Recall that both clauses and disjunctions of definer

symbols are represented as sets. Therefore, they cannot have duplicate elements.)

The ≥-combination rule is the only rule where a number occurring in the conclusion

can be larger than the numbers in the premises. Suppose the ≥-combination rule can

be applied on two clauses C1t≥n1r1.D1 and C2t≥n2r2.D2. There are two possibilities:

(i) D1 6= D2 or r1 6= r2, and (ii) D1 = D2 and r1 = r2. Only finitely many variations

of the first case are possible, since both the number of possible definer disjunctions

and the number of role symbols in the RBox is bounded. Therefore, we can restrict
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our attention to the second case. If D1 = D2 and r1 = r2, our conclusions are of the

following form:

C1 t C2 t ≥(n1 + n2)r2.D2 t ≥1r2.D2

...

C1 t C2 t ≥(n1 + 1)r2.D2 t ≥n2r2.D2

These clauses are all subsumed by the premise C2 t ≥n2r2.D2. Therefore, if subsump-

tion deletion is applied eagerly, the ≥-combination rule only produces new clauses up

to a certain bound.

We obtain that RessSHQ(N ) is finitely bounded for any input clause set N , and

that RessSHQ is terminating.

6.2 Refutational Completeness of ResSHQ

In order to prove refutational completeness of RessSHQ, we adapt the model construc-

tion first introduced in Section 4.2.3 to our new calculus.

Let N be any set of SHQ clauses with ⊥ 6∈ ResSHQ(N ), and N ∗ = ResSHQ(N ).

Let ≺d, ≺c and ≺r be orderings fulfilling the same constraints as the corresponding

orderings in the model construction for ResALCHF (see Section 5.4), that is, ≺c is an

arbitrary ordering on concept symbols, ≺r is the non-reflexive sub-relation of vN , and

D1 ≺d D2 for all ¬D1 tD2 ∈ N ∗.

A definer D is maximal in a disjunctionD of definers if D is maximal inD according

to ≺d. ≺d is extended to a total ordering on disjunctions of definers based on the

multiset extension (≺d)mul.

We define a total ordering ≺l on literals based on the ordering we used in Sec-

tion 5.4. Specifically, ≺l is any ordering that satisfies the following constraints, where

disjunctions of definer symbols are treated as sets.

1. A ≺l ¬A for all A ∈ Nc.

2. If A1 ≺c A2, then ¬A1 ≺l A2

3. ≥n1r.D1 ≺l ≤n2r.D2 for all n1 > 0, n2 ≥ 1, r ∈ Nr, D1,D2 ∈ 2Nd .
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4. ¬D ≺l A and ¬D ≺l ∃r.D, for all D ∈ Nd, D ∈ 2Nd , A ∈ Nc \Nd and r ∈ Nr.

5. If r ≺r s, ≥n1r.D1 ≺l ≥n2s.D2 and ≤n1r.D1 ≺l ≤n2s.D2 for all n1, n2 ≥ 0 and

D1, D2 ∈ 2Nd .

6. If D1 ≺d D2, then ¬D1 ≺l D2

7. If D1 ≺d D2, then ≥n1r.D1 ≺l ≥n2s.D2 and ≤n1r.D1 ≺l ≤n2s.D2 for all n1,

n2 ≥ 0 and r, s ∈ Nr such that r and s are not related by ≺r.

These constraints are an adaptation of the constraints given on page 128, which are

used in the model construction for ResALCHF and ResSIF , to SHQ literals. That such

an ordering always exist, can be shown by adaptations of the proof for Lemma 4.2.9

using a lexicographical ordering.

As in the model construction in Section 4.2.3, ≺l is extended to an ordering ≺c on

clauses using the multiset extension, and the clauses in N ∗ are enumerated based on

this ordering, where we denote the position of each clause Ci ∈ N ∗ in this enumeration

by an index i. We therefore have that Ci ≺c Cj implies i < j.

Due to the ≥-number restrictions, domain elements can be connected to arbitrary

numbers of successors satisfying the same definer. To take this into account, we

represent model fragments using multisets.

Definition 6.2.1. Additive literals are of the form A or +1r.D, where A ∈ Nc, r ∈ Nr,

D ∈ Nd. A multiset model fragment is a multiset of additive literals. A multiset model

fragment I satisfies a literal L, written I |= L, iff

1. L is a positive literal of the form A and A ∈ I,

2. L is a negative literal of the form ¬A and A 6∈ I,

3. L is of the form ≥nr.D and #{+1s.D ∈ I | s vN r,D vd D} ≥ n.

4. L is of the form ≤nr.¬D and #{+1s.D ∈ I | s vN r,D′ 6vd D} ≤ n.

A model fragment I satisfies a clause C, written I |= C, if there is a literal L ∈ C

such that I |= L.
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Inspired by the model constructions discussed in the previous sections, for each

definer D that occurs inN ∗, a multiset model fragment ID is constructed. If ¬D ∈ N ∗,

we again set ID = ∅. For all other definers, ID is defined incrementally as follows.

1. ID0 = {D} if D 6= ε and ID0 = ∅ if D = ε.

2. If IDi−1 |= Ci, then IDi = IDi−1 , otherwise

(a) IDi = IDi−1∪{L}, if IDi−1 6|= Ci and the maximal literal L in Ci is an unnegated

concept symbol,

(b) IDi = IDi−1 ∪ {(+1s.D′)n | r vN s}, if IDi−1 6|= Ci and the maximal literal

in Ci is of the form ≥n′r.D, where D′ is the largest disjunct in D and n is

the smallest number such that IDi−1 ∪ {(+1s.D′)n | r vN s} |= Ci.

3. ID = IDn , where n is the number of clauses in de(D).

The model construction is very similar to the one used to prove refutational com-

pleteness of the other calculi in the thesis. Note that in Step 2b we always add the

smallest number of additive literals necessary to satisfy the current clause.

A step in the model construction is called effective if the step ensures that IDi |= Ci

and ID |= Ci. It is easy to verify that Steps 2a and 2b of the model construction are

effective. Following Step 2b, one can prove further properties of the created multiset

model fragments.

Lemma 6.2.2. ID satisfies the following properties.

1. For every +1r.D′ ∈ ID and s with r vN s, +1s.D′ ∈ ID.

2. If ID |= ≥nr.D, then also ID |= ≥ns.D for all s with r vN s.

3. If ID |= ≤nr.¬D, then also ID |= ≤ns.¬D for all s with s vN r.

4. If IDi−1 6|= Ci and the maximal literal in Ci is ≥nr.D, then #{+1r.D ∈ IDi+1 |

{D} vd D} = n.

Proof. The first property holds since, if an additive literal of the form +1r.D′ is added

in Step 2b, we further add an additional literal of the form +1s.D′ for every r vN s.

The other properties are stepwise consequences of this property.
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Before we prove ID |= C for all definers D and all clauses C ∈ N ∗, we consider a

few special cases. We start by proving that conclusions of the ≥-combination rule do

not directly contribute to additional additive literals in the model fragments.

Lemma 6.2.3. Assume N ∗ contains two clauses of the form Cji = Cji t≥niri.Di, for

i ∈ {1, 2}, where ≥niri.Di is maximal in Cji, and there is a role r with ri vN r for

both i. Let Cj be a conclusion of applying the ≥-combination rule on Cj1 and Cj2 on

the maximal literals. Then, IDj−1 |= Cj.

Proof. From the definition of the ≥-rule, it follows that Cj must be of the following

form:

C1 t C2 t ≥(n1 + n2 − d)r.(D1 t D2) t ≥(1 + d)r1.D12, (6.7)

where 0 ≤ x < n2 and D12 represents the conjunction of D1 and D2. We denote the

last two literals of Cj respectively by L1 and L2, that is, L1 = ≥(n1 +n2−d)r.(D1tD2)

and L2 = ≥(1 + d)r1.D12 The case where IDji |= C1 tC2 is trivial, we therefore assume

IDji 6|= C1 t C2 for i ∈ {1, 2}, and prove that then, IDj−1 |= L1 t L2.

First observe that Cji ≺c Cj for both i ∈ {1, 2}, since the maximal literal in Cj

is of the form ≥nr.(D1 t D2), and rji vN r and Di vd D1 t D2 for i ∈ {1, 2}. For

the indices, this implies ji < j for each i ∈ {1, 2}. Due to Properties 4 and 2 in

Lemma 6.2.2, we therefore have IDj−1 |= ≥n1r.D1 and IDj−1 |= ≥n2r.D2. Denote the sets

of additive literals in IDj−1 that satisfy these literals by ID+Di
:

ID+Di
= {+1s.D′ ∈ IDj | {D′} v Di, s vN ri} for i ∈ {1, 2}.

By definition, (i) ID+Di
|= ≥niri.Di and (ii) ID+Di

⊆ IDj−1. Due to (i), we additionally

have (iii) #ID+Di
≥ ni and (iv) {D′} v Di and s vN ri for every D′ with +1s.D′ ∈ ID+Di

.

If ID+D1
∩ ID+D2

= ∅, due to (iii), we have #(ID+D1
∪ ID+D2

) ≥ (n1 +n2). Together with

(ii) and (iv), from this it follows that IDj−1 |= ≥(n1 + n2)r.(D1 t D2), which ensures

IDj−1 |= L1 and IDj−1 |= Cj.

Assume otherwise that ID+D1
∩ ID+D2

6= ∅. Then let IDu = ID+D1
∩ ID+D2

. Because

of (iv), {D′} vd D1, {D′} vd D2 and s v r1 for all +1s.D′ ∈ IDu . If D12 represents the

conjunction of D1 and D2, it can be shown that this implies {D′} vd D12 for every D′

with +1s.D′ ∈ IDu . Consequently, IDu |= ≥nur1.D12, where nu = #IDu . With (ii), this

gives us (v) IDj−1 |= ≥nur1.D12 and (vi) IDj−1 |= ≥(n1 + n2 − nu)r.(D1 t D2).
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There are two possibilities regarding the number d in Equation 6.7.

1. nu ≤ d. We then have that IDj−1 |= L1 due to (vi).

2. nu > d. In this case, IDj−1 |= L2, due to (v).

We have established that either way, IDj−1 |= Cj.

Next, we prove that for a specific set of saturated clauses, the corresponding model

fragments satisfy unary clauses of the form ≤nr.D.

Lemma 6.2.4. Assume we have a satisfiable set of clauses N = {≤nr.¬Da} ∪

{≥niri.Di | 1 ≤ i ≤ m, ri vN r} ∪ M, where M only consists of clauses with at

least one negative definer literal. Let N ∗ = ResSHQ(N ), and Iε be the model fragment

for ε generated based on the clauses in N ∗. Then, Iε |= ≤nr.¬Da.

Proof. We have to show that #{+1ri.Di ∈ Iε | ri v r,¬Di tDa 6∈ N ∗} ≤ n.

If Σm
i=1ni < n, at most Σm

i=1ni additive literals are added to Iε for the clauses N

and due to Lemma 6.2.3, no further additive literals are added for clauses that can be

derived from N . We obtain that in this case, Iε |= ≤nr.¬Da.

Otherwise, set n∆ = Σm
i=1ni − n. The proof is by induction on the clauses in N ,

where the base case is that n∆ ≤ ni for all clauses ≥niri.Di ∈ N .

Base case: Assume n∆ < ni for all ≥niri.Di ∈ N . Applying the ≥-rule incrementally

on each clause in N yields a set of clauses of the form ≥nΣrΣ.DΣ t CΣ
k , where

nΣ = Σm
i=1ni, r

Σ vN r, D = {Di | 0 < i ≤ m}. Each CΣ
k consists of number

restrictions of the form ≥n′r′.D′, n′ ≤ ni, i ≤ m, where D′ contains definers

representing conjunctions of definers in N .

Applying the ≥≤-rule with on this clause and ≤nr.¬Da yields clauses of the form

C∆
k = ≥n∆rΣ.D∆ t CΣ

k , where D∆ = {Dia | 1 ≤ i ≤ m} consists of definers Dia

representing Di u Da for 1 ≤ i ≤ m. Every number restriction in C∆
k contains

definers that represent conjunctions of definers in N . Therefore, each C∆
k is

smaller than the clauses ≥niri.Di ∈ N and processed before these clauses by the

construction of Iε. Due to Lemma 6.2.3, we can also ignore saturations on the

clauses of C∆
k via the ≥-combination rule.
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For clauses of the form C∆
k , in Step 2b of the construction of Iε, we add n∆

additive literals of the form +1r.Dij, where each Dij subsumes at least two

definer symbols from N . Since C∆ is smaller than the clauses in N , for each of

these additive literals where ¬Dij tDa 6∈ N ∗, 2 additive definer literals less are

added when the ≥-restrictions in N are processed. For each of these additive

literals where ¬Dij tDa ∈ N ∗, 1 additive definer literal less is added when ≥-

restrictions in N are processed. As a result, only nΣ − n∆ = n definer literals

of the form +1r′.D′, where ¬D′ t Da 6∈ N ∗, are added to the multiset model

fragment, and hence, we obtain that #{+1ri.Di ∈ Iε | ri v r,Di 6v Da} = n and

Iε |= ≤nr.¬Da.

Induction Step: Let N1 be a clause set for which the inductive hypothesis holds,

and ≥n2r.D2 be a clause not in N1. We show that the hypothesis holds for

N = N1 ∪ {≥n2r.D2}. Without loss of generality, we assume D′ ≺d D2 for all

definers occurring in N1.

Let N ∗1 be the saturation of N1 using ResSHQ. As in the base case, there

is a clause CΣ
1 = ≥nΣrΣ.DΣ t . . . ∈ N ∗1 which is the result of incremen-

tally applying the ≥-combination rule on all ≥-restrictions in N1, and a clause

C∆
1 = ≥n∆r.D∆ t C∆

1
′ ∈ N ∗1 , which is the result of applying the≥≤-combination

rule on this clause and ≤nr.¬Da. Applying the ≥-combination rule on CΣ
1 and

≥n2r.D2 results in a new clause CΣ
2 = ≥(nΣ +n2)r.(DtD2)tC∆

1
′
, and applying

the ≥≤-rule on this clause results in a clause C∆
2 = ≥(n∆+n2)r.(D∆tD2a)tC∆

1
′
.

Since D′ ≺d D2 for all definer symbols in N1, we also have that D2a is larger

than all definer symbols in D∆, which represent conjunctions of definers from N1.

Therefore, C∆
1 ≺c C∆

2 . If ¬D2a ∈ N ∗, N ∗ additionally contains conclusions of

the ≥-resolution rule with ¬D2a.

1. Assume ¬D2a 6∈ N ∗, which means that the ≥-resolution rule is not applica-

ble on D2a. Since C∆
1 ≺c C∆

2 , C∆
2 is processed after C∆

1 by the model con-

struction, but still before ≥n2r.D2. ≥(n∆ +n2)r.(D∆tD2a) is the maximal

literal in C∆
2 , and D2a is larger than all definers in D∆. Therefore, in Step 4

of the model construction, n2 additive literals of the form +1r.D2a are added

to Iε. ¬D2a tD2 ∈ N ∗, therefore, when ≥n2r.D2 is processed, no additive
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literals of the form +1r.D2 are added. We also have ¬D2a tDa ∈ N ∗, and

due to the inductive hypothesis, #{+1ri.Di ∈ Iε | ri vN r,Di 6v Da} < n,

and hence ID |= ≤nr.¬Da.

2. If ¬D2a ∈ N ∗, then applying the ≥-resolution rule on the clauses ¬D2a

and ≥(n∆ + n2)r.(D∆ tD2a) t CΣ′
a results in a set of smaller clauses of the

form C∆
a = ≥(n∆ + n2)r.(D∆) t CΣ

a
′
. But CΣ

1
′

contains a literal ≥n2r.D2i,

where N ∗ |= D2i v D2 and N ∗ |= D2i v Di for at least one disjunction

of definers Di in N ∗1 . Since Dj ≺d D2 for all definer symbols Dj in N1,

and since every definer Djk 6= D2i in CΣ
a
′

represents the disjunctions over

conjunctions of definers that are smaller than D2, ≥n2r.D2i is the maximal

literal in C∆
a . As a result, n2 literals of the form +1r.D2i, D2i ∈ D2i, are

added in Step 4 of the model construction. Since ≥n2r.D2i is maximal

in C∆
a , all clauses in N ∗1 where ≥n′r′.Di is maximal are larger than C∆

a , and

therefore processed subsequently by the model construction. As a result, n2

additive literals less are added for these, than it would be the case for the

clause set N ∗1 . Also, no additive literals are added for the clause ≥n2r.D2.

By the inductive hypothesis, for N ∗1 , at most n additive literals of the form

+1ri.Di, ri v r,¬Di tDa ∈ N ∗ are part of the model fragment. For N , we

add n2 additive literals of this form less when processing the clauses in N ∗1 ,

and we add n2 additive literals of the form +1r.D2i. Therefore, we have

again that #{+1ri.Di ∈ Iε | ri v r,Di 6v Da} ≤ n, and hence Iε |= ≤nr.Da.

We have shown that Iε |= ≤nr.Da for any set of clauses that satisfy the conditions

of the lemma.

Lemma 6.2.4 can be generalised to the following lemma.

Lemma 6.2.5. Let N ∗ be a saturated set of clauses and Ci = Ci
′ t ≤nr.D ∈ N ∗ be

a clause in which ≤nr.D′ is maximal. Let ID be the model fragment for a definer D

generated from N ∗. Then, ID |= Ci.

Proof. Assume ID 6|= Ci. Since≤nr.D′ ∈ Ci, we also have ID 6|= ≤nr.D′. This can only

be the case due to clauses of the form Cij = ≥njrj.Dj t Cij ′, rj v r, ¬Dj tDi ∈ N ∗

where ≥njrj.Dj is maximal, and IDj−1 6|= Cj. Let N ′ be a subset of N ′ that only
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contains these clauses, Ci and any unary clause of the form ¬D′ ∈ N ∗, and let N ′∗

be the saturation of N ′. Let I ′D be the model fragment for D generated from N ′∗.

N ′∗ contains all clauses from N ∗ that are crucial for ID 6|= ≤nr.D′, and therefore

I ′D 6|= ≤nr.D′. Let N ′′ be a clause set that contains a unary clause Cmax for each

clause C ∈ N ′, where Cmax contains the maximal literal in C. Let I ′′D be the model

fragment for D generated from the saturation N ′′∗. Since I ′D 6|= ≤nr.D′, and I ′D

is solely built based on the maximal literals in each clause, I ′′D 6|= ≤nr.D′. On the

other hand, N ′′ is a clause set of the same form as in Lemma 6.2.4, which implies

I ′′D |= ≤nr.D′. We have a contradiction, which means the initial assumption ID 6|= Ci

cannot be true. Hence, ID |= Ci.

We have now everything we need to prove that each non-empty model fragment ID

satisfies all clauses in N ∗.

Lemma 6.2.6. Let D be any definer with ¬D 6∈ N ∗ or D = ε. Then, ID |= C for all

clauses C ∈ N ∗.

Proof. We validate that for each Ci ∈ N ∗, ID |= Ci. The proof is by contradiction.

Assume i is the smallest i with ID 6|= Ci.

1. The maximal literal in Ci is of the form A or ≥nr.D′. Then, ID |= Ci by

construction of the model, which contradicts the assumption that ID 6|= Ci.

2. If the maximal literal in Ci is of the form ¬A, ID 6|= ¬A and therefore A ∈ ID.

Then the situation is the same as for ResALC, and we have a contradiction for

the same reasons as in the proof for Lemma 4.2.15.

3. If the maximal literal in Ci is of the form ≤nr.¬D1, by Lemma 6.2.5, ID |= Ci,

which contradicts the initial assumption that ID 6|= Ci.

We have shown that all cases lead to a contradiction, which means that there

cannot be a smallest clause C ∈ N ∗ such that ID 6|= C. Hence, ID |= C for all clauses

C ∈ N ∗.

Based on the models fragments, we build a candidate model inspired by the model

construction we used to prove refutational completeness of ResALC in Section 4.2.3.

However, as for ResALCHF , it is not sufficient to just have one domain element per
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definer symbol, since our candidate model has to be able to satisfy concepts of the

form ≥nr.D. Let nmax be the largest number n occurring in a number restriction

≥nr.D in N ∗. For each definer D, the domain ∆I of the candidate model I con-

tains nmax domain elements xDi , where 1 ≤ i ≤ nmax. Additionally, it contains one

domain element xε for the model fragment Iε.

We first define the interpretation function ·I for concept symbols, based on the

concept symbols in the model fragments.

• For every A ∈ Nc, A
I =

{x
D
i | A ∈ ID, i ≤ nmax} if A 6∈ Iε

{xDi | A ∈ ID, i ≤ nmax} ∪ {xε} if A ∈ Iε

The model fragments ID serve as guide to assign concepts to the corresponding

individuals xDi , or to xε if D = ε.

In order to satisfy the transitivity axioms, for each role r we first define an ini-

tial interpretation function rI0 without transitivity, which we then extend using the

transitive closure, as we did for ResSH in Section 5.4:

• For every r ∈ Nr:

– rI0 = {(xD1
i , xD2

j ) | i ≤ nmax, j ≤ #{+1s.D2 ∈ ID, ID2 6= ∅}}

– rI = rI0 ∪ {(x, x′) ∈ (sI0 )∗ | s vN r, trans(s) ∈ N}

Note that roles with a transitive sub-role are not allowed in literals of the form

≤nr.¬D with n > 0. Therefore, adding the transitive closure does not affect the

satisfiability of any number of the form ≤nr.D with n ≥ 1, and the extension of the

candidate model has no different effect than for ResSH.

Lemma 6.2.7. I is a model of N ∗.

Proof. The role inclusion and transitivity axioms in N ∗ are satisfied by the model for

the same reasons as for the candidate models built in Sections 5.4 for ResALCHF (see

also Lemma 6.2.2).

It remains to show that the remaining clauses are satisfied by the model as well,

that is, that I |= C for all C ∈ N ∗. The proof is again by contradiction. Assume Ci is

the smallest clause in N ∗ with IN ∗ 6|= Ci. We only have to check the cases where the

maximal literal in Ci is a number restriction. For the remaining cases the situation is

the same as for ResSH.
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1. The maximal literal in Ci is of the form ≥nr.D. Since ID |= ≥nr.D, we have

#{+1s.Dj ∈ ID, s vN r, {Dj} v D} ≥ n.

(a) Suppose IDj 6= ∅ for each Dj ∈ {Dj | +1s.Dj ∈ ID, s vN r, Dj v D}.

Then there is an r-relation from every xDi to at least n domain elements.

Note that if {Dj} vd D, either Dj ∈ D or ¬Dj tD′j ∈ N ∗ for one D′j ∈ D.

In both cases, D′j ∈ IDj for some D′j ∈ D and x
Dj

k ∈ DIN∗ . This implies

xDi ∈ (≥nr.D)IN∗ , which contradicts our initial assumption.

(b) Suppose ID2 = ∅ for some D2 ∈ {Dj | +1s.Dj ∈ ID, s vN r, Dj v D}.

Then there is a clause ¬D2 ∈ N ∗. Additive literals +1s.D2 ∈ ID are only

added in Step 4 in the construction of ID if there is a clause Cj in which the

maximal literal is ≥ms.D2, where D2 is the maximal definer symbol in D2,

and for which IDj−1 6|= Cj. Applying the ≥-resolution rule on ¬D2 and Cj

produces the following smaller clause:

Ck = (Cj \ {≥ms.D2}) ∪ {≥ms.(D2 \ {D2})}.

Due to Lemma 6.2.6, ID |= Ck. Since the maximal literal in Ck cannot be

maximal in any clause larger than Ck, we obtain IDk |= Ck. In our ordering,

Ck ≺c Cj. But then, IDj−1 |= Cj, and no additive literals are added for Cj.

We obtain that, contrary to an earlier observation, no additive literal of the

form +1s.D2 is added to ID. We have a contradiction, which means the

assumption ID2 = ∅ cannot be true.

2. The maximal literal in Ci is of the form ≤nr.¬D2.

(a) Assume r is simple, that is trans(r) 6∈ N and there is no role s vN r with

trans(s) ∈ N . Then, by Lemmata 6.2.5 and 6.2.6, Ci is satisfied by the

model.

(b) Assume r is not simple, that is trans(r) ∈ N or there is a role s with

s vN r and trans(s) ∈ N . Recall that by the definition of SHQ, only

simple roles are allowed in number restrictions of the form ≤n′r.D′ with

n′ > 0. Therefore, since r is not simple, n = 0, and that the maximal literal

in Ci is of the form ≤0r.¬D2. In this case, the proof can be done in the

same way as for Lemmata 4.2.19 and 5.2.4 for ResALC and ResSH.
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≤-Combination:

C1 t ≤n1r1.¬D1 C2 t ≤n2r2.¬D2 r vN r1 r vN r2

C1 t C2 t ≤(n1 + n2)r.¬D12

≤≥-Combination:

C1 t ≤n1r1.¬D1 C2 t ≥n2r2.D2 r2 vN r1 n1 ≥ n2

C1 t C2 t ≤(n1 − n2)r1.¬(D1 t D2) t ≥1r2.D12
...

C1 t C2 t ≤(n1 − 1)r1.¬(D1 t D2) t ≥n2r2.D12

Figure 6.2: Additional inference rules of IntSHQ.

We established that every clause in N ∗ is satisfied by the candidate model, which

means that I |= C for every clause C ∈ N ∗, and that I is a model for N ∗.

Lemma 6.2.7 allows us to establish refutational completeness of ResSHQ. Together

with Theorem 6.1.4, we therefore have the following theorem.

Theorem 6.2.8. ResSHQ is sound and refutationally complete.

In a similar fashion as for RessALC and RessALCH, it can be shown that the redun-

dancy elimination rules in RessSHQ preserve refutational completeness. (Note that the

orderings ≺l and ≺d used in the model construction are compatible to the subsumption

relations vl and vd defined in Definition 6.1.5.) Termination of RessSHQ is given by

Theorem 6.1.6. We can therefore establish that RessSHQ is a sound and refutationally

complete decision procedure for satisfiability of SHQν ontologies.

Theorem 6.2.9. RessSHQ is sound, refutationally complete and terminating, and pro-

vides a decision procedure for SHQν.

6.3 The Interpolation Calculus

For similar reasons as for IntALC (see Section 4.4), additional inference rules are nec-

essary in order to obtain an interpolation complete calculus for SHQ. These rules are

shown in Figure 6.2. IntSHQ extends ResSHQ by these rules.

Again one can verify that the rules in Figure 6.2 are generalisations of rules we

have seen in earlier chapters. The ≤-combination rule is a generalisation of the ∀∀-role
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propagation rule in IntsALCH (see Sections 5.1.2 and 4.4), and the ≤≥-combination rule

is a generalisation of the universalisation rule in ResSIF (see Section 5.5). The two

rules are sufficient to compute the uniform interpolant of any SHQν ontology.

We first prove soundness of the two new rules.

Lemma 6.3.1. The ≤-combination rule is sound.

Proof. Assume we have two clauses C1 t ≤n1r1.¬D1, C2 t ≤n2r2.¬D2 ∈ N , and we

further have a role r with r1 vN r and r2 vN r. We have to show that every model

of N also satisfies the axiom > v C1 t C2 t ≤(n1 + n2)r.¬(D1 u D2).

Assume I is a model of N and x is a domain element in I with x ∈ (≤n1r1.¬D1)I

and x ∈ (≤n2r2.¬D2)I . We show that we then also have x ∈ (≤(n1+n2)r.¬(D1uD2))I .

Since r vN r1 and r vN r2, x ∈ (≤n1r.¬D1)I and x ∈ (≤n2r.¬D2)I . Denote by X1

the r-successors of x satisfying ¬D1 and by X2 the r-successors of x satisfying ¬D2.

The following equations hold.

#X1 ≤ n1 (6.8)

#X2 ≤ n2 (6.9)

#(X1 ∪X2) ≤ #X1 + #X2 (6.10)

#(X1 ∪X2) ≤ n1 + n2 (6.11)

Each element of X1 ∪ X2 satisfies ¬D1 or ¬D2, and therefore satisfies ¬D1 t ¬D2,

which is equivalent to ¬(D1uD2). Hence, x has at most n1 +n2 r-successors satisfying

¬(D1 u D2), and x ∈ (≤(n1 + n2)r.¬(D1 u D2))I .

Lemma 6.3.2. The ≤≥-combination rule is sound.

Proof. Assume we have two clauses C1t≤n1r1.¬D1, C2t≥n2r2.D2 ∈ N where n1 ≥ n2,

and we additionally have r2 vN r1. We have to prove that every axiom of the following

form is entailed by N , where 0 ≤ i < n2.

> v C1 t C2 t ≤(n1 − n2 + i)r1.¬(D1 tD2) t ≥(1 + i)r2.(D1 u D2) (6.12)

Let I be any model of N , and let x be a domain element of I such that x ∈

(≤n1r1.¬D1)I and x ∈ (≥n2r2.D2)I . We have to show that then one of the following

is true.

x ∈ (≤(n1 − n2 − i)r1.¬(D1 t D2))I (6.13)
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x ∈ (≥(1 + i)r2.(D1 u D2))I . (6.14)

Assume (6.14) does not hold. We then have the following.

x ∈ (≤ir2.(D1 u D2))I .

We show that in this case, (6.13) is satisfied.

Since r2 vN r1 and x ∈ (≥n2r2.D2)I , we also have x ∈ (≥n2r1.D2)I . Denote

the r1-successors of x that satisfy D1 by X1 and the r1-successors of x that satisfy D2

by X2. Furthermore, denote the set of all r1-successors of x by X and let n = #X.

Based on the concepts that x satisfies, we can establish the following inequations.

#X = n

#(X \X1) ≤ n1

#X1 > n− n1

#X2 ≥ n2

#(X1 ∩X2) ≤ i

This allows us to infer the maximum cardinality of the set r1-successors of x that

satisfy ¬(D1 t D2), which is the set X \ (X1 ∪X2).

#(X1 ∪X2) = #X1 + #X2 −#(X1 ∩X2)

#(X1 ∪X2) > (n− n1) + n2 − i

#(X \ (X1 ∪X2) ≤ n− ((n− n1) + n2 − i)

≤ n1 − n2 + i

We established that there are at most (n1−n2+i) r1-successors that satisfy ¬(D1tD2),

and that 6.13. This proves that the ≤≥-combination rule is sound.

With Theorem 6.1.4 and Lemmata 6.3.1 and 6.3.2, we can establish the following

theorem.

Theorem 6.3.3. IntSHQ is sound.
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6.4 Interpolation Completeness of IntSHQ

It can be shown in a similar fashion as for ResALC that ResSHQ is still refutation-

ally complete if we restrict rules to be only applied on maximal literals and to pro-

duce clauses with at most one negative definer literal. Denote the resulting calculus

by Resnorm≺l
SHQ . However, since ResSHQ has completely different rules for handling role

restrictions, we have to establish a similar lemma for IntSHQ as we stated for IntALC in

Lemma 4.4.6. This lemma makes use of the notion of subsuming contexts of definers,

which is defined in Definition 4.4.4. The SHQ normal form allows us to represent

equivalent sets of clauses in very different ways that are not captured by our redun-

dancy notion. These syntactical variants of equivalent clauses play a major role in

our proof for interpolation completeness. We therefore have to generalise the notion

of subsuming contexts.

Definition 6.4.1. A definer D1 occurs in N in a deductively subsuming context to a

definer D2, if there is a set of clauses N ′ such that N |= N ′ and D1 occurs in N ′ in a

subsuming context to D2.

Given two clause sets N and M, a definer D1 that occurs in N and a definer D2

that occurs in M, D1 occurs in a deductively subsuming context to D2 if D1 occurs

in a deductively subsuming context in N ∪M.

Observe that if D1 occurs in N in a subsuming context to D2, then D1 also occurs

in N in a deductively subsuming context to D2.

Lemma 6.4.2. Let N andM be two sets of clauses, and D1 and D2 two definers that

are combined in ResnormSHQ(N ∪M) by a definer D12x. Then, D1 and D2 are combined by

a definer D′12x in N ∗ = IntSHQ(N ), and either D′12x occurs in a deductively subsuming

context to D12x, or ResnormSHQ(N ∗∪M) contains a clause ¬D′′12xtD′12x, and D′′12x occurs

in a deductively subsuming context to D12x.

Proof. Let N , M, D1, D2 and D12x be as in the lemma, that is, D1 and D2 are

combined in ResnormSHQ(N ∪M) by the definer D12x.

Let C1, C2 ∈ ResnormSHQ(N ) be two clauses in which respectively the two definers D1

and D2 occur under a role restriction. If a rule of ResSHQ can be directly applied

on C1 and C2 to combine D1 and D2, D1 and D2 are already combined in ResnormSHQ(N).

Suppose therefore this is not the case.
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The case in which C1 and C2 contain different negative definer literals can be proved

using induction, given that we can prove the case where C1 ∪C2 contains at most one

negative definer literal (see proof for Lemma 4.4.6). We may therefore assume that

C1 ∪ C2 contains at most one negative definer literal.

D1 and D2 are combined in ResSHQ(N ∪M) by D12x. Therefore, there are two

clauses ¬D12x tD1, ¬D12x tD2 ∈ ResSHQ(N ∪M). Let C3 ∈ ResSHQ(N ∪M) be a

clause that contains the “missing link” for introducing such a definer D12x. That is, C3

contains a number restriction such that, using the rules of ResSHQ on C1, C2 and C3,

the definer D12x is introduced. We consider the different cases for C1, C2 and C3 and

show that in each case, we can introduce the definer D′′12x in a deductively subsuming

context if we first apply the rules of IntSHQ on C1 and C2, and then saturate the

conclusions with C3 using ResnormSHQ.

1. The maximal literals in C1 and C2 are of the form ≤niri.¬Di, i ∈ {1, 2}, and

the maximal clause of C3 is of the form ≥n3r.D3, where n3 > n1 + n2, r vN r1

and r vN r2. By using first the ≥≤-combination rule of ResnormSHQ, we can infer

the following clauses.

1. C ′1 t C ′3 t ≥(n3 − n1)r.D13

2. C ′2 t C ′3 t ≥(n3 − n2)r.D23

3. C ′1 t C ′2 t C3 t ≥(n3 − n1 − n2)r.D123.

D1 and D2 are combined in ResnormSHQ(N ∪M) by D123.

Using IntSHQ, we can derive the same clause containing ≥(n3−n1−n2)r.D123 if

we apply first the ≤-rule on the clauses C1 and C2, and then the ≤≥-combination

rule on C3:

1′. C ′1 t C ′2 t ≤(n1 + n2)r.¬D12

2′. C ′1 t C ′2 t C3 t ≥(n3 − n1 − n2)r.D′′123

D1 and D2 are combined in N ∗ by D12, ¬D′′123 tD12 ∈ ResnormSHQ, and D′′123 occurs

in a deductively subsuming context to D123.

2. The maximal literals in C1 and C3 are of the form ≥niri.Di, i ∈ {1, 3} and the

maximal literal in C2 is of the form ≤n2r.¬D2, where ni ≤ n2 ≤ n1 + n3 and
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ri v r for i ∈ {1, 3}. D1 and D2 are not combined in ResnormSHQ(N ), since n1 < n2,

and the ≥≤-combination rule is not applicable for this case.

The following clauses are derived by applying the ≥-combination rule on C1

and C3:

C ′1 t C ′3 t ≥(n1 + n3)r.(D1 tD3) t ≥1ri.D13

...

C ′1 t C ′3 t ≥n′r.(D1 tD3) t ≥n′′ri.D13,

where i ∈ {1, 3}, n′ = max(n1, n3) + 1 and n′′ = min(n1, n3). Observe that

n2 ≥ n′, since n2 is the largest of the three initial numbers n1, n2 and n3. The

≥≤-combination rule can be applied on each of these clauses and C3. This way,

we obtain the following set of clauses:

C ′1 t C ′2 t C ′3 t ≥(n1 + n3 − n2)r.(D12 tD23) t ≥1ri.D13

...

C ′1 t C ′2 t C ′3 t ≥1r.(D12 tD23) t ≥(n1 + n3 − n2)ri.D13

(6.15)

D1 and D2 are combined by D12, which represents D1 uD2.

The last two literals in these clauses describe all possible distributions of n =

n1 + n3 − n2 r-successors to sets of individuals satisfying D12 t D23 and indi-

viduals satisfying D13. If a domain element satisfies both D12 t D23 and D13,

it satisfies all three definer concepts D12, D13 and D23. Assume we abbreviate

D12 u D13 u D23 by D123. Clause Set (6.15) is then equivalent to the following

set of clauses:

C ′1 t C ′2 t C ′3 t ≥(n1 + n3 − n2)r.(D12 tD23 tD13) t ≥1ri.D123

...

C ′1 t C ′2 t C ′3 t ≥1r.(D12 tD23 tD13) t (n1 + n3 − n2)ri.D123

(6.16)

Note that here D123 is not an introduced definer, but a place-holder for the

concept D12 uD13 uD23.

We show how a stronger set of clauses can be inferred by using first IntSHQ on C1

and C2. First, the ≤≥-combination rule is applied on C1 and C2, which produces
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the following clauses:

C ′1 t C ′2 t ≤(n2 − n1)r3.¬(D1 tD2) t ≥1r1.D
′
12

...

C ′1 t C ′2 t ≤(n2 − 1)r3.¬(D1 tD2) t ≥n1r1.D
′
12.

D1 and D2 are combined in N ∗ by D′12. D′12 represents the same conjunction

as D12, namely D1 u D2. We show that D′12 occurs in ResnormSHQ(N ∗ ∪M) in an

deductively subsuming context to D12 in ResnormSHQ(N ∪M).

To make the following easier, we assume that we have in addition the following

redundant clauses:

C ′1 t C ′2 t ≤n2r3.¬(D1 tD2) t ≥(n1 + 1)r1.D
′
12

...

C ′1 t C ′2 t ≤(n3 − 1)r3.¬(D1 tD2) t ≥(n3 − (n2 − n1))r1.D
′
12.

Since n3 > n2 and r3 v r, these are all subsumed by C2t≤n2r.¬D2 and therefore

redundant. Therefore, adding these clauses does not lead to any new inferences

that are not entailed by the original set of clauses.

By applying the ≥≤-combination rule on C3 and each of these clauses, we obtain

the following clauses.

C ′1 t C ′2 t C ′3 t ≥(n3 − (n2 − n1))r3.(D13 tD23) t ≥1r1.D
′
12 (6.17)

... (6.18)

C ′1 t C ′2 t C ′3 t ≥1r3.(D13 tD23) t ≥(n3 − (n2 − n1))r1.D
′
12. (6.19)

Again the last two literals in these clauses describe all possible distributions

of n = n3 − (n2 − n1) = n1 + n3 − n2 r-successors to sets of individuals satis-

fying D12, D13 and D23. Observe that the individuals satisfying D12 are all r1-

successors, and the individuals satisfying (D13uD23) are all r3-successors. There-

fore, the intersection of both sets always consists of elements that are both r1-

successors and r3-successors. Hence, if we replaceD′12 in Clause Set (6.17) byD12,

we obtain a set of clauses that the logically entails Clause Set (6.16). There-

fore, D′12 occurs in a deductively subsuming context in ResnormSHQ(N ∗∪M) to D12.
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In the remaining cases, either D1 and D2 are already combined in ResnormSHQ(N ), or

they are also not combined in ResnormSHQ(N ∪M).

Theorem 6.4.3. The calculus IntSHQ is interpolation complete for forgetting concept

symbols in SHQ.

Proof. The proof goes analogously to the proof for interpolation completeness of IntALC

(Theorem 4.4.11). If IntSHQ is interpolation complete for forgetting concept symbols

in SHQ, then for any SHQ ontology O and signature S with Nr ⊆ S, OSOnt(N S) is

an SHQ uniform interpolant of O for S, where N S = (IntALC(Cl(O)))S . This means,

for every SHQ axiom C v D with sig(C v D) ⊆ S, we should have O |= C v D

iff OS |= C v D. Since IntSHQ is sound, OS |= C v D implies O |= C v D. For

the other direction, since Resnorm≺l
SHQ is refutationally complete, we should be able to

derive the empty clause from N S ∪M using Resnorm≺l
SHQ , whereM = Cl(∃r∗.(C u¬D))

and r∗ 6∈ sig(O), if we can do it from N ∪M, where N = Cl(O). Choose for ≺l
an ordering that prefers symbols outside of S. Due to Lemma 6.4.2, all definers in

Resnorm≺l
SHQ (N ∪ M) with ¬D ∈ Resnorm≺l

SHQ (N ∪ M) are introduced in a deductively

subsuming contexts when Resnorm≺l
SHQ (N S ∪M) is computed. All remaining inferences

that are on symbols outside of S are performed first by Resnorm≺l
SHQ and are already

computed in N S . Hence, if the empty clause can be derived from N ∪ M using

Resnorm≺l
SHQ , then it can also be derived from N S ∪M.

6.5 Examples

Example 6.5.1 (The Bicycle Example). Assume we have an ontology Obike of the

following form:

Bicycle v ∃hasWheel.FrontWheel u ∃hasWheel.RearWheel

FrontWheel v Wheel u ¬RearWheel

RearWheel v Wheel u ¬FrontWheel

Since FrontWheel and RearWheel are disjoint, the ontology entails that Bicycle has at

least two wheels. In order to validate that our method preserves this information, we

compute a uniform interpolant for S = {Bicycle,Wheel, hasWheel}. The SHQ normal
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form Nbike of this ontology is the following:

1. ¬Bicycle t ≥1hasWheel.D1

2. ¬D1 t FrontWheel

3. ¬Bicycle t ≥1hasWheel.D2

4. ¬D2 t RearWheel

5. ¬FrontWheel tWheel

6. ¬FrontWheel t ¬RearWheel

7. ¬RearWheel tWheel

We first apply resolution on FrontWheel.

8. ¬D1 tWheel (Resolution 2, 5)

9. ¬D1 t ¬RearWheel (Resolution 2, 6)

The combination rules do not make further inferences on FrontWheel possible. We

can therefore directly proceed to compute inferences on RearWheel. From the current

clause set, only one resolvent with less than two negative definer literals can be inferred.

10. ¬D2 tWheel (Resolution 4, 7)

By applying the ≥-combination rule, additional resolution steps on RearWheel become

possible.

��11. ¬Bicycle t ≥2hasWheel(D1 tD2)

t ≥1hasWheel.D12 (≥-Combination 1, 3)

��12. ¬D12 tD1

��13. ¬D12 tD2

��14. ¬D12 tWheel (Resolution 12, 8)

��15. ¬D12 t ¬RearWheel (Resolution 12, 9)

��16. ¬D12 t RearWheel (Resolution 13, 4)

17. ¬D12 (Resolution 15, 16)
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Clause 17 subsumes the Clause 12–16. Clause 11 becomes redundant if the≥-resolution

is applied with the newly derived unit clause ¬D12.

��18. ¬Bicycle t ≥2hasWheel(D1 tD2)

t ≥1hasWheel.⊥ (≥-Resolution 11, 17)

19. ¬Bicycle t ≥2hasWheel(D1 tD2) (≥-Elimination on 18)

Clause 18 subsumes Clause 11, and Clause 19 subsumes Clause 18. After removing all

redundant clauses, and clauses that are of the form ¬Da tDb or contain the concept

symbol RearWheel, we obtain the set N S that contains the Clauses 1, 3, 8, 10, 17

and 19 (the clauses with a bold face number). Eliminating all definers results in the

following ontology.

> v ¬Bicycle t ≥2hasWheel.(Wheel tWheel)

> v ¬Bicycle t ≥1hasWheel.Wheel

The last axiom is redundant, and the first one can be reformulated to the following

axiom.

Bicycle v ≥2hasWheel.Wheel

This is the uniform interpolant T Sbike of Tbike for S = {Bicycle, hasWheel,Wheel}, as we

observed at the beginning of the chapter.

Example 6.5.2 (Example with ≤-Restrictions). Suppose we have the following on-

tology OSHQ.

A1 v ≥5r.(A tB)

A2 v ≤3r.A

The SHQ normal form N1 of T1 consists of the following clauses:

1. ¬A1 t ≥5r.D1

2. ¬D1 t A tB

3. ¬A2 t ≤3r.¬D2

4. ¬D2 t ¬A.
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Suppose we want to eliminate A. We first apply the ≥≤-combination rule on Clauses 1

and 3.

5. ¬A1 t ¬A2 t ≥2r.D12 (≥≤-Combination 1, 3)

6. ¬D12 tD1 (D12 v D1)

7. ¬D12 tD2 (D12 v D2)

��8. ¬D12 t A tB (Resolution 2, 6)

9. ¬D12 t ¬A (Resolution 7, 4)

10. ¬D12 tB (Resolution 8, 9)

N−A1 consists of the clauses with a bold face number. Eliminating all definers results

in the following set of axioms.

⊥ v ¬A1 t ≥5r.> ⊥ v ¬A2 t ≤3r.¬>

⊥ v ¬A1 t ¬A2 t ≥2r.B

The second axiom is tautological, since ≤3r.¬> is always satisfied. The uniform

interpolant of O−ASHQ can therefore be represented in the following way.

A1 v ≥5r.> A1 u A2 v ≥2r.B



Chapter 7

Uniform Interpolation with ABoxes

Whereas the previous sections only deal with ontologies composed of a TBox and an

RBox, in this chapter we present a method for knowledge bases that additionally have

an ABox. We focus on SHI knowledge bases without equality axioms for individuals.

In order to reason with both TBox and ABox axioms, the calculus uses a simple form

of unification. Examples indicate that extending the underlying description logic with

greatest fixpoint operators is not sufficient in order to express the uniform interpolants

of knowledge bases finitely. This situation is not unique to uniform interpolation,

but has been found in other areas dealing with the adaptation of knowledge bases.

In Liu et al. (2011), it is shown that when applying updates or knowledge revision

on knowledge bases in a description logic between ALC or ALCQI, the resulting

knowledge base might have to be expressed in a description logic that supports either

nominals, Boolean ABox assertions or the ’@’-operator from hybrid logics. Similarly,

we offer to ways of representing uniform interpolants of SHI knowledge bases. One

way is to use disjunctive ABox assertions, the other is to use nominals.

Using nominals might be preferable over using disjunctive ABox assertions in ap-

plications that require the uniform interpolant to be expressed in a common language

that is compatible with modern description logic reasoners and the OWL standard.

For this reason, our method for computing uniform interpolants of ontologies with

ABoxes works in two stages. In the first stage, a uniform interpolant with disjunctive

ABox assertions in computed. In the second stage, we approximate this uniform inter-

polant into a knowledge base with classical ABox and nominals. This approximation

186
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preserves all entailments in the desired signature that can be expressed without dis-

junctive ABox assertions, and therefore fulfils all conditions of a uniform interpolant.

There are various reasons that make uniform interpolation of knowledge bases

worth investigating as part of the thesis. An important application of uniform inter-

polation with knowledge bases is in privacy and information hiding. This application,

discussed in Section 1.1, is motivated by ontology supported systems that store sen-

sitive information. Uniform interpolation may help in eliminating this information

without affecting entailments that are not confidential. In a lot of ontology-supported

systems, confidential information is stored in ABoxes. Supporting knowledge bases

with ABoxes therefore broadens the applicability of uniform interpolation for this

particular application.

Second, observe that most applications for uniform interpolation on ontologies also

apply to knowledge bases. This is especially true since replacing an ontology in a

knowledge base with its uniform interpolant does not necessarily preserve all entail-

ments in the desired signature, even if the ABox itself is in that signature. Consider

for example the following ontology O7:

A v ∀r.B

A v ∀s.(¬B t C)

For S7 = {A, r, s, C}, the ALC uniform interpolant OS77 of O7 is simply an empty

set of axioms, since r and s are not connected to each other in any way, and there

are no non-tautological ALC entailments of O7 that do not use the concept sym-

bol B. However, suppose O7 is occurs in a knowledge base together with the following

ABox A7:

A(a)

r(a, b)

s(a, b)

(T7,A7) |= C(b), but (T S77 ,A7) 6|= C(b), even though C ∈ S7. The reason is that O7

also entails the axiom A v ∀(r u s).C. This kind of axiom cannot be expressed in

any description logic considered in the thesis. It is also not possible to represent

it in SHOIN (D) or SROIQ(D), the description logics underlying OWL DL and
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OWL 2.0, and therefore does not have to be entailed by any uniform interpolant in

these languages.

For this reason, if uniform interpolation is used to compute logical differences,

for ontology analysis, or for other applications, it is worth interpolating the whole

knowledge base and not only the ontology. For this, a method is required that can

compute uniform interpolants of knowledge bases with ABoxes.

In the context of the thesis, we focus on uniform interpolation for ABoxes in lan-

guages without equality. This means ABox assertions of the form a = b or a 6= b

are not considered as part of our language, and we do not consider description logics

with functional role restrictions or number restrictions, which can be used to indi-

rectly express equalities and inequalities between individuals. Instead, we present a

method for SHI knowledge bases without equality assertions. Uniform interpolation

for more expressive languages is future work. (Note that, unless these axioms occur

in the input, excluding assertions of the form a = b or a 6= b is not a major limitation

in practice, since they can be computed using existing classification procedures.)

There are some technical aspects unique to uniform interpolation of knowledge

bases. First of all, our calculi have to be extended to perform inferences from ABox

assertions. This could be done by adding new rules for every combination of TBox and

ABox premises. But since IntSH and IntALCHI have together already nine inference

rules only for TBox axioms, this would result in a complex calculus. A more concise

representation of the calculus is obtained by using a simple form of unification, which

allows us to define generalised rules that can be applied to either ABox or TBox

premises or combinations of these.

Second, for the description logics considered in this thesis, axioms in the TBox can

only describe tree-shaped structures. This is also reflected in the structure of TBox

axioms, whose syntactical form can be represented as a tree with role restrictions being

edges, and by the fact that for every TBox we can always build a model of tree-like

form, even in the presence of inverse roles (see for example the model construction

used in Section 5.6). These models are not real trees, since there are inverse roles and

transitive roles, but they have a tree-like shape. On the other hand, with ABoxes,

explicit role assertions allow us to construct a structure that is an arbitrary graph and

not necessarily in a tree-like shape.
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Figure 7.1: Graph structure of an exemplary ABox interpretation.

Fortunately, though not tree-like, models of SHI always have a forest-like shape.

The necessarily “non tree-shaped” part in models of knowledge bases is finite and

bounded by the edges and nodes explicitly defined in the ABox, and all additional

edges and nodes can still be constructed in a tree-like fashion, if we consider the

individuals of the ABox as roots (see Figure 7.1). It is for this reason that we can

adapt our model construction approaches used before, in order to prove completeness

of the calculus developed in this section.

A more crucial effect of not having the tree-like-model property is that we may have

to preserve entailments in the uniform interpolant that do not have a tree-like shape.

This is illustrated by the following knowledge base K8 and the signature S8 = {A, r, s}:

> v A t ∀r.(A tB)

r(a, b)

¬B(b)

s(a, b)

We can infer from this knowledge base that either a or b satisfies A. It is not clear

how to express this information using classical ABox assertions in SHI, since the only

axiom type that can refer to more than one individual is the role assertion. According

to the definition of SHI uniform interpolants (Section 3.2), we only have to preserve

entailments that can be expressed in a single axiom. If the last axiom of the knowledge

base, s(a, b), were not part of the knowledge base, we could capture all entailed concept

assertions in the desired signature using the two concept assertions (A t ∃r.A)(a)

and (A t ∃r−.A)(b).

However, the additional role assertion s(a, b) creates a problem. Because of the

two role assertions in K, its models do not have a tree-like shape (see Figure 7.2).
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a b

r

s

Figure 7.2: Model of a simple non-tree shaped ABox.

Even if we consider only entailments of the form C(a) and C(b), the fact that a has

both an r-edge and s-edge leading to the same individual has an impact on the SHI

entailments of the knowledge base. For instance, there is an infinite set of entailments

of the following form, where C is any concept in the signature S8:

(A t ∃r.(A u C) t ∃s.(A u ¬C))(a)

For any concept expression C, b either satisfies C or ¬C. From this follows that

(∃r.C t ∃s.¬C)(a) is true in any model of the ABox. Moreover, if a does not satisfyA, b

is both an r-successor and an s-successor of a that satisfies A, and we can identify

these successors as satisfying either (A uC) or (A u ¬C). In SHIν, there is no finite

set of TBox axioms and classical ABox assertions in S that entails all these axioms,

since in a single ABox assertion or TBox axiom in SHI, we can only represent tree-like

structures. However, there are two possible extensions to the language that make a

finite representation of the uniform interpolant possible.

The first extension is Boolean ABox assertions, which have been investigated

in Areces et al. (2003). With Boolean ABox assertions, arbitrary concept assertions

can be combined using the standard Boolean connectives ¬, ∨ and ∧. In our particular

example, this allows us to represent the uniform interpolant using the following three

ABox assertions:

A(a) ∨ A(b)

r(a, b)

s(a, b)

However, a drawback of Boolean ABox assertions is that they are not directly

supported by standard description logic reasoners, and also not by the web ontology

language standard OWL. As shown in Areces et al. (2003), Boolean ABox assertions
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can always be represented as classical concept assertions using additional role sym-

bols. While this may be a solution for some applications, a disadvantage is that the

resulting knowledge base uses a lot of additional symbols. Also, differently to fixpoint

expressions, it is not straightforward how to obtain an approximation of the uniform

interpolant that is both completely in the desired signature and that can be processed

by a standard reasoner. Applications of uniform interpolation such as computing log-

ical difference (see Section 1.1), require the computed ontology both to be completely

in the desired signature and to be processable by a reasoner.

An alternative to using Boolean ABox assertions is to use nominals in the result.

In the example, since a and b are connected by an r-edge, we can express the fact that

either a or b satisfy A using the concept assertion (A t ∃r.(A u {b}))(a). If a and b

are not connected by a role, we do not have to preserve the information that either a

or b satisfy A, since it does not contribute to any additional entailments that can be

expressed as classical SHI entailment. However, in more complex ontologies than in

our example, it is necessary to perform additional computations to ensure that this is

the case.

Our method for computing uniform interpolants of SHI knowledge bases proceeds

in two stages. In the first stage, we compute the uniform interpolant in a language

that allows for Boolean ABox assertions. This stage is described in Section 7.1. In the

second stage, these uniform interpolants are approximated into SHOIν knowledge

bases that preserve all classical SHI entailments in the respective signature. This

stage is described in Section 7.3.

7.1 The Calculus

In order to represent uniform interpolants of knowledge bases, a restricted form of

Boolean ABoxes is sufficient, which we refer to as disjunctive ABoxes.

Definition 7.1.1. A disjunctive L concept assertion is an expression of the form

C1(a1) ∨ . . . ∨ Cn(an), where a1, . . . , an ∈ Ni and C1, . . . , Cn are any L concepts. A

disjunctive concept assertion C1(a1) ∨ . . . ∨ Cn(an) is true in an interpretation I if

I |= Ci(ai) for some 1 ≤ i ≤ n. A disjunctive L ABox is an L ABox that additionally

contains disjunctive L concept assertions. For any description logic L, its extension
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that allows for disjunctive ABoxes is referred to by L∨.

The calculus we introduce in this section can be used to reason on SHIν∨ knowl-

edge bases. As for the calculi presented in earlier chapters, it only works on normalised

inputs. In order to make a more concise representation of the rules possible, we use a

representation using variables and disjunctions for normalised knowledge bases.

Definition 7.1.2. A SHI concept literal is a concept of the form A, ¬A, ∃R.D,

∀R.D, where A ∈ Nc, D ∈ Nd and R is of the form r or r−, r ∈ Nr. A knowledge

base K is in SHI∨ normal form if every axiom in K is a role assertion, a SHI RBox

axiom, or a clause of one of these two forms, where Li is a concept literal and ai ∈ Ni

for 1 ≤ i ≤ n.

1. TBox clause: L1(x) ∨ . . . ∨ Ln(x)

2. ABox clause: L1(a1) ∨ . . . ∨ Ln(an)

We additionally require that for any role assertion R(a, b) ∈ K there is a corresponding

role assertion Inv(R)(b, a) ∈ K, and that for any transitiviy axiom trans(R) ∈ K there

is a corresponding transitivity axiom trans(Inv(R)). We call the disjuncts of TBox

and ABox clauses respectively TBox literals and ABox literals. A literal of the form

¬D(t), t ∈ Ni ∪ {x}, is called negative definer literal. A TBox clause is normal if it

contains at most one negative definer literal. An ABox clause is normal if it contains

no negative definer literal. It is assumed that clauses are represented respectively as

sets of TBox and ABox literals, that is, they do not have duplicate literals and their

order is not important.

A TBox clause L1(x) ∨ . . . ∨ Ln(x) represents the equivalent concept inclusion

> v L1 t . . . t Ln. The symbol x occurring in TBox clauses is referred to as variable.

Observe that in contrast to first-order clausal forms, one variable x is sufficient in this

representation. Elements of the set Ni ∪ {x} are called terms.

SHIν∨ knowledge bases can be normalised into SHI∨ normal form using adaptions

of the rules introduced in Section 4.1. If in a set of clauses every clause is normal,

we can eliminate all definers using adaptions of the transformations introduced in

Section 4.1.2, or approximate it into a SHI∨ knowledge base using the techniques

introduced in Section 4.1.3.
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Example 7.1.3. Consider the following knowledge base K9:

A v ∀r.(B u C)

r(a, b)

s(a, b)

¬(A uB)(b)

The SHI∨ normal form of K9 is the following set N9 of clauses.

1. ¬A(x) ∨ (∀r.D1)(x)

2. ¬D1(x) ∨B(x)

3. ¬D1(x) ∨ C(x)

4. r(a, b)

5. s(a, b)

6. ¬A(b) ∨ ¬B(b)

Our normal form allows for a simple form of unification. In our setting, given two

terms t1 and t2, the unifier of t1 and t2 is a substitution that replaces t1 by t2, or vice

versa. Two terms t1 and t2 only have a unifier if t1 = x, t2 = x or t1 = t2. For example,

the terms a and b do not have a unifier, and the unifier of a and x is σ = [x/a]. Applied

to the clause C = A(x) ∨B(x), this unifier produces the clause Cσ = A(a) ∨B(a).

The inference rules of the calculus IntSHI∨ are shown in Figure 7.3. The refuta-

tion calculus ResSHI∨ contains all inference rules in Figure 7.3 except for the ∀∀-role

propagation rule, the role hierarchy rule and the monotonicity rules. Except for the

last two rules, the inference rules are all generalisations and adaptions of the inference

rules of IntSH and IntSIF , excluding those that involve functional role restrictions.

Whereas the rules of these calculi can only be applied on TBox clauses and RBox

axioms, the inference rules of ResSHI∨ and IntSHI∨ use unification, and can be applied

on premises of which one or both are ABox clauses. In addition, the calculus has

rules to handle role assertions. The role instantiation rule is similarly motivated as

the ∀∃-role propagation rule, and propagates information in universal role restrictions

∀R.D along role assertions. Observe that, for a role assertion R(a, b), the rule is only

applicable to clauses of the forms C∨(∀R.D)(x) and C∨(∀R.D)(a). The role assertion

monotonicity rule follows the same idea as the other monotonicity rules.
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Resolution
C1 ∨ A(t1) C2 ∨ ¬A(t2)

(C1 ∨ C2)σ

∀∃-Role Propagation

C1 ∨ (∀R.D1)(t1) C2 ∨ (∃S.D2)(t2) S vN R

(C1 ∨ C2)σ ∨ ∃S.D12(t1σ)

∀∀-Role Propagation

C1 ∨ (∀R1.D1)(t1) C2 ∨ (∀R2.D2)(t2) R vN R1 R vN R2

(C1 ∨ C2)σ ∨ ∀R.D12(t1σ)

∃-Elimination
C ∨ (∃R.D)(t) ¬D(x)

C

∃-Monotonicity
C ∨ (∃R.D)(t) R v S

C ∨ (∃S.D)(t)

∀-Monotonicity
C ∨ (∀R.D)(t) S v R

C ∨ (∀S.D)(t)

Role Hierarchy
R1 v R2 R2 v R3

R1 v R3

Transitivity

C ∨ (∀R.D)(t) trans(S) forS vN R

C ∨ (∀S.D′)(t) ¬D′(x) ∨D(x) ¬D′(x) ∨ (∀S.D′)

Role Inversion
D1(x) ∨ (∀R.D2)(x)

D2(x) ∨ (∀Inv(R).D1)(x)

Role Instantiation
C1 ∨ (∀R.D)(t1) R(t2, b)

C1σ ∨D(b)

Role Assertion Monotonicity

R(a, b) R v S

S(a, b)

where σ is the unifier of t1 and t2 if it exists, D12 is a possibly new definer repre-
senting D1 uD2.

Figure 7.3: Inference rules of the calculi ResSHI∨ and IntSHI∨ .
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As with IntSIF , it is necessary to apply rules in several stages (see Section 5.5).

In the first stage, the initial clause set N is saturated using the transitivity rule.

After this stage, we apply the following transformation on TBox clauses containing a

universal role restriction, where one transformation is required for every universal role

restriction in the clause:

C ∨ (∀R.D)(x) =⇒ ¬D∀R.D(x) ∨ C, D∀(x) ∨ (∀R.D)(x)

Note that we do not have to apply this transformation on ABox clauses, as the role

inversion rule of this calculus only applies to TBox clauses. In the next stage, all

rules except the transitivity rule are applied. Observe that the transformation may

introduce clauses that are not normal, as it is already the case for ResALCHI (see

Section 5.3).

Example 7.1.4. We continue on the clause set N9 from Example 7.1.3 and compute

inferences on B.

1. ¬A(x) ∨ (∀r.D1)(x)

2. ¬D1(x) ∨B(x)

3. ¬D1(x) ∨ C(x)

4. r(a, b)

5. s(a, b)

6. ¬A(b) ∨ ¬B(b)

7. ¬A(a) ∨D1(b) (Role Instantiation 1, 4, σ = [x/a])

8. ¬A(a) ∨B(b) (Resolution 2, 7, σ = [x/b])

9. ¬A(a) ∨ A(b) (Resolution 6, 8, σ = [b/b])

7.2 Refutational Completeness

In order to show refutational completeness of IntSHI∨ , we extend the model construc-

tion used for RessALCHI to incorporate derived ABox clauses. LetN be any set of SHI∨
clauses such that ⊥ 6∈ ResSHI∨(N ), and denote the result of saturating ResSHI∨(N )

using the ∃-monotonicity and role assertion monotonicity rules by N ∗.
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Denote by N ∗T the set of TBox clauses in N ∗, and by N ∗A the set of ABox clauses

in N ∗. Using the model construction described in Section 4.2.3 and its modifications

for inverse roles presented in Section 5.3, we can build a model for N ∗T , which we

denote by IT = 〈∆IT , ·IT 〉.

We extend IT to a full model for N using a construction solely based on ABox

clauses. To ensure that TBox clauses are satisfied as well, we extend N ∗A by instanti-

ating all TBox clauses.

N ∗A2 = N ∗A ∪ {C[x/a] | a ∈ Ni, C ∈ N ∗T}

Lemma 7.2.1. N ∗A2 is saturated with respect to ResSHI∨.

Proof. Note that we only unify two individual names if they are the same. The same is

true for variables, since there is only one variable in our normal form. Accordingly, for

every new pair of clauses C1[x/a], C2[x/a] ∈ (N ∗A2 \ N ∗A) on which a rule is applicable

with the unifier σ = [a/a], the same rule is applicable to C1 and C2 with σ = [x/x].

Accordingly, N ∗T contains the conclusion C3. C3[x/a] is the corresponding conclusion

on C1[x/a] and C2[x/a], and this clause is included in N ∗A2 by construction. In the

same way it can be argued for conclusions of inferences where one premise is a TBox

clause and the other is an ABox clause.

Let ≺l be a total ordering on concept literals satisfying the same constraints as the

ordering used in the model construction for ResALC (see Section 4.2.3, page 65). Let

≺i be any total ordering on Ni. ≺l is extended to a total ordering on ABox literals

by setting L1(a) ≺l L2(b), if L1 ≺l L2 for all a, b ∈ Ni, and L1(a) ≺l L1(b), if a ≺i b.

An ABox literal L is maximal in an ABox clause C iff L′ ≺l L for all ABox literals

L′ ∈ C \{L}. Because ≺l is a total ordering, every clause has a unique maximal literal.

The ordering ≺c on ABox clauses is the multiset extension (≺l)mul of ≺l, that is,

C1 ≺c C2 iff C1 6= C2 and for every ABox literal L1 ∈ C1, L1 ≺l L2 for some ABox

literal L2 ∈ C2. The ordering makes it possible to enumerate the ABox clauses in N ∗A2.

In the following, Ci denotes the ith ABox clause in N ∗A2 following this ordering. This

means, if there are two clauses Ci and Ck with i < k, then also Ci ≺c Ck.

We now complete the model IT = 〈∆IT , ·IT 〉 of the TBox clauses in N ∗T to a model

I = 〈∆I , ·I〉 of all clauses in N ∗T ∪N ∗A2. The domain ∆IT is extended by one element xa

for every individual: ∆I = ∆IT ∪ {xa | a ∈ Ni}. The interpretation function ·I is
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defined incrementally as follows, where Ii = 〈∆I , ·Ii〉. Note that xD refers to the

domain element assigned to the definer D, as introduced in the model construction

in Section 4.2.3, and that the index i in Ci here only follows the enumeration on the

ABox clauses in N ∗A2.

1. ·I0 is equal to ·IT , except that for every role r ∈ Nr and every individual a ∈ Ni,

we set:

rI0 = rI
T ∪ {(xa, xb) | r(a, b) ∈ N ∗ or r−(b, a) ∈ N ∗}

aI0 = xa

2. If Ii |= Ci, then ·Ii+1 = ·Ii . Otherwise:

(a) If the maximal literal in Ci is of the form A(a), ·Ii+1 is equal to ·Ii , except

that AIi+1 = AIi ∪ {xa}.

(b) If the maximal literal in Ci is of the form (∃r.D)(a), ·Ii+1 is equal to ·Ii ,

except that rIi+1 = rIi ∪ {(xa, xD)}.

(c) If the maximal literal of Ci is of the form (∃r−.D)(a), ·Ii+1 is equal to ·Ii ,

except that rIi+1 = rIi ∪ {(xD, xa)}.

3. ·I = ·In , where n is the number of ABox clauses in N ∗A2.

For Steps 2b and 2c, observe that for each maximal ∃R.D in a clause Ci with

Ii 6|= Ci, there is always a corresponding domain element xD. A definer D only has a

corresponding domain element in the candidate model if ¬D(x) 6∈ N ∗. If ¬D(x) ∈ N ∗,

the ∃-elimination rule applies on all literals of the form ∃R.D, such that these literals

are not taken into account by the model construction (see also Lemma 4.2.16).

Similarly to Lemmata 4.2.13 and 4.2.14, we prove that the model construction

for SHI∨ knowledge bases is monotone.

Lemma 7.2.2. For every ABox clause Ci, Ii+1 |= Ci implies I |= Ci.

Proof. If Ii+1 |= Ci, there is a literal L ∈ Ci such that Ii+1 |= L. We distinguish the

cases for L, and show that in each case I |= L.

1. L is a positive literal of the formA(a) or (∃R.D)(a). Since the model construction

only adds values to the interpretation function, but does not remove any, I |= L.
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2. L is of the form ¬A(a). A(a) cannot be a positive and maximal literal in any

clause Cj larger than Ci. Therefore, it is impossible that xa is added to AIj for

any index j larger than i, and I |= L.

3. L is of the form (∀R.D)(a). Due to the constraints of the ordering, there can be

no clause Cj with Ci ≺ Cj in which the maximal literal is of the form (∃R.D′)(a).

Therefore, I |= L.

We obtain that in each case, Ii+1 |= Ci implies I |= Ci.

Lemma 7.2.3. For every ABox clause Ci, Ii+1 6|= Ci implies I 6|= Ci.

Proof. Ii+1 6|= Ci is only possible if the maximal literal L in Ci is of the form ¬A(a)

or (∀R.D)(a), since the other cases are taken care of by the model construction. We

distinguish both cases.

1. L is of the form ¬A(a). Then, aIi+1 ∈ AIi+1 . Since no step in the model con-

struction removes elements from the interpretation, aI ∈ AI , and hence I 6|= Ci.

2. L is of the form (∀R.D)(a). If Ii+1 6|= (∀R.D)(a), there is a domain element

x ∈ ∆I such that (a, x) ∈ RIi+1 and x 6∈ DIi+1 . If in addition I |= (∀R.D)(a),

we must have x ∈ DI . This is only possible if there is a clause Cj with Ci ≺ Cj

in which the maximal literal is of the form D(b), which is impossible due to the

constraints of the ordering. Therefore, I 6|= (∀R.D)(a) implies I 6|= (∀R.D)(a).

We obtain that in each case, Ii+1 6|= Ci implies I 6|= Ci.

We can now prove that I satisfies all ABox clauses Ci, which establishes that I is

a model of N ∗A2.

Lemma 7.2.4. For every ABox clause Ci in N ∗A2, I |= Ci.

Proof. The proof is by contradiction. Let Ci be the smallest ABox clause according

to ≺c such that I 6|= Ci. We distinguish the different cases for the maximal literal L

in Ci, where Ci = L ∨ C ′i. Since I 6|= Ci, also I 6|= L.

1. L = A(a). Then Ii+1 |= Ci due to Step 2a of the model construction, and I |= Ci

due to Lemma 7.2.2, which contradicts our assumption.
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2. L = ¬A(a). Since I 6|= L, xa ∈ AI . If xa ∈ AI , due to Step 2a of the model

construction, there is a smaller clause Cj = A(a)∨C ′j, such that A(a) is maximal

in Cj and Ij 6|= C ′j. But then, due to the resolution rule, there is also the clause

Ck = C ′j t C ′i. k < j, since A(a) is maximal in Cj, ¬A(a) is maximal in Ci, and

A(a) ≺l ¬A(a). Since Ii 6|= Ci and Ij 6|= Cj, Ik+1 6|= Ck, and due Lemma 7.2.3,

also I 6|= Ck. But this contradicts the initial assumption that Ci is the smallest

clause with I 6|= Ci.

3. L = (∃R.D)(a). Then aI ∈ (∃R.D)I due to Lemma 7.2.2 and Steps 2b and 2c

of the model construction.

4. L = (∀R.D)(a). This means, there is an edge (xa, x
′) ∈ RI such that x′ 6∈ DI .

There are two possibilities for why x′ 6∈ DI .

(a) There is a role assertion R(a, b) ∈ N ∗ and x′ = xb. But then, the role

assertion instantiation rule applies between R(a, b) and Ci, and the clause

Cj = C ′i ∨D(b) is inferred. Since I 6|= Ci, also I 6|= C ′i, and since xb 6∈ DI ,

also I 6|= Cj. But in the ordering, D(b) is smaller than (∀R.D)(a), and

therefore Cj ≺c Ci. This contradicts the initial assumption that Ci is the

smallest clause that is not satisfied by the model.

(b) There is a clause Cj = (∃R.D1)(a) ∨ C ′j, in which (∃R.D1)(a) is maximal,

D1 6= D, ¬D1(x) ∨ D(x) 6∈ N ∗ and Ij 6|= Cj. Due to the role propagation

rule, we also have the clause Ck = C ′i ∨ C ′j ∨ (∃R.D2)(a), together with

the two clauses ¬D2(x) ∨D(x) and ¬D2(x) ∨D1(x). Since (∃R.D2)(a) ≺l
(∀R.D)(a) and C ′j ≺ Ci, Ck is smaller than Ci. We also have I 6|= C ′i and

I 6|= C ′j. There are two possibilities.

i. If k < j, since both Ii 6|= C ′i and Ij 6|= (∃R.D1)(a), we must have

Ij 6|= (∃R.D2)(a). But then, Ij 6|= Ck and I 6|= Ck, which contradicts

the assumption that Ci is the smallest clause inN ∗A2 that is not satisfied

by the model.

ii. j < k. This means there are literals in Ck that are larger than all

literals in Cj. This implies that (∃R.D2)(a) is not maximal in Ck. If

(∃R.D2)(a) is not maximal in Ck, Step 2b of the model construction
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does not result in Ik+1 |= (∃R.D2)(a), and since also I 6|= C ′j and

I 6|= C ′i, Ik+1 6|= (C ′j ∪ C ′i). But then, due to Lemma 7.2.3, no literal

in Ck is satisfied in I, which contradicts our initial assumption that Ci

is the smallest clause that is not satisfied by I.

Every case leads to a contradiction. Hence, there can be no smallest ABox clause

C ∈ N ∗A2 such that I 6|= C. Therefore, I |= C for all ABox clauses in C ∈ N ∗A2.

Lemma 7.2.5. For every TBox clause in N ∗T , I |= C.

Proof. The proof is by contradiction. Assume C is the smallest TBox clause in N ∗T
such that I 6|= C. Then, there must be a domain element x ∈ ∆I such that x 6∈ CI . x

is either a domain element from ∆IT , or it is a domain element that represents an

individual. We distinguish these two cases.

1. x 6∈ ∆IT . Then there is an individual a ∈ Ni such that x = aI . N ∗A2 contains

an ABox clause CA with CA = C[x/a] due to construction. By Lemma 7.2.4,

I |= CA. Since CA contains a as only individual, this implies aI ∈ CI . But this

contradicts the initial assumption that x 6∈ CI .

2. x ∈ ∆IT . Then x ∈ CIT by Lemma 5.6.1. The only reason x 6∈ CI can be true is

due to an additional edge to x that has been added by the model construction.

Assume this edge is (x, aI) ∈ RI . This edge is the reason for x 6∈ CI , and

hence C must contain a literal of the form (∀R.D1)(x). Since (x, aI) ∈ RI , there

is an ABox clause Ci of which the maximal literal is of the form (∃S.D2)(a)

and Ii−1 6|= Ci, where Inv(S) vN R and D2 is the corresponding definer for x.

Suppose C = C ′ ∨ (∀R.D1)(x) and Ci = C ′i ∨ (∃S.D2)(a).

Note that we do the same additional normal form transformation step for clauses

with universal restrictions for ResALCHI as we do for ResSHI∨ . For this reason,

Lemma 5.3.2, which has been formulated for ResALCHI , also applies to ResSHI∨ .

Lemma 5.3.2 states that if C ∨ (∀R.D1)(x) ∈ N ∗, either C = D∀R.D1(x), or there

are the clauses D∀R.D1(x)∨ (∀R.D1)(x), ¬D∀R.D1(x)∨C ′ ∈ N ∗. Since x 6∈ (C ′)I ,

x 6∈ (D∀R.D1)
I .

The role inversion rule infers from D∀R.D1(x) ∨ (∀R.D1)(x) the clause D1(x) ∨

(∀Inv(R).D∀R.D1)(x). Since S vN Inv(R), we can apply the ∀∃-role propagation
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rule on this clause and Ci, resulting in the clause Cj = C ′i ∨D1(a)∨ (∃S.D3)(a),

where D3 represents D2 uD∀R.D1 . Because x 6∈ (D∀R.D1)
I , also x 6∈ DI3 . Observe

that Cj ≺c Ci. Since I i−1 6|= Ci, we cannot have I i−1 |= (∃S.D3)(a), since this

would imply I i−1 |= (∃S.D2)(a). We also have I 6|= C ′i, as observed earlier.

Because Cj is an ABox clause, I |= Cj by Lemma 7.2.4. The only literal left

in Cj that can be satisfied by I is therefore D1(a). We obtain that aI ∈ DI1 ,

which contradicts the assumption that (x, aI) ∈ RI serves as a counter example

for x ∈ (∀R.D1)I . Therefore, x ∈ (∀R.D1)I , which contradicts the original

assumption that C is not satisfied by the model.

In every case, the assumption that there is a domain element x ∈ ∆I with x 6∈ CI

leads to a contradiction. Therefore, I |= C for all TBox clauses.

We have established that I is a model for N ∗T ∪ N ∗A2. The only clauses in N ∗

that are left are the role axioms of the form R v S and trans(R). Observe that N ∗

is saturated using the ∃-role propagation rule and the role assertion monotonicity

rule. This ensures that for every tuple (x1, x2) ∈ RI and every role S with R vN S,

(x1, x2) ∈ SI (see also Section 5.1.2). In order to construct a model for the transitivity

axioms, we extend I to the interpretation Itrans, using the transformation described

in Section 5.2, by adding the transitive closure to all roles that are transitive or sub-

roles of a transitive role. The following lemma can be established in the same way as

for ResALCH and ResSH.

Lemma 7.2.6. Let C ∈ N ∗ be a role axiom of the form trans(R) or R v S. Then,

Itrans |= C.

Note that it can be shown in the same way as for Lemma 5.2.4 that the additional

edges in Itrans have no effect on the satisfaction of universal role restrictions in I.

Together with the Lemmata 7.2.4, 7.2.5 and 7.2.6, we establish that all TBox clauses,

ABox clauses and RBox axioms in N ∗ are satisfied by Itrans.

Lemma 7.2.7. Let N be any set of SHI∨ clauses. If ResSHI∨(N ) does not contain

the empty clause, we can build a model for it.

Theorem 7.2.8. ResSHI∨ is sound, refutationally complete and terminating, and pro-

vides a decision procedure for satisfiability of SHIν∨ knowledge bases.
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Proof. Since only finitely many definer symbols are introduced and clauses are repre-

sented as sets, the number of clauses that can be derived is bounded. This establishes

termination of the calculus. The soundness of the rules can be argued in the same

way as in for SHI (see Lemma 4.2.2, Lemma 4.2.3 and Theorem 5.3.4). Hence,

if ⊥ ∈ N ∗, N is unsatisfiable. On the other hand, if ⊥ 6∈ N ∗, we can build a model

for N (Lemma 7.2.7). Using our normal form transformation, we can transform any

SHIν∨ knowledge base into an equi-satisfiable set of clauses. Therefore, the calculus

provides a sound and refutationally complete decision procedure for satisfiability of

SHIν∨ ontologies.

Since the model construction only depends on the maximal literal in each clause,

we can refine ResSHI∨ to a calculus that only performs inferences on maximal literals,

using an arbitrary ordering on concept and role symbols. Moreover, all role combi-

nation rules are adaptions of corresponding rules in IntSHI . Therefore, we can argue

in the same way as for IntSH and IntALCHI that IntSHI∨ is interpolation complete

for SHIν∨.

Theorem 7.2.9. IntSHI∨ is interpolation complete for SHIν ontologies with disjunc-

tive ABoxes.

7.3 Representing the Result in SHOI

IntSHI∨ can be used for computing a finite uniform interpolant of any SHI knowl-

edge bases, but in an extended language, because these uniform interpolants may use

greatest fixpoint operators and disjunctive concept assertions. Since some applications

require the uniform interpolant to be compatible with standard description logic rea-

soners or the web ontology standard language OWL, it is of interest to represent the

uniform interpolant in a more common description logic. A representation without

fixpoints can be obtained by approximation or the usage of helper concepts using the

technique described in Section 4.1.3.

Similarly, using a technique presented in Areces et al. (2003), we can represent ar-

bitrary disjunctive ABoxes by classical ABoxes using additional roles. Since this might

not always be desirable, we introduce a technique that can be used to approximate

disjunctive ABoxes in such a way that the uniform interpolant can be fully represented
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in the signature using only classical description logic constructs. This transformation

may result in the use of nominals in the ontology.

The following definition describes the condition under which we can directly trans-

form a disjunctive concept assertion into a classical concept assertion.

Definition 7.3.1. Given two individuals a1 and a2 and a disjunctive ABox A, a1

and a2 are connected in A if a1 and a2 are connected in the graph corresponding to

the role assertions in A. A disjunctive concept assertion α is connected in A if every

pair of individuals in α is connected in A.

Note that concept assertions with one individual are always connected. Let A be

an ABox and α = C1(a)∨C2(b)∨α′ be a disjunctive concept assertion that is connected

in A, where α may be empty. Then, there is a sequence of role assertions R1(a1, a2),

R2(a2, a3), . . ., Rn(an, an+1) such that a = a1, b = an+1 and A |= Ri(ai, ai+1) for each

i with 1 ≤ i ≤ n. Denote by α2 the following disjunctive concept assertion.

(C1 t ∃R1.∃R2. . . .∃Rn(C2 u {b}))(a) ∨ α′

It is easy to verify that A2 = (A \ α) ∪ {α2} is logically equivalent to A.

Using this technique, we can replace all connected disjunctive concept assertions

in A by classical concept assertions. If a disjunctive concept assertion α is not con-

nected in A, we cannot express α as a classical concept assertion, but α might still

contribute to the entailment of other classical concept assertions. To compute a set of

clauses that can be fully translated into SHOIν, and that preserves all entailments

that are classical SHOI axioms, we use our calculus in a similar way as for computing

uniform interpolants. Let N be any set of clauses and N ∗ the saturation of N . The

set N conv is the smallest set of clauses C ∈ N ∗ such that every ABox clause C ∈ N ∗ is

connected and that includes all clauses C ∈ N ∗ that additionally satisfy at least one

of the following conditions:

1. C ∈ N .

2. C is the conclusion of any rule application on a clause that is not connected

in N ∗.

Note the similarity of this definition and Definition 4.4.12 defining minimal clausal

representations of uniform interpolants. N conv preserves all entailments of N that are
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representable as classical SHOI axioms. N conv can be transformed into a SHOIν

knowledge base without definers, in which all remaining disjunctive concept assertions

are represented as classical concept assertions using nominals.

Theorem 7.3.2. Let N be any knowledge base in normal form. Then, the described

method for approximating disjunctive concept assertions computes a SHOIν knowl-

edge base KSHOIν, and, for any classical SHI axiom α without definers, that N |= α

iff KSHOIν |= α.

Proof. Since our normal form transformation preserves all entailments modulo defin-

ers, we can do the proof on the normal form representation of each involved knowledge

base. Denote by N the input clause set, and by N conv the approximated clause set

that only contains connected clauses. Let α be any SHI axiom. We show that N |= α

iff N conv |= α.

If N is unsatisfiable, this is trivially true. Assume N is satisfiable. Since N conv

consists only of clauses inferred from N , N conv |= α implies N |= α. We therefore only

have to show that N |= α implies N conv |= α. Assume N |= α. If α is a TBox axiom,

N conv |= α, since the approximation only affects ABox axioms. The same is the case if

α is a role assertion. Assume therefore that α is a concept assertion of the form C(a).

N |= C(a) iff N ∪ {¬C(a)} |= ⊥. Let M be the normal form representation

of C(a). We show that whenever N ∪M |= ⊥, also N conv ∪M |= ⊥. M has the

following properties:

1. Every TBox clause inM is of the form ¬D(x)∨C, where D does not occur in N

or N conv.

2. Every ABox clause only contains the individual a occurring in C(a).

Despite the second property, it is possible that clauses in M contribute to the

derivation of ABox clauses containing more than one individual. This is possible either

due to resolution on clauses from N that have more than one individual, or due to the

role instantiation rule. More precisely, ifM contains a clause of the form (∀r.D)(a)∨C,

and N contains a role assertion r(a, b), D(b) ∨ C is derived. Inferences of this sort

are however only possible through role assertions containing a. Let Na
i denote all

individuals in N that are connected to a, where a is the sole individual occurring
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in M. We define an ordering ≺i on individuals such that for each pair of individuals

a1, a2 with a1 ∈ Na
i and a2 6∈ Na

i , we have a1 ≺i a2. Let ≺l be an ordering on ABox

literals that fulfils all constraints given in Section 7.1 such that C(a1) ≺l C(a2) iff

a1 ≺i a2. Resnorm≺l
SHI∨ , the refinement of ResSHI∨ , is sound and refutationally complete.

Resnorm≺l
SHI∨ gives precedence to ABox literals with an individual that is not connected

to a, and only infers clauses that are normal.

In connected clauses, all individuals are connected to each other. Every clause C

that is not connected must contain at least one literal L(a′) with a′ 6∈ Na
i , which is

maximal in C. Therefore, the only ABox clauses on which an inference with a non-

connected clause can be performed with Res≺l
SHI∨ are clauses that are either inN or are

inferred using clauses in N . Moreover, every TBox clause in M contains at least one

negative definer literal. Due to the side conditions of the rules, no inference between

such a clause and an ABox clause is possible, unless the ABox clause contains a positive

definer literal of the form D(a), since the conclusion would otherwise contain an ABox

literal of the form ¬D(a). Since M does not share any definer symbols with N , this

means that no rule application is possible on a clause fromM and a clause that is not

connected.

Therefore, if the empty clause can be derived from N ∪M, and if the derivation

involves a clause C that is not connected, then this derivation also involves a clause C ′

that can be derived from C using only clauses in N . But these clauses are all included

in N conv. Hence, if we can derive the empty clause from N ∪M, then we can also

derive it from N conv ∪M.

We establish that for any classical SHI axiom α that does not use definer symbols,

N |= α iff N conv |= α, and N |= α iff KSHOIν |= α.

This result enables us to compute representations of uniform interpolants of SHI

knowledge bases in the classical description logic SHOI. Using the method described

in the last section, we can always compute a uniform interpolant in SHIν∨. Using

the method described in this section, this uniform interpolant can be approximated

in SHOIν, and the approximation is actually a uniform interpolant of the input. In

order to obtain a representation in SHOI, we use one of the techniques described in

Section 4.1.3.



Chapter 8

Implementation and Evaluation

The main topic of the thesis is the development of practical methods for uniform in-

terpolation in expressive description logics. In the previous chapters, we presented

uniform interpolation methods for expressive description logics that are based on reso-

lution and saturation. The motivation for using these techniques is to obtain practical

methods for the computation of uniform interpolants. In this chapter, we show that

these approaches indeed allow for practical implementations that are able to compute

uniform interpolants of realistic ontologies for different types of signatures.

We implemented three prototypes of different uniform interpolation methods pre-

sented in the thesis: (1) uniform interpolation of ALCH ontologies, using the calculus

presented in Section 5.1, (2) forgetting concept symbols from SHQ ontologies, using

the calculus presented in Chapter 6, and (3) uniform interpolation of ALC knowl-

edge bases with ABoxes, which uses a restricted version of the method presented in

Section 7. The main ideas used in the implementations are discussed in Section 8.1.

We evaluated these prototypes on a corpus extracted from the NCBO BioPortal

repository, which contains real-life ontologies and knowledge bases from bio-medical

applications. This corpus is described Section 8.2. For the evaluation itself, we under-

took three experimental studies: (1) forgetting small sets of symbols from an ontology

or knowledge base, (discussed in Section 8.3), (2) computing uniform interpolants for

small signatures (discussed in Section 8.4), and (3) computing uniform interpolants

for central symbols of the ontology (discussed in Section 8.5).

The experimental studies are motivated by the following considerations.

(1) They allow for a practical evaluation. In order to obtain statistically significant
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results, it is important to choose sample sizes that are not too small. Our corpus

contains 306 ontologies, and we chose a sample size of 360 for each signature size. For

applications in information hiding and ontology reuse, where the uniform interpolant is

not computed frequently, computation times of several hours are acceptable. However,

in order to be able to make a complete evaluation on all samples and ontologies in

reasonable time, it is necessary to select a smaller time frame for each computation.

This is only possible if we restrict ourselves to easier signatures.

(2) They directly correspond to applications mentioned in the introduction. For

instance, in order to compute the logical difference between subsequent versions of an

ontology, it is to be expected that only few symbols have to be eliminated. For ontology

analysis on the other hand, it makes most sense to compute uniform interpolants for

small signatures, in order to get a refined view of the relations between the symbols in

these signatures. Finally, computing a uniform interpolant for a signature of central

symbols corresponds to the application of ontology summary.

(3) Finally, they give an idea of the practicality of uniform interpolation for other

signatures. Signatures that are small, respectively large, with respect to the signature

of the input ontology are two extremes in the range of possible signatures. In each case,

we chose signatures of different size, to get an idea of how the performance changes

with changing signatures. As it turns out, the task becomes more difficult towards

both ends: on average, forgetting 50 symbols is easier than forgetting 100 symbols,

and forgetting all but 50 symbols is easier than forgetting all but 100 symbols. But

our results indicate that the difficulty not only depends on the size of the signature,

but also on to the symbols that occur in the signature. Most ontologies contain a

small set of symbols that are central to that ontology and harder to eliminate. When

forgetting larger sets of symbols, the probability of eliminating one of these central

symbols increases. On the other hand, when computing uniform interpolants for very

small signatures, the probability that the central symbols are connected to the selected

signature is smaller than if the signature is larger. To support this hypothesis, in

Section 8.5 we computed uniform interpolants for signatures that could be considered

central to the ontology.

Our results indicate that, while it might not be possible to compute uniform inter-

polants for any given signature for all ontologies, by choosing the signature wisely and
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integrating what is central to the ontology, it might also be possible to compute uni-

form interpolants of for larger and smaller signature sizes than used in the evaluation.

We believe that this is not a major restriction for most applications. For example, a

uniform interpolant generated for ontology reuse would typically use terms that are

central to the ontology. In information hiding, it should generally not be the case that

the confidential information in an ontology is also the most central information in the

ontology. For ontology obfuscation, it might be necessary to eliminate symbols that

are central to the ontology, but a small number of these symbols might be sufficient

for the task, as was illustrated in Ludwig and Konev (2013, 2014).

8.1 Implementation

8.1.1 Overview of the Algorithm

We implemented three different prototypes for the calculi for ALCH ontologies, SHQ

ontologies andALC knowledge bases. The prototype for SHQ can only be used for for-

getting concept symbols, as our method for SHQ is not able to eliminate role symbols

(see Chapter 6). The prototypes were implemented in the multi-paradigm program-

ming language Scala (Odersky et al., 2004). We further used the OWL-API (Horridge

and Bechhofer, 2011) for various tasks such as parsing, reasoning and module extrac-

tion (see below), even though in the main algorithms we used own data structures.

The prototype also makes use of reasoning services provided by the description logic

reasoner HermiT (Glimm et al., 2014). Scala is fully compatible with Java, which

means the implemented prototypes are not only useful for the evaluation presented in

this chapter, but can also directly be used as libraries for platform independent Java

applications. The prototypes are made available as the tool and library Lethe (Koop-

mann and Schmidt, 2015c), which also provides functionality for abductive reasoning

based on the uniform interpolation calculi, which are not discussed in the thesis.

We reduce the problem of uniform interpolation for arbitrary signatures to the

problem of forgetting singular symbols, which we process one by one. The top level

algorithm in each prototype is as follows.

1. Preprocess the input ontology.
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2. For each symbol to be forgotten:

– Apply the corresponding forgetting algorithm.

3. Postprocess the resulting ontology.

Preprocessing does not involve the clausification, but various optimisations de-

scribed in Section 8.1.2. Further pre- and postprocessing is applied when a particular

symbol is eliminated. As a result of the preprocessing, some symbols might already

be removed from the ontology. After the preprocessing step, we determine an order in

which symbols are eliminated from the ontology. We found that a simple, but efficient

heuristic for eliminating symbols is to process them ordered by frequency, starting

from the symbols that occur less often in the ontology. These symbols can usually be

eliminated very quickly, and often reduce the set of clauses to be processed for subse-

quent symbols. For very frequently occurring symbols the effect was found to be the

opposite. For each symbol s, we apply the corresponding forgetting algorithm only on

the subset of the ontology that contains s, which restricts the scope of clausification,

redundancy elimination and optimisation techniques.

Depending on whether a concept or a role symbol is eliminated, we use a different

algorithm. The general structure of these algorithms is the same, but the reasoning

is implemented differently. The forgetting algorithm is described in Sections 8.1.3–

8.1.5, where we describe a specific approach for forgetting roles, as well as the search

strategies used by the prototypes.

8.1.2 Pre- and Postprocessing

As first step in the preprocessing, we use syntactical module extraction to reduce the

set of axioms in the ontology. A module is a subset of an ontology that, together with

other properties, preserves all entailments over a specified signature. >⊥∗-modules

are an approximation of minimal modules that can be computed cheaply on a syn-

tactic level (Sattler et al., 2009, see also Section 2.6). The >⊥∗-module preserves

all entailments in the desired signature, but usually contains additional symbols. In

some instances, the modules still cover a substantial part of the input ontology. In the

majority of cases however, module extraction leads to a significant reduction of the

number of axioms to be processed by our prototypes.
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After a module is extracted, we apply purification on the declausified ontology to

eliminate initial symbols from the ontology. For this, we determine which concept

symbols to be eliminated occur only positively or only negatively in the ontology. If a

concept symbol occurs only positively, we replace it by >. If a concept symbol occurs

only negatively, we replace it by ⊥.

If a concept symbol occurs only positively or only negatively in an ontology, no

resolution steps are possible on the clausal representation, and the forgetting method

would simply delete all clauses that contain this symbol. This has the logically equiv-

alent effect of replacing positively occurring symbols by > and negatively occurring

symbols by ⊥. Purification does not require any preceding normalisation of the input.

Moreover, it can be performed in linear time, since the ontology has to be processed

only twice: first to determine the polarities of symbols, and a second time for rewriting

the ontology.

Another optimisation, inspired by Ludwig and Konev (2013, 2014), is to use further

structural transformation on the ontology. More precisely, for every sub-expression Cs

in concepts of the form Cs t C, where Cs does not contain the symbol we want to

eliminate, we replace Cs by a new concept symbol Xs. After the symbol in question

is eliminated, we replace each introduced symbol Xs by its corresponding concept Cs.

This step significantly reduces the literals and clauses the algorithm has to process,

especially if the axioms are further optimised beforehand. For instance, a sequence

of clauses of the form C1 t A, . . ., Cn t A can be represented by just a single clause

X t A, given that the clauses all contain the same or all contain no negative definer

literal. Furthermore, the number of role restrictions in the input ontology is reduced to

the cases where the symbol to be forgotten actually appears under the role restriction,

which helps in avoiding unnecessary role propagation steps, a problem that is discussed

in detail in Sections 8.1.4 and 8.1.5.

A drawback of this additional structural transformation step is that it can hide

redundancies, which would otherwise be eliminated by the subsumption deletion rule.

A typical example are clauses representing disjointness axioms. These are usually

binary clauses of the form ¬A1 t ¬A2, and can subsume a large number of inferred

clauses. If we replace all disjointness axioms in the signature by a simple axiom of the

form > v X, no subsumption deletion with these clauses is possible, and we may infer
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a lot of redundant clauses. It is worth noting that this problem already occurs due to

our preselection of axioms on which the calculus is applied, since we only select axioms

that contain the symbol to be eliminated. For most ontologies however, we cannot

avoid these redundancies, since without these optimisations the clause sets become

too large to be processed in reasonable time.

A second optimisation influenced by Ludwig and Konev (2013, 2014) aims at re-

ducing the number of role restrictions, which are the main source of the theoretical

worst-case complexity of our algorithm (see Lemma 4.2.4). In particular, concepts of

the form (∀r.C1 u ∀r.C2) are simplified to concepts of the form ∀r.(C1 uC2) (this step

basically applies the ∀∀-role propagation rule on declausified axioms), and concepts

of the form ∃r.C1 t ∃r.C2 are simplified to concepts of the form ∃r.(C1 t C2). These

simplifications are implemented using simple rewrite-rules.

Moreover, we perform some simple transformations based on unsatisfiable and tau-

tological concepts, which are applied after a symbol has been eliminated. Concepts of

the form ∀r.> and >tC are replaced by >, and concepts of the form ∃r.⊥ and ⊥uC

are replaced by ⊥. When eliminating definer symbols, we use these syntactic transfor-

mations to determine whether the corresponding fixpoint expressions are tautological.

If D is defined by the axiom D v C, and C[D/>] ≡ >, we have that νX.C[X] ≡ >

(> is the greatest fixpoint), and we can replace D everywhere in the ontology by >.

The rewriting transformations that aim at determining unsatisfiable and tautologi-

cal concepts are applied on the ontology after each elimination of a symbol, since some

of these redundancies are not detected by the redundancy elimination rules. This is

again an indispensable step to obtain practicality for larger ontologies.

After all symbols have been eliminated, we use some simple transformations to

make the result more human-readable, by shortening axiom sizes and moving nega-

tively occurring concepts to the left-hand side of a concept inclusion.

8.1.3 Role Restriction Resolution

In the methods discussed in Chapters 4, 5 and 7 that are interpolation complete

not only for forgetting concept symbols, we do not differentiate between eliminating

concept symbols and role symbols. From Theorem 4.4.13 on minimal clausal represen-

tations of uniform interpolants, it follows that, in order to eliminate a symbol, one has
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Role restriction resolution:

C0 t ∀r.D0 . . . Cn t ∀r.Dn C t ∃r.D
C0 t ... t Cn t C

N |= D0 u . . . uDn uD v ⊥

Figure 8.1: Role restriction resolution rule used in the implementations.

to perform all inferences on that symbol which produce clauses without that symbol.

From this perspective, there is no difference in whether we forget a concept symbol

or a role symbol. However, from an implementation point of view, forgetting concept

symbols is much easier than forgetting role symbols.

The crucial inferences to eliminate a concept symbol are applications of the resolu-

tion rule on the symbol to be eliminated. The main challenge when forgetting concept

symbols is to determine which inferences on roles have to be performed in order to

make these resolution steps possible. On the other hand, the crucial inferences for elim-

inating role symbols are applications of the monotonicity rules and the ∃-elimination

rule. In order to determine when the ∃-elimination rule can be applied, we have to

infer clauses of the form ¬D, which can involve inferences on all symbols present in

the clause set. This makes a pre-selection of clauses more difficult, as well as finding

an appropriate search strategy for eliminating roles. To obtain easier algorithms, we

use an additional rule in our implementation. This rule works similar to resolution on

concept symbols, which allows us to focus on inferences on the symbol to eliminate.

In addition, it makes it possible to use an external reasoner, which further simplifies

the implementation.

The rule is the role restriction resolution rule shown in Figure 8.1. It works like

a combination of the ∀∃-role propagation rule and the ∃-elimination rule, where we

leave unspecified how to determine the unsatisfiability of the corresponding introduced

definer. In our implementation, we use the OWL reasoner HermiT 1.3.6 (Glimm et al.,

2014) to determine which conjunctions of definers are unsatisfiable. Additionally,

caching is used to avoid unnecessary requests to the reasoner.

In order to eliminate a role symbol r in an ALCH ontology or an ALC knowl-

edge base, we only have to compute all inferences of the monotonicity rules, the role

instantiation rules and the role restriction resolution rule that involve r.
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8.1.4 Search Strategy 1: Propagate First

Some rules in the calculi are only applied with the aim of making new inferences on

a specific symbol possible. This is the case for the role propagation rules of IntALCH,

the role combination rules of IntSHQ, and the role instantiation rules of IntSHI∨ . In

the following, we refer to all these rules as role combination rules. Performing all

inferences of the role combination rules is not feasible, since this may involve all role

symbols present in the ontology. We illustrate this with two examples.

Example 8.1.1. Consider the following set of clauses:

C1 t ∀r.D1 ¬D1 t A1

...

Cn t ∀r.Dn ¬Dn t An

Ca t ∀r.Da ¬Da tB

Cb t ∃r.Db ¬Db t ¬B

Suppose we want to forget B. If we unrestrictedly apply role propagation, we even-

tually combine every combination of definers possible in this clause set and derive 2n

clauses with role restrictions. However, since we are only interested in inferences

on B, most of these applications of the role propagation rules are not necessary. In

fact, the only clauses on which we have to apply a role combination rule are Cat∀r.Da

and Cbt∃r.Db. The reason is that only the definers Da and Db occur together with B

in a clause.

Example 8.1.2. Consider the following set of clauses, and suppose again we want to

forget B:

Ca t ∀r.D1a Cb t ∃r.D1b

¬D1a t ∀r.D2a ¬D1b t ∃r.D2b

...

¬Dn−1a t ∀r.Dna ¬Dn−1b t ∃r.Dnb

¬Dna tB ¬Dnb t ¬B

Only Dna and Dnb occur together with B in a clause, but we cannot directly apply

∀∃-role propagation on ¬Dn−1at∀Dna and ¬Dn−1bt∃r.Dnb, since the resulting clause
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would contain more than one negative definer literal. In order to infer a set of clauses

on which we can resolve on B, we have to combine each pair of definers Dia, Dib using

the ∀∃-role propagation, where 1 ≤ i ≤ n, starting with D1a and D1b. If we apply the

combination rules unrestrictedly, we perform much more inferences than this.

In order to select which combination rules we have to apply, one simple solution is

to select role restrictions based on whether the corresponding definer is connected to

the symbol we want to forget by a chain of clauses. This motivates our formal notion

of connectedness defined next.

Definition 8.1.3. A definer D is connected to a symbol s if there is a sequence of

clauses ¬D1tC1tQ2R2.D2,¬D2tC2tQ3R3.D3, . . . ,¬DntC, where Qi ∈ {∃,∀} for

i ≤ n, D = D1 and s ∈ sig(C).

In order to forget a symbol s, only role combination rules on definers that are

connected to s are necessary. While this can already reduce the number of inferences

significantly, this strategy is not sufficient to obtain practicality in most cases. For

this, a more refined strategy is required. This is illustrated in Example 8.1.2, in which

every definer is connected to B, but not all instances of the role propagation rule have

to be applied.

Definition 8.1.4. A definer D has a distance of n to a symbol s ∈ Nc ∪Nr, if there

is a sequence of n clauses of the form ¬D1 tC1 tQ2R2.D2, ¬D2 tC2 tQ3R3.D3, . . .,

¬Dn t Cn, Qi ∈ {∃,∀} for i ≤ n, in the current clause set such that D = D1 and

s ∈ sig(Cn).

In the prototype for uniform interpolation of ALCH ontologies, we only apply role

propagation on pairs of definers that either (1) have the same distance to the symbol

to be eliminated or (2) are both connected to the symbol to be eliminated and at least

one definer is cyclic. Note that a definer is cyclic if and only if it is connected to itself.

We obtained a further increase in performance by taking into account the polarity of

the symbol with which it is connected to the definer.

8.1.5 Search Strategy 2: Resolve First

For the prototypes for SHQ ontologies and ALC knowledge bases, we used a different

strategy, which can be implemented more elegantly. The main idea of the first search
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strategy is to predict beforehand which role combination inferences are necessary. The

second search strategy works the other way around: we start by resolving on the symbol

to be eliminated, and determine subsequently which role combination inferences are

necessary to make this resolution step possible.

For interpolation completeness in the languages considered in the implementation,

it is sufficient to derive clauses with at most one negative definer symbol. The pro-

totype for ALCH takes this into account by not performing inferences that would

produce clauses with more than one negative definer literal. In contrast, the proto-

types for ALC and SHQ apply resolution and role resolution unrestrictedly. If an

inferred clause is of the form ¬D1 t ¬D2 t C, where D1, D2 ∈ Nd and C is possibly

empty, we check whether rule applications are possible that trigger the introduction of

a definer D12 representing D1 uD2. If this is the case, we perform this inference, and

add the clause ¬D12 tC to the current clause set, together with the clauses necessary

for the introduction of this definer. This is done recursively, that means, any clauses

derived during this process can trigger the introduction of further definers.

Note that with this search strategy, we apply role combination rules only if they

allow us to infer a new resolvent with only one negative definer literal. On the other

hand, a drawback with respect to the first strategy is that we may consider resolution

steps more often than is necessary, finding out only subsequently that no sequence of

role combination rules makes this step possible.

8.2 The Corpus

For the evaluation, we selected 306 ontologies from the NCBO BioPortal repository

(Noy et al., 2009). The NCBO BioPortal repository contains ontologies developed for

different applications in medicine, biology and bio-informatics. These ontologies are

from real-life applications, and differ in size, expressivity and structure. They therefore

offer a rich, diverse and realistic test set, which is why we chose it for evaluation of

our method. A detailed description of the repository and its ontologies can be found

in Horridge et al. (2011) and in Matentzoglu et al. (2013).

The corpus was selected from a snapshot of the repository taken in January 2015,

containing 339 ontologies. From this corpus we selected 306 ontologies based on the
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following criteria:

1. They contain at most 100,000 axioms.

2. They are satisfiable.

3. They can be processed by the OWL reasoner HermiT 1.3.6.

We did a small investigative test run computing uniform interpolants for signature

sizes of 50, with a sample size of 50 signatures per ontology and a timeout of 30 minutes,

and found that ontologies with more than 100,000 axioms always caused a timeout or

memory-problems, sometimes already in the process of parsing and converting them

into our internal representation. For this reason, we did not consider ontologies with

this size in our evaluation.

The second criterion is necessary because our current implementation assumes

the input ontology to be satisfiable. Satisfiability is not a requirement of our basic

algorithms and calculi, which would always compute an unsatisfiable uniform inter-

polant from an unsatisfiable input ontology. However, the module extractor used

in the preprocessing step only computes correct results on satisfiable ontologies (see

Section 8.1.2). Therefore, unsatisfiable ontologies had to be removed from the corpus.

The third criterion is a prerequisite to be able to check Criterion 2, which we tested

using the OWL reasoner HermiT 1.3.6. The reasoner was used in our implementation

for the role restriction resolution rule, as described in Section 8.1.3. For ontologies

that can be processed by HermiT, we can also be sure that the conditions on number

restrictions discussed in Section 3.1 are fulfilled by all ontologies.

Table 8.1 shows some statistical information about the ontologies in the corpus.

For each ontology, the table shows the number of axioms, the average axioms size, and

the number of cardinality restrictions occurring in that ontology. The size of an axiom

corresponds to the number of occurrences of concept symbols, role symbols, individuals

and operators in that axiom. As cardinality restrictions, we counted concepts of the

form ≥nr.C, ≤mr.C and =mr.C only if n > 1 and m > 0, since otherwise they are

just syntactic variants of existential restrictions, universal restrictions or tautologies.

For each value, Table 8.1 shows the mean, the median and 90th percentile values.

More detailed information about cardinality restrictions occurring in the repository is

given at the beginning of Chapter 6.
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Axioms in the Corpus

Axioms Mean: 4,759.98
Axioms Median: 1,123.00
Axioms 90th percentile: 13,045.00
Average Axiom Size Mean: 3.71
Average Axiom Size Median: 3.53
Average Axiom Size 90th percentile: 4.80
Cardinality Restrictions Mean: 13.16
Cardinality Restrictions Median: 0
Cardinality Restrictions 90th percentile: 7

Table 8.1: Statistics about the corpus used.

For each prototype, we eliminated axioms that are not in the supported language.

For example, for the ALCH prototype, we would remove all ABox axioms and all

axioms that use a concept expression that is not in ALCH. In this context, we

transformed domain and range restriction axioms as corresponding concept inclusions,

and cardinality restrictions of the forms ≥0r.C, ≥1r.C and ≤0r.C as corresponding

expressions in ALCH. Concepts of the form =nr.C were translating into concepts of

the form ≥nr.C u ≤nr.C.

Since the different experiments require the input ontology to have a minimal set of

symbols in the signature, we further removed, depending on the experimental setup,

ontologies that have a smaller signature than the selected signature size.

8.3 Forgetting Few Symbols

In the first series of experiments, we evaluated the performance of our prototypes for

the task of forgetting small numbers of symbols. Forgetting small sets of symbols is the

expected task to be performed when computing logical differences of different ontology

versions, since from one version to another usually only a small set of symbols will be

added or removed. The evaluation therefore gives us an indication of the practicality

of uniform interpolation for this application or similar applications where the number

of symbols to be eliminated is small.

Since our method processes symbols one after another, this series of experiments

can give us an idea about how the number of symbols to be forgotten affects the

performance. In this experiment, we did not use a module extractor, to ensure that
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ALCH, forget 50 symbols

Success Rate: 91.10%
Without Fixpoints: 95.29%
Duration Mean: 7.68 sec.
Duration Median: 2.74 sec.
Duration 90th percentile: 12.45 sec.

ALC w. ABoxes, forget 50 symbols

Success Rate: 94.79%
Without Fixpoints: 92.91%
Duration Mean: 23.94 sec.
Duration Median: 3.01 sec.
Duration 90th percentile: 29.00 sec.

SHQ, forget 50 concept symbols

Success Rate: 95.83%
Without Fixpoints: 93.40%
Duration Mean: 7.62 sec.
Duration Median: 1.04 sec.
Duration 90th percentile: 4.89 sec.

ALCH, forget 100 symbols

Success Rate: 88.10%
Without Fixpoints: 93.27%
Duration Mean: 18.03 sec.
Duration Median: 3.81 sec.
Duration 90th percentile: 21.17 sec.

ALC w. ABoxes, forget 100 symbols

Success Rate: 91.37%
Fixpoints: 92.48%
Duration Mean: 57.87 sec.
Duration Median: 6.43 sec.
Duration 90th percentile: 99.26 sec.

SHQ, forget 100 concept symbols

Timeouts: 90.77%
Fixpoints: 91.99%
Duration Mean: 13.51 sec.
Duration Median: 1.60 sec.
Duration 90th percentile: 11.65 sec.

Table 8.2: Forgetting 50 and 100 symbols with the prototypes.

all symbols are eliminated by the prototypes themselves. The results may therefore

indicate how the methods would perform for forgetting larger amounts of symbols in

the ontologies.

For each prototype and ontology, we generated random sets of symbols of size 50

and 100, where for each signature size, we generated 360 samples. Since the method

for SHQ does not support forgetting roles, we generated corresponding samples of

concept symbols for the SHQ prototype. For each pair of ontology and symbol set,

we eliminated the symbols from the set with a timeout of 30 minutes.

The results are shown in Table 8.2, where for each prototype and signature size, we

show the success rate, and for the successful computations, the percentage of uniform

interpolants that did not use fixpoint expressions. In addition, the table as well as

the mean, median and 90th percentile of the durations of the successful runs. Since

in most cases, we only forgot a minority of the symbols of the ontology, the size and

the structure of the ontology remained mostly unchanged. For this reason, we did not

analyse the axioms of the uniform interpolants computed in this series of experiments.

In around 90–95% percent of cases, the uniform interpolant could be computed



8.3. Forgetting Few Symbols 219

within 30 minutes. In most cases, the uniform interpolants could be computed in just

a few seconds, with the median of the duration being below 7 seconds in all cases.

Except for the ALC forgetter with ABox support, the 90th percentile of the duration

was always below 22 seconds.

Regarding fixpoint operators, we can see that these were used in a number of

cases, but in the majority of cases (always over 90%), the uniform interpolant could

be represented without them. Note that, even though we use some syntactic checks to

eliminate tautological fixpoint operators, it is still possible that some of the uniform

interpolants with fixpoint operators could be equivalently represented without fixpoint

operators.

With the SHQ prototype, we can only forget concept symbols, but not role sym-

bols. It is to be expected that the type of symbols we forget has an effect of the

performance of the implementation. Specifically, forgetting role symbols is expected

to be a harder task than forgetting concept symbols. This can be explained by the

following reasons. (1) Most ontologies contain much fewer role symbols than concept

symbols, and use each role symbol in a larger amount of axioms. Forgetting a single

role symbol therefore involves the processing of more axioms than forgetting a single

concept symbol. (2) Whereas the standard resolution rule only applies to a pair of

clauses, the role restriction resolution rule applies to an arbitrary set of clauses. (3) The

role restriction resolution rule makes use of an external reasoner, which makes infer-

ences by this rule more expensive operations than inferences by the normal resolution

rule.

To get a clear understanding of these effects, we performed another sequence of

experiments for the ALCH and ALC prototypes, where we either only eliminated

concept symbols or only eliminated role symbols. Again, we generated 360 signatures

for each experiment and set the timeout to 30 minutes. For concept symbols, we

selected 50 symbols in each case, and for role symbols 5. The results are shown

in Table 8.3.

The table supports our hypothesis that a timeout is more likely to happen if role

symbols are eliminated. When eliminating only concept symbols, we had a success

rate of 96.05% for the ALC forgetter with ABox support, and a success rate of 98.12%

for the ALCH forgetter. These values are much higher than the corresponding values
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ALCH, forget 50 concepts

Success Rate: 98.12%
Without Fixpoints: 90.60%
Duration Mean: 8.53 sec.
Duration Median: 2.69 sec.
Duration 90th percentile: 12.60 sec.

ALC w. ABoxes, forget 50 concepts

Success Rate: 96.05%
Without Fixpoints: 91.75%
Duration Mean: 26.70 sec.
Duration Median: 2.93 sec.
Duration 90th percentile: 28.14 sec.

ALCH, forget 5 roles

Success Rate: 86.20%
Without Fixpoints: 100.00%
Duration Mean: 6.69 sec.
Duration Median: 0.72 sec.
Duration 90th percentile: 5.38 sec.

ALC w. ABoxes, forget 5 roles

Success Rate: 91.17%
Without Fixpoints: 100.00%
Duration Mean: 17.63 sec.
Duration Median: 0.54 sec.
Duration 90th percentile: 6.55 sec.

Table 8.3: Forgetting concept and role symbols exclusively.

in the first experiment, where we forgot both concept and role symbols. In contrast,

timeouts occurred more often than in the first experiment when we only eliminated

roles, even though the number of forgotten symbols was much lower. This shows that

forgetting role symbols is much harder to perform for our prototypes than forgetting

concept symbols.

Note that the results of forgetting role symbols never contained fixpoint expressions.

Even though one can construct ontologies for which the result of forgetting a role

symbol requires a fixpoint operator, in practice this is unlikely to happen.

8.4 Uniform Interpolants for Small Signatures

In this section, we discuss the results of a series of experiments to compute uniform

interpolants for small signatures. These uniform interpolants are particularly useful

for analysing ontologies, as we argue in Section 1.1.

Again we generated for each ontology 360 random signatures of size 50 and 360

random signatures of size 100. This time, we used module extraction as a preprocessing

step, to reduce the number of axioms to be processed (see Section 8.1.2). In the case

of the prototype for SHQ, we only eliminated concept symbols from the extracted

modules. With the other prototypes, we eliminated all symbols that were not in the

selected signature, such that the resulting ontology only contained symbols in this

signature. The timeout was again set to 30 minutes.
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ALCH Ontologies, #S = 50

Success Rate: 78.64%
Without Fixpoints: 98.30%
Duration Mean: 152.61 sec.
Duration Median: 56.89 sec.
Duration 90th percentile: 427.53 sec.
Axioms Mean: 80.88
Axioms Median: 21.00
Axioms 90th percentile: 177.00
Ax. Size Mean: 6.43
Ax. Size Median: 3.00
Ax. Size 90th percentile: 5.41

ALC Knowledge Bases, #S = 50

Success Rate: 84.78%
Without Fixpoints: 96.06%
Duration Mean: 113.90 sec.
Duration Median: 29.58 sec.
Duration 90th percentile: 330.56 sec.
Axioms Mean: 198.52
Axioms Median: 31.00
Axioms 90th percentile: 426.00
Ax. Size Mean: 6.15
Ax. Size Median: 3.00
Ax. Size 90th percentile: 5.59

SHQ Ontologies, #(S \Nr) = 50

Success Rate: 77.63%
Without Fixpoint: 91.15%
Duration Mean: 256.56 sec.
Duration Median: 184.66 sec.
Duration 90th percentile: 551.90 sec.
Axioms Mean: 143.40
Axioms Median: 49.00
Axioms 90th percentile: 302.00
Axiom Size Mean: 201.91
Ax. Size Median: 4.50
Ax. Size 90th percentile: 19.69
Card. Mean: 431.88
Card. Median: 0.00
Card. 90th percentile: 8.00

ALCH Ontologies, #S = 100

Success Rate: 76.87%
Without Fixpoints: 97.75%
Duration Mean: 175.00 sec.
Duration Median: 73.21 sec.
Duration 90th percentile: 474.53 sec.
Axioms Mean: 210.08
Axioms Median: 66.00
Axioms 90th percentile: 320.00
Ax. Size Mean: 5.13
Ax. Size Median: 3.05
Ax. Size 90th percentile: 5.38

ALC Knowledge Bases, #S = 100

Success Rate: 80.54%
Without Fixpoints: 95.04%
Duration Mean: 313.28 sec.
Duration Median: 214.56 sec.
Duration 90th percentile: 780.30 sec.
Axioms Mean: 302.78
Axioms Median: 84.00
Axioms 90th percentile: 709.00
Ax. Size Mean: 4.66
Ax. Size Median: 3.04
Ax. Size 90th percentile: 5.82

SHQ Ontologies, #(S \Nr) = 100

Success Rate: 69.35%
Without Fixpoints: 93.50%
Duration Mean: 380.56 sec.
Duration Median: 269.03 sec.
Duration 90th percentile: 975.74 sec.
Axioms Mean: 303.22
Axioms Median: 100.00
Axioms 90th percentile: 536.00
Ax. Size Mean: 23.61
Ax. Size Median: 4.12
Ax. Size 90th percentile: 16.12
Card. Mean: 245.80
Card. Median: 0.00
Card. 90th percentile: 11.00

Table 8.4: Results of computing uniform interpolants for small signature sizes.
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The results of these experiments are shown in Table 8.4. In contrast to the exper-

iments presented in the last section, in the current setup most uniform interpolants

had a completely different syntactical structure than the corresponding input ontolo-

gies. For this reason, we did not only protocol the number of timeouts and uniform

interpolants with fixpoints, and the duration of each run, but also details about the

form of the computed uniform interpolants.

Table 8.4 shows for each prototype and signature size the percentage of uniform

interpolants that could be computed within the timeout, and of the successfully com-

puted uniform interpolants, the proportion of ontologies that contained fixpoint ex-

pressions, and statistical values about the duration of the computation, the number

of axioms in the uniform interpolant and the average axiom size in the uniform in-

terpolant. For the SHQ uniform interpolants, we additionally show statistical values

about the number of cardinality restrictions in the uniform interpolants. For each

value, we present the mean, the median and the 90th percentile.

As could be expected, the success rate is lower than for the experiments presented in

the last section. This is partly caused by the larger number of symbols to be eliminated,

especially in very large ontologies, since this required a larger number of inferences to

be performed. For between 36 and 41 ontologies, a uniform interpolant could never

be computed in the specified time frame, since the ontologies were simply too large.

Even though we used module extraction as a preprocessing step, the resulting ontology

often still contained a large number of axioms and symbols to be eliminated.

Another reason for the high number of timeouts can be explained by the selection of

signatures. We found that the distribution of symbols in an ontology is highly unequal,

with few symbols occurring very frequently and the majority of symbols occurring only

rarely. This becomes evident in Figure 8.2, where we plotted the distribution of symbol

frequencies for all ontologies in the NCBO BioPortal repository.

Each ontology is represented by a red line, and each point in the line represents

a single symbol in the signature of this ontology. On the y-axis, we plot the number

of axioms in which that symbol occurs, and the values are sorted along the x-axis.

The average values for all lines are shown in blue. Both the x- and the y-axis are in

logarithmic scale. We can see that a few number of symbols occurs in a lot of axioms,

whereas the majority occurs only in a very small number. For example, on average,
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Figure 8.2: Logarithmic distribution of symbol frequencies in ontologies of the NCBO
BioPortal repository.
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all but 100 symbols occur less than 12 axioms.

Since we eliminated the majority of symbols from the ontology in most cases, the

probability that we had to eliminate a symbol occurring more often than average was

very high. The effect of this will be discussed more deeply in Section 8.5.

For the uniform interpolants that could be computed in the specified time, we find

that their structure was usually well-suited for the targeted application of ontology

analysis. Fixpoints were only used in rare cases, which can be explained by the fact

that we eliminated most of the role symbols in most cases. The median of the average

axiom size in an ontology was between 3.00 and 4.50, which implies the majority

of axioms were simple concept inclusions of the form A v B. The median for the

number of axioms was 21 and 100, which are reasonable numbers for signatures of

sizes 50 and 100. Note that a small signature also restricts the number of different

axioms that can occur in the uniform interpolant, unless the axioms are very complex.

This is especially the case if the signature contained no role symbols. The situation was

a little different for knowledge bases, since the number of individuals in the uniform

interpolant is the same as in the original knowledge base. This explains the higher

axiom numbers in the 90th percentile for the ALC forgetter with support for ABox

axioms.

Whereas the median values for the average axiom size in SHQ uniform interpolants

were comparable to the respective values for the other prototypes, we can see that the

corresponding mean values are highly distorted by outliers with large axiom sizes. For

instance, for a signature size of 100, the mean of the average axiom size is 201.91,

whereas the 90th percentile was only 16.69. Therefore, a small number of uniform

interpolants computed by the SHQ prototype were very complex. This can be partly

explained the complexity of the rules used by the SHQ calculus, which enable us to

infer more complex axioms and larger axioms than for the other description logics.

This is necessary due to the higher expressivity of SHQ, which allows us to preserve

more entailments in the uniform interpolant than ALC and ALCH. This was also

reflected by the high average number of number restrictions in some of the uniform

interpolants, as the mean of this variable indicates.

The main reason however for the higher complexity of axioms in the SHQ uniform

interpolants is that we did not eliminate roles symbols. The more complex axioms
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in the SHQ uniform interpolants contained deep nestings of role restrictions, since a

lot of the structure of the corresponding module had to be preserved in the uniform

interpolant. In contrast, for the other description logics, the majority of the roles was

typically eliminated, which restricts the information to be preserved in the resulting

axioms. This is also the reason why the number of uniform interpolants with fixpoint

expressions was very low for ALCH and ALC, whereas for SHQ it was comparable

with the results presented in the last section.

8.5 Uniform Interpolants for Central Signatures

Whereas in the previous experimental set-ups, we selected symbols randomly, for this

section we evaluated the performance of the prototypes for signatures that can be

regarded as central to the ontology. An application of this is the computation of

ontology summaries that was discussed in Section 1.1. Computing uniform interpolants

for the central symbols in an ontology is also interesting from another point of view.

As it turns out, some symbols are harder to eliminate from an ontology than other

symbols. If a symbol is used frequently in an ontology, it is likely that it is harder

to eliminate. On the other hand, for applications like ontology reuse, information

hiding and ontology analysis, it may not always be necessary to eliminate the symbols

that play a central role in the ontology. If computing uniform interpolants for central

symbols turns out to be easier than for random signatures, this would support the

usefulness of uniform interpolants for these applications.

In general, the central symbols in an ontology can only be known by the ontology

designer or an expert in the field. However, to be able to automate the experiments,

we used two simple heuristics for the selection of symbols.

The first heuristic is based on frequency of occurrences. One can reasonably expect

that symbols that are used most often should play a central role in the ontology. For

example, in an ontology about the partonomy of the human body, the role “hasPart”

will play a central role, and it will be used in a lot of axioms.

An advantage of this heuristic is that the motivation is intuitive and that it can

very easily be computed. A disadvantage is that it is a purely syntactical heuristic

and might overlook semantic relations between symbols. To illustrate this, suppose the
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ontology about the partonomy of the human body also contains the role “isPartOf”,

which is defined as the inverse of “hasPart”. Since both roles express the same relation,

one could argue that they have an equal importance in the ontology, even if “hasPart”

is used in the majority of axioms and “isPartOf” only in one axiom. Also, in the result

of forgetting “hasPart” from this ontology, “isPartOf” would likely occur as frequently

as “hasPart” in the original ontology.

The second heuristic uses genuine modules to determine the “influence” of a sym-

bol. Genuine modules have been developed as a means to examine the modular struc-

ture of an ontology (Del Vescovo et al., 2011). A genuine module, as it is defined in

Del Vescovo et al. (2011), is the >⊥∗-module for the signature of a single axiom in

the ontology. For a given axiom α, the corresponding genuine module is the small-

est >⊥∗-module that contains α.

For the second heuristic, we measure the importance of a symbol based on the

number of genuine modules of an ontology that contain it. The intuition is the follow-

ing. If a symbol s occurs in n genuine modules, then there are n axioms that usually

have to be included in modules that preserve entailments in signatures containing s.

One can argue that this reflects how the meaning of s is “influenced” by these axioms,

or conversely the meaning of how many concepts defined in the ontology depends on

interpretations of s. This suggests that s is more central to an ontology if it occurs in

a lot of genuine modules.

Note that this measure is independent of the frequency of s. Consider an ontology

about family relations that contains a concept “Person” which has a lot of subconcepts.

For every axiom that contains a subconcept of “Person” positively, the corresponding

genuine module would contain “Person” as well, and therefore “Person” would get

assigned a high value even if it itself only occurs in a small number of axioms. Similarly,

for the example given above, “hasPart” and “isPartOf” would get the same value

assigned, even if the number of occurrences is very different. As it turns out, uniform

interpolants of symbols that occur in the most genuine modules can be more cheaply

computed than uniform interpolants for signatures that are based on frequency of

occurrence.

The number of genuine modules in which symbols occurred in the repository is

plotted in Figure 8.3. The graph shows the values for all but 39 ontologies of the
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Figure 8.3: Logarithmic distribution genuine modules per symbol in ontologies of the
NCBO BioPortal repository.
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Heuristic based on frequency

Success Rate: 85.60 %
Without Fixpoints: 93.15%
Duration Mean: 25.63 sec.
Duration Median: 1.45 sec.
Duration 90th percentile: 11.14 sec.
Axioms Mean: 122.67
Axioms Median: 63.50
Axioms 90th percentile: 202.00
Ax. Size Mean: 10.79
Ax. Size Median: 4.12
Ax. Size 90th percentile: 9.16

Heuristic based on genuine modules

Success Rate: 92.60%
Without Fixpoints: 97.81%
Duration Mean: 6.34 sec.
Duration Median: 0.61 sec.
Duration 90th percentile: 1.35 sec.
Axioms Mean: 65.66
Axioms Median: 52.50
Axioms 90th percentile: 112.00
Ax. Size Mean: 4.20
Ax. Size Median: 4.00
Ax. Size 90th percentile: 5.16

Table 8.5: Results for computing ALCH uniform interpolants for signatures of size 50,
selected based on two different heuristics.

repository. For the remaining ontologies, the computation of all genuine modules ei-

ther took too long or caused a memory error. As for Figure 8.2, in which we plotted

frequencies of concept symbols, the distribution for each individual ontology is visu-

alised by a red line. Each line represents a single ontology, and each point in that line

represents a single symbol in that ontology. The y-axis shows the number of genuine

modules in which the symbol occurred, and we sorted the values along the x-axis. The

blue line shows the average values for all lines. Both the x-axis and the y-axis are in

logarithmic scale. The graph has many steps, since a lot of symbols occurred together

in the same set of genuine modules. Even though there are large steps in the graph,

the values between the steps are very different. We can see that the distribution for

this heuristic is very unequally distributed as well, even though the curves are not as

smoothly falling as for the frequencies of occurrences.

Based on these two heuristics, we computed ALCH uniform interpolants for signa-

tures of size 50. In the first experiment, we selected for each ontology the 50 symbols

that occurred in the highest number of axioms . In the second experiment, we selected

for each ontology the 50 symbols that occurred in the highest number of genuine

modules. The results are shown in Table 8.5.

For both heuristics, the success rate was higher than for random signatures, and

uniform interpolants could be computed significantly faster. The best results were

however obtained for symbols selected based on the number of genuine modules in

which they occur. In comparison, when we selected signatures of size 50 randomly,
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the success rate was at 78.64%, and the average duration was 152.61 seconds. When

we selected signatures of 50 symbols based on the number of genuine modules in which

they occur, the success rate was 92.60%, and the average duration was 6.34 seconds.

Moreover, 90% of the uniform interpolants could be computed in less or equal than

1.35 seconds.

In general, the average axiom size was larger than for random signatures. This

can be explained by the fact that the signatures we selected using heuristics are more

likely to contain roles, which made it possible to express more complex axioms. This

suggests that the axioms contained more substantial information. Note that the size

was still not too large to affect human readability of the axioms, with few exceptions

in the outliers.

The results indicate that for practical applications, it might be possible to com-

pute uniform interpolants in even more cases than the results in the previous sections

indicate, if the corresponding signature contains symbols which occur frequently or

occur in a lot of genuine modules.
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Conclusion and Future Directions

In this thesis, we investigated saturation-based procedures for the computation of uni-

form interpolation in various expressive description logics. Uniform interpolation has

potential applications in a lot of different areas such as ontology analysis, ontology

evolution and information hiding. Since uniform interpolation in expressive descrip-

tion logics is a potentially difficult problem, methods for the construction of uniform

interpolants have to proceed in a goal-oriented manner. For this reason, we developed

a range of new resolution-based calculi, which enable us to compute inferences on spe-

cific concept and role symbols. Whereas most calculi are optimised towards a specific

reasoning task, such as deciding satisfiability or computing classification trees, we in-

troduced the new notion of interpolation completeness, which captures the suitability

of a calculus for the computation of uniform interpolants. Using an interpolation com-

plete calculus, it is possible to compute all inferences on the symbols to be eliminated,

such that all occurrences of these symbols can be removed for the uniform interpolant.

Because most classical description logics do not have uniform interpolation, that

is, finite uniform interpolants do not always exist in these languages, we considered

for each logic its extension with fixpoint operators. Using a flattened normal form,

combined with a dynamic introduction of new symbols, the calculi always compute

finite saturations, even if the corresponding uniform interpolant cannot be finitely

represented without fixpoints. Interpolation completeness of the calculi makes sure

that all symbols that have been introduced can be eliminated using simple rewrite

rules, possibly introducing fixpoint expressions.

230
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Language Refutation Calculus Interpolation Calculus

ALC Resolution, ∀∃-role propagation,
∃-elimination

ResALC + ∀∀-role propaga-
tion

ALCH ResALC + ∃-monotonicity; variation of
role propagation rules if used with re-
dundancy elimination

ResALCH + IntALC +
∀-monotonicity, role hierar-
chy

SH ResALCH + transitivity rule ResSH + IntALCH
ALCHI ResALCH + role inversion rule ResALCHI + IntALCH
ALCHF ResALCH + ∀∀- and ∃∃-role propaga-

tion, ≥2-elimination I and II, ≤1- and
≥2-monotonicity

ResALCHF

SIF ResSH + ResALCHI + ResALCHF + uni-
versalisation; several reasoning stages

ResSIF

SHQ Resolution, ≥-combination,
≥≤-combination

ResSHQ + ≤-combination,
≤≥-combination,
≥-resolution, ≥-elimination

SHI∨
(ABoxes)

ResSH + ResALCHI + role instantiation,
role assertion monotonicity; uses unifi-
cation and several reasoning stages

ResSHI + IntALCH

Table 9.1: Overview of the calculi developed in the thesis.

The introduced symbols furthermore provide a simple way to approximate the uni-

form interpolant, and can serve as auxiliary concepts to allow for a finite representation

of the result without fixpoints, captured in the notion of uniform interpolant modulo

direct cycles (Definition 4.1.6 in Chapter 4). This way, the uniform interpolants can

be represented as OWL ontologies, and be processed by a state-of-the-art description

logic reasoners.

For each description logic L considered, we developed a refutationally complete

calculus ResL and extended it to an interpolation complete calculus IntL. Table 9.1

gives an overview of these calculi. Three of these methods have been implemented and

evaluated, showing practicality in a lot of use cases.

To summarise, the contributions of the thesis are the following:

• The first method for uniform interpolation in ALC which always terminates with

a finite representation of the uniform interpolant, which is also the first practical

method that is able to eliminate role symbols.

• Methods for uniform interpolation in 6 additional description logics, which ex-

tend ALC up to the expressivities of SH, SIF and SHQ, and for which uniform
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interpolation has not been investigated before.

• A method for uniform interpolation of SHI knowledge bases. This is also the

first method for uniform interpolation with ABoxes in an expressive description

logic that does not have limitations on the structure of the ABox.

• A family of new saturation-based reasoning methods for all logics considered,

which uses a new technique of introducing symbols automatically.

• An evaluation showing practicality of the approaches for a lot of cases

• Two simple heuristics for selecting signatures for which uniform interpolants are

easy to compute.

The research presented in this thesis does not only have a great potential for a

variety of applications that can benefit from using practical uniform interpolation

methods. It can also serve as basis for a variety of different future research topics.

9.1 Future Directions

Uniform Interpolation for More Expressive Description Logics. The most

expressive description logics we considered in this thesis are SHI, SIF and SHQ.

A reasonable next step would be to consider unions of these description logics, that

is SHIF and SHIQ. As indicated at the end of Chapter 5, this might not be

possible unless a more expressive description logic is used for the result. In order to

support the full standard OWL DL 2.0, we would further have to investigate uniform

interpolation methods for languages with nominals, complex role inclusions, the “self”-

operator expressing local reflexivity, and data types. We think that nominals are likely

to be the most problematic construct here, due to undecidability results for ALCO

and ALCHOIQ for the related problems module extraction and deciding conservative

extensions (Sattler et al., 2009; Lutz et al., 2007). On the other hand, as shown in

Benedikt et al. (2015), unary negation fixpoint logic, which is more expressive than

ALCHOIQ, has uniform interpolation, which shows that uniform interpolants can be

represented in extensions of description logics with nominals.



9.1. Future Directions 233

To give an idea of how methods for ontologies can be extended to support ABoxes,

we developed a method for SHI. An open problem is how to integrate same-as axioms

for individuals and number restrictions into the approach. We already solved the latter

for ontologies. It is possible that using a similar approach, this method can be extended

to support ABoxes, possibly using ideas from the superposition calculus, a method for

resolution-based reasoning on clauses with equations (Bachmair and Ganzinger, 1994,

2001).

Role Forgetting in More Expressive Description Logics. If a description

logic supports role hierarchies and either transitive roles, functional role restrictions

or number restrictions, our methods can only be used to eliminate non-transitive

roles, or can eliminate no role symbols at all. Our examples indicate that for these

description logics, the target language requires more expressivity to represent the result

of forgetting role symbols finitely. Extensions to these results may require the use of

Boolean role constructors and complex role inclusion axioms in the target language.

It is therefore worth investigating uniform interpolation methods for description logics

that support these constructs.

Implementation. Our evaluation shows that our prototypical implementations

achieve good results in a lot of realistic use cases. These were however solely imple-

mented as prototypes to show the general practicality of the developed methods. For

realistic applications, there is potential of gaining better results by using a more opti-

mised implementation. This could unfold the full potential of uniform interpolation,

especially in applications dealing with larger ontologies, or very large ABoxes. For

example, efficiency could be improved by using different data structures and multi-

threading for the different symbols to be eliminated. Moreover, results from the areas

of first-order theorem proving and consequence-based reasoning for description logics

could provide another source for more efficient implementations.

Extracting Small Modules. Modules extracted using current approaches often

contain more symbols than required, whereas uniform interpolants only use required

symbols, but may involve more complex axioms in some cases. A tight integration

of both approaches could result in a method for extracting much smaller ontologies

for reuse than existing methods. This could for example be achieved by a dynamic

adaptation of the signature for which the uniform interpolant is computed. Further
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potential lays in using techniques that optimise succinctness of ontologies (Nikitina

and Schewe, 2013a,b).

Further Applications of the Developed Calculi. A variety of saturation-

based reasoning methods has been developed as part of the project. Apart from

uniform interpolation, these could be useful for a variety of other applications. It is

worth investigating how the calculi developed in this thesis can contribute to reasoning

methods for classification, abduction or approximation. Classification has been a

major application of saturation-based reasoning methods that have been developed

in the last years. We believe that saturation-based reasoning has another potential

application in abduction and approximation. The methods presented in this thesis

can already be used for TBox abduction and approximation based on signatures (see

Section 1.1, and also Koopmann and Schmidt (2014b, 2015c)). An open problem is

how the calculi can be extended for ABox abduction. Another interesting question is

whether saturation-based reasoning methods can be used to approximate ontologies

into less expressive description logics, a topic that has received a lot of interest in the

last years (see for example Pan and Thomas, 2007; Botoeva et al., 2010; Ren et al.,

2010; Lutz et al., 2012; Carral et al., 2014).
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reasoning in DLs via decomposition. In Proceedings of the 24th International Work-

shop on Description Logics (DL 2011), volume 745 of CEUR Workshop Proceedings,

pages 400–410. CEUR-WS.org, 2011b.

Nicholas Sioutos, Sherri de Coronado, Margaret W. Haber, Frank W. Hartel, Wen-

Ling Shaiu, and Lawrence W. Wright. NCI Thesaurus: A semantic model inte-

grating cancer-related clinical and molecular information. Journal of Biomedical

Informatics, 40(1):30–43, 2007.

Evren Sirin, Bijan Parsia, Bernardo Cuenca Grau, Aditya Kalyanpur, and Yarden

Katz. Pellet: A practical OWL-DL reasoner. Web Semantics: science, services and

agents on the World Wide Web, 5(2):51–53, 2007.

Michael Q. Stearns, Colin Price, Kent A. Spackman, and Amy Y. Wang. SNOMED



250 CHAPTER 9. BIBLIOGRAPHY

clinical terms: overview of the development process and project status. In Pro-

ceedings of the AMIA Symposium, pages 662–666. American Medical Informatics

Association, 2001.

Andreas Steigmiller, Birte Glimm, and Thorsten Liebig. Coupling tableau algorithms

for expressive description logics with completion-based saturation procedures. In

Automated Reasoning, volume 8562 of Lecture Notes of Computer Science, pages

449–463. Springer, 2014a.

Andreas Steigmiller, Thorsten Liebig, and Birte Glimm. Konclude: system description.

Web Semantics: Science, Services and Agents on the World Wide Web, 27:78–85,

2014b.

Heiner Stuckenschmidt, Christine Parent, and Stefano Spaccapietra, editors. Modu-

lar Ontologies: Concepts, Theories and Techniques for Knowledge Modularization,

volume 5445 of Lecture Notes in Computer Science. Springer, 2009.

Andrzej Szalas. On the correspondence between modal and classical logic: An auto-

mated approach. Journal of Logic and Computation, 3(6):605–620, 1993.

Balder ten Cate, Willem Conradie, Maarten Marx, and Yde Venema. Definitorially

complete description logics. In Principles of Knowledge Representation and Rea-

soning: Proceedings of the Tenth International Conference (KR-06), pages 79–89.

AAAI Press, 2006.

Stephan Tobies. Complexity results and practical algorithms for logics in knowledge

representation. PhD thesis, LuFG Theoretical Computer Science, RWTH-Aachen,

Germany, 2001.

Dmitry Tsarkov and Ignazio Palmisano. Chainsaw: a metareasoner for large ontologies.

In Proceedings of the 1st International Workshop on OWL Reasoner Evaluation

(ORE 2012), volume 858 of CEUR Workshop Proceedings. CEUR-WS.org, 2012.

Albert Visser. Uniform interpolation and layered bisimulation. In Gödel’96: Logical
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