
The University of Manchester Research

From spin noise to systematics:

DOI:
10.1093/mnras/stw395

Document Version
Accepted author manuscript

Link to publication record in Manchester Research Explorer

Citation for published version (APA):
Lentati, L., Shannon, R. M., Coles, W. A., Verbiest, J. P. W., van Haasteren, R., Ellis, J. A., Caballero, R. N.,
Manchester, R. N., Arzoumanian, Z., Babak, S., Bassa, C. G., Bhat, N. D. R., Brem, P., Burgay, M., Burke-
Spolaor, S., Champion, D., Chatterjee, S., Cognard, I., Cordes, J. M., ... Zhu, X-J. (2016). From spin noise to
systematics: stochastic processes in the first International Pulsar Timing Array data release. MNRAS, 458, 2161-
2187. https://doi.org/10.1093/mnras/stw395
Published in:
MNRAS

Citing this paper
Please note that where the full-text provided on Manchester Research Explorer is the Author Accepted Manuscript
or Proof version this may differ from the final Published version. If citing, it is advised that you check and use the
publisher's definitive version.

General rights
Copyright and moral rights for the publications made accessible in the Research Explorer are retained by the
authors and/or other copyright owners and it is a condition of accessing publications that users recognise and
abide by the legal requirements associated with these rights.

Takedown policy
If you believe that this document breaches copyright please refer to the University of Manchester’s Takedown
Procedures [http://man.ac.uk/04Y6Bo] or contact uml.scholarlycommunications@manchester.ac.uk providing
relevant details, so we can investigate your claim.

Download date:29. Nov. 2023

https://doi.org/10.1093/mnras/stw395
https://research.manchester.ac.uk/en/publications/bb2b7973-553b-498b-bf42-4252be5b7768
https://doi.org/10.1093/mnras/stw395


Mon. Not. R. Astron. Soc. 000, 000–000 (0000) Printed 19 February 2016 (MN LATEX style file v2.2)

From Spin Noise to Systematics: Stochastic Processes in the First
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ABSTRACT
We analyse the stochastic properties of the 49 pulsars that comprise the first International
Pulsar Timing Array (IPTA) data release. We use Bayesian methodology, performing model
selection to determine the optimal description of the stochastic signals present in each pulsar.
In addition to spin-noise and dispersion-measure (DM) variations, these models can include
timing noise unique to a single observing system, or frequency band. We show the improved
radio-frequency coverage and presence of overlapping data from different observing systems
in the IPTA data set enables us to separate both system and band-dependent effects with
much greater efficacy than in the individual PTA data sets. For example, we show that PSR
J1643−1224 has, in addition to DM variations, significant band-dependent noise that is coher-
ent between PTAs which we interpret as coming from time-variable scattering or refraction in
the ionised interstellar medium. Failing to model these different contributions appropriately
can dramatically alter the astrophysical interpretation of the stochastic signals observed in the
residuals. In some cases, the spectral exponent of the spin noise signal can vary from 1.6 to
4 depending upon the model, which has direct implications for the long-term sensitivity of
the pulsar to a stochastic gravitational-wave (GW) background. By using a more appropriate
model, however, we can greatly improve a pulsar’s sensitivity to GWs. For example, including
system and band-dependent signals in the PSR J0437−4715 data set improves the upper limit
on a fiducial GW background by ∼ 60% compared to a model that includes DM variations
and spin-noise only.

Key words: methods: data analysis, pulsars: general, pulsars:individual
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1 INTRODUCTION

The recent direct detection of gravitational-waves (GWs) from the
merger of a pair of black holes (Abbott et al. 2016) marks a turn-c© 0000 RAS
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Figure 1. Timing residuals for subsections of the PSR J1909−3744 (left) and PSR J1713+0747 (right) IPTA data sets for observations between 1200 and 1700
MHz, where all three PTAs have overlapping data. Timing solutions are obtained from the model in bold in Table 2. For clarity, a weighted average of the
residuals has been performed across 50 day epochs separately for each observing system. The different PTAs are indicated by colour; PPTA (black), EPTA
(blue), and NANOGrav (red). Error bars in all cases are given by (

∑
σ−2

i )−1/2, with σi the formal uncertainty for ToA i provided with the data set, without
any modification from white-noise parameters, and where the sum is performed over all ToAs that fall within the averaging window. Finally, no power-law
noise processes have been subtracted from the data. While all three PTAs can be seen to track the broad features of the data sets, statistically significant
outliers are present. In this paper we attempt to determine the optimal models for such data sets, and to determine the relative contributions of different noise
processes. These processes can include intrinsic spin noise, extrinsic DM variations including non stationary ‘events’ such as the discontinuity seen in the PSR
J1713+0747 data set at MJD 54757, and additionally, terms due to excess system- or band-dependent noise.

ing point in experimental physics. The entire GW spectrum is ex-
pected to probe cosmological and astrophysical phenomena rang-
ing from quantum fluctuations in the very early universe at fre-
quencies of 10−16 Hz, to merging binary neutron stars and stellar
black holes at frequencies of 102 Hz (Cutler & Thorne 2002). Mul-
tiple experiments worldwide are or will be designed to observe dif-
ferent regions of this spectrum. These include Cosmic Microwave
Background polarization tests (BICEP2/Keck and Planck Collabo-
rations et al. 2015), space-based interferometers such as the evolv-
ing Laser Interferometer Space Antenna (eLISA,Consortium et al.
2013), and a network of ground-based interferometers consisting of
LIGO (Harry & LIGO Scientific Collaboration 2010), Virgo (Ac-
ernese et al. 2015) and KAGRA (Somiya 2012). Additionally, the
high precision with which the time of arrival (ToA) of electromag-
netic pulses from millisecond pulsars (MSPs) can be measured pro-
vides a window into the nano-hertz GW Universe, for which the
principal source is expected to be merging supermassive black hole
binaries with masses of 108 − 1010 M�.

In particular, by using a set of MSPs, referred to as a pulsar
timing array (PTA, Foster & Backer 1990), the cross correlation
of the GW signal between pulsars in the array (Hellings & Downs
1983) makes it possible to discriminate between GWs and other
potential sources of noise in the data (e.g., Lentati et al. 2015).

It was with this goal in mind that the International Pulsar Tim-
ing Array (IPTA, Verbiest et al. 2016; Manchester & IPTA 2013;
Hobbs et al. 2010) was formed as a collaboration between the three
main existing PTAs:

• the European Pulsar Timing Array (EPTA, Kramer & Cham-
pion 2013),
• the North American Nanohertz Observatory for Gravitational

Waves (NANOGrav, Demorest et al. 2013) and,

• the Parkes Pulsar Timing Array (PPTA, Manchester et al.
2013) in Australia.

Recently, the first IPTA data release was completed (Verbiest et al.
2016), combining observations from the three PTAs for a total of 49
pulsars. In this paper we investigate the properties of the stochastic
signals present in those pulsars.

A detailed review of pulsar timing can be found in, for exam-
ple, Lorimer & Kramer (2004). Briefly, the ToAs for a given pulsar
are recorded by an observatory as a series of discrete observations
made over a period of many years. Before any analysis can be per-
formed, these arrival times are corrected for the motion of the Earth
by transforming them into a common frame of reference, that of the
Solar System Barycentre.

At this stage a deterministic ‘timing model’ for the pulsar is
fitted to the ToAs which characterises the pulsar’s astrometric and
timing properties, such as its position, and rotational frequency.
This can be performed using the Tempo1, and Tempo2 (Hobbs, Ed-
wards & Manchester 2006; Edwards, Hobbs & Manchester 2006)
pulsar-timing packages, or more recently, using the Bayesian pulsar
timing package TempoNest2 (Lentati et al. 2014, see e.g., Desvi-
gnes et al. (submitted) for the use of TempoNest for pulsar tim-
ing, and e.g, Caballero et al. 2015; Shannon et al. 2015 for its use
in noise characterisation). After subtracting the timing model from
the ToAs we are left with the ‘timing residuals’, which contain any
effects not accounted for by the timing model.

In many pulsars, these residuals show time-correlated struc-
ture that deviates significantly from what could be expected from

1 http://tempo.sourceforge.net/
2 https://github.com/LindleyLentati/TempoNest
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instrumental noise alone. One possible origin for this structure is
intrinsic ‘spin-noise’ that arises from rotational irregularities of the
neutron star itself. This is generally regarded as an achromatic,
stochastic noise process with a red power spectrum, and while large
statistical studies have been performed in the past (e.g., Hobbs,
Lyne & Kramer 2010), much remains to be understood about spin
noise. It is precisely this uncertainty that makes studies into the
properties of spin noise so valuable, as most models for a stochas-
tic GW background predict that this too will induce a red spectral
signal in the timing residuals (Rajagopal & Romani 1995; Jaffe &
Backer 2003; Wyithe & Loeb 2003; Sesana et al. 2004).

While ‘normal’ pulsars (with spin periods of ∼ 1 s) have
been systematically observed to be affected by steep-spectrum spin
noise, some of the most stable MSPs show no sign of any intrinsic
spin-noise processes at the level of 100 ns, even after a decade of
observation (e.g., Shannon et al. 2015; Verbiest et al. 2009). The
low level of the intrinsic noise, coupled with the relative scarcity
of statistically robust analysis on large samples of MSPs, makes
characterising and predicting the properties of spin noise in MSPs
difficult. This is of particular importance given that the strength and
properties of the intrinsic spin-noise will certainly affect the time-
line for detection of GWs using a PTA (e.g., Shannon & Cordes
2010).

In addition to this intrinsic spin-noise process, variations in
the pulse ToAs result from processes extrinsic to the pulsar, e.g.,
the passage of the pulse through the Earth’s atmosphere, or even
from asteroid belts surrounding the pulsar (Shannon et al. 2013).
The dominant source of extrinsic noise for MSPs in the radio band,
however, is typically due to variations in the dispersion measure
(DM) introduced as our line of sight to the pulsar through the
ionised interstellar medium (IISM) changes with time (e.g, Keith
et al. 2013).

Early after pulsars were first discovered, temporal variations
in the DM were observed (Isaacman & Rankin 1977). As our line
of sight through the IISM changes so does the observed column
density of electrons along that line of sight. Observations over long
time spans have shown that these variations are largely consistent
with those expected for an IISM characterized by a Kolmogorov
turbulence spectrum. This results in a noise process in the resid-
uals with spectral exponent γ = 8/3 such that the variations are
larger on longer time scales, see e.g., Armstrong, Rickett & Span-
gler 1995. Deviations from this simple model however have also
been observed, with recent analyses suggesting there can be dis-
crete changes in the DM variation on short time scales (Coles et al.
2015; Keith et al. 2013).

Simultaneous analysis of DM variations with the spin-noise
is essential for robust estimation of the characteristics of the in-
trinsic noise processes. However, in the IPTA data set, early data
are often available at only a single frequency. If those data were
considered in isolation, we would be unable to distinguish between
the two sources of noise. Different approaches to DM correction
have been applied by different PTAs in the past. For example, in
Demorest et al. (2013) a set of independent parameters are applied
that represent the amplitude of the DM variations at each measure-
ment epoch, while in Keith et al. (2013) a linear interpolation is
performed using some sampling interval. Neither method is able to
perform a statistically robust extrapolation into epochs where there
is no multi-frequency coverage, and the former in addition requires
near-simultaneous measurement of ToAs at different frequencies
across the entire data set, which is not the case in the IPTA data set.
We therefore apply the DM correction method presented in Lentati
et al. (2014), which makes the assumption that the dominant part of

the DM signal is described by a time-stationary process. Thus, in
our Bayesian analysis, constraints placed on the signal from epochs
where there is multi-frequency coverage are automatically and ro-
bustly applied to epochs where there is only single-frequency data,
without any need for bootstrapping of models (see e.g., Lee et al.
(2014) for descriptions of extrapolating and interpolating time do-
main stochastic signals). Given the observation of discrete changes
in the DM variations, however, we also compare models that in-
clude non-stationary DM ‘events’. We describe our model for these
in Section 2.4.2 and show the impact that ignoring these events can
have on parameter estimation in Section 8.

Finally, in addition to DM variations, we also show in Sections
6 and 7 the importance of including ‘system’, and ‘band’ noise.
Henceforth, as defined in Verbiest et al. (2016), a system refers
to a unique combination of observing telescope, recording system
and receiver (or centre frequency). System noise represents possi-
ble calibration errors or instrumental effects that might exist in a
single observing system or telescope. Band noise then models sig-
nals that exists in a particular frequency band. This might have its
origins in the IISM as a result of processes that are not coherent
between different bands, or that do not scale in amplitude with the
inverse square of the observing frequency. Alternatively, it might
result from sources of radio-frequency-interference (RFI) that are
present in the same frequency band independent of the observing
site (e.g., due to satellites, or digital broadcasts).

In Fig. 1 we show examples of timing residuals for subsec-
tions of the IPTA data set for two pulsars: PSR J1909−3744 (left)
and PSR J1713+0747 (right). In particular, we show the residu-
als for observations between 1200 and 1700 MHz, where all three
PTAs have overlapping data. The goal of this paper is to determine
an optimal description of such data, exploiting not just the signifi-
cant overlap in time between PTAs that have observed with differ-
ent telescopes, and calibrated using different techniques, but also
the broad frequency coverage present in the IPTA data set. We will
show explicitly that not only does the IPTA data set enable us to
separate out these extra effects with much greater efficacy, but that
failing to do so can dramatically alter the interpretation of the sig-
nals observed in the residuals, in the most extreme cases revealing
an apparent detection of spin noise to be a purely systemic effect.

In Section 2, we provide a description of the models we em-
ploy for the different components of the deterministic and stochas-
tic signals in each pulsar in the IPTA data set, and in Section 3 we
give a brief overview of Bayesian analysis techniques. In Section
4 we give a brief description of the IPTA data set. Sections 5 to
9 contain the results of our analysis, and finally in Section 10 we
offer some concluding remarks.

2 DETERMINISTIC AND STOCHASTIC MODELS

The key goal of this paper is to estimate the properties of stochastic
signals that affect the pulse ToAs for each pulsar in the IPTA data
set. The key difficulty in this process is that each ToA will be af-
fected by contributions from all intrinsic and extrinsic astrophysical
processes – both deterministic and stochastic – in addition to poten-
tial system noise that might affect only those ToAs that come from
a particular telescope or observing system. As a consequence, all
contributions to the total signal must be simultaneously estimated
in the analysis in order to be able to draw meaningful conclusions
from the results.

For each pulsar our measured data will consist of a set of Nd

observed pulse ToAs. Adopting the same notation for our signal

c© 0000 RAS, MNRAS 000, 000–000
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model as in Lentati et al. 2015, we write the vector that contains
the ToAs d, as the sum of a number of components:

d = τTM + τWN + τSN + τDM + τSys + τBN . (1)

In Eq. 1 we have:

• τTM, the deterministic pulse timing model.
• τWN, the stochastic uncorrelated contribution to the noise due

to both instrumental thermal noise, and white noise intrinsic to the
pulsar.
• τSN, the stochastic time-correlated contribution due to achro-

matic red spin noise.
• τDM, the stochastic time-correlated contribution due to the dis-

persion of radio pulses travelling through the interstellar medium
(consisting of time-stationary behaviour and/or discrete events) and
through the Solar wind.
• τSys, the stochastic contribution due to time-correlated instru-

mental effects unique to a single observing system.
• τBN, the stochastic contribution due to time-correlated ‘Band

Noise’ unique to a particular observing frequency.

As in Lentati et al. 2015, we first note that an additional term, τGW,
could be added to account for the influence of GWs; in the present
work we take this term to be zero except for the specific case of
J0437−4715 in Section 7.1, in which we obtain upper limits for
this term for a set of different models. Secondly, as before we note
that, with the exception of our model for DM events, all stochastic
contributions are assumed to be zero-mean Gaussian processes.

Each of these terms then enters into our Bayesian analysis
which we describe in Section 3, in which we will use the evidence
to determine the optimal set of model components required to de-
scribe the data.

2.1 The timing model

We begin by incorporating the deterministic evolution in the pulse
ToAs due to the pulsar timing model into our analysis. To do this
we first construct a linear approximation to timing model which
allows us to marginalise over the timing model parameters ana-
lytically. This linear approximation is obtained as in the Tempo2
timing package, which we describe in brief below. We first define
the length m vector that contains the particular set of deterministic
timing model parameters for a given pulsar as ε. We then write the
arrival times predicted by that set of parameter values as τ(ε).

Given these arrival times, we can define the vector of ‘timing
residuals’ that result from subtracting the theoretical ToA for each
pulse from our observed ToA at the Solar System Barycentre:

dTR = d − τ(ε). (2)

The linear approximation is obtained using an initial estimate of
the m timing model parameters ε0. Any variation from those initial
estimates can then be described using the m parameters δε such
that:

δεi = εi − ε0i. (3)

Therefore, any changes in the timing residuals that result from de-
viations in the linear timing model parameters δε can be written
as:

δt = dTR −Mδε, (4)

where M is the Nd × m ‘design matrix’ which describes how the
timing residuals depend on the parameters δε.

As stated previously, the use of the linear timing model allows
us to marginalise analytically over the parameters δε. When per-
forming this marginalisation the matrix M is numerically unstable.
Using the approach advocated in van Haasteren & Vallisneri (2014)
we take the singular value decomposition of M, to form the set of
matrices USVT . The matrices U and VT contain the left-singular
and right-singular vectors of our original matrix M, while S is a di-
agonal matrix containing the singular values of M themselves. Here
U is an Nd × Nd matrix, which we divide into two components:

U =
(
Gc,G

)
, (5)

where G is a Nd × (Nd − m) matrix, and Gc is the Nd × m com-
plement. The matrix Gc contains a set of orthonormal basis vectors
that includes the same information as M but is numerically stable.
As such, we use Gc instead of M in the linear model.

2.2 White noise

Next we consider the stochastic white-noise component, τWN
i . This

model is divided into three components. The first two compo-
nents, referred to as EFAC and EQUAD, are common parame-
terisations of the white noise in pulsar timing analyses. The third
component, referred to as ECORR, has been applied more recently
in NANOGrav data analysis (See e.g., Arzoumanian et al. 2014,
2015a). We now describe each of these components briefly below:

• When the ToAs are formed through the cross-correlation
of a profile template with the integrated pulse profile from that
observation an estimate of the uncertainty on that ToA is also
obtained. The EFAC parameter, defined separately for each
observing system, accounts for possible errors that arise in the
cross-correlation process due to, e.g., profile variations. The EFAC
parameter multiplies all the ToA uncertainties for a given pulsar,
associated with a particular system.

• The second model component, EQUAD, represents an
additional source of time-independent noise. This could have
its origins in some physical process, for example, as a result of
stochastic shape variations in the integrated pulse profile due to
averaging over a finite number of single pulses when forming each
ToA (see e.g., Shannon et al. 2014). If this were the case then
the value of EQUAD should not be dependent on the observing
system that recorded it. However, as the integration times for
ToAs from different observing epochs can vary, and because these
integration times are not available for all early observations in the
IPTA data set, such an interpretation is not always possible. As for
the EFAC parameter, we therefore include an EQUAD parameter
per observing system in our analysis. In principle one might wish
to add multiple terms in quadrature, such as a non-Gaussian term
that could describe the impact of non-stationary RFI such as in
Lentati, Hobson & Alexander (2014), however due to the increase
in dimensionality that results we do not take that approach here.

• The final white-noise component we consider, ECORR, is
only applicable to the NANOGrav data, for which many ToAs are
present for a single observing epoch. ECORR then represents a
jitter-like effect that is fully correlated between all the ToAs in a
given epoch, and uncorrelated between different epochs.

The first two components, EFAC and EQUAD, are typically defined
by modifying the uncertainty σi, defining σ̂i such that:

c© 0000 RAS, MNRAS 000, 000–000
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σ̂2
i = α2

i σ
2
i + β2

i (6)

where αi and βi represent the EFAC and EQUAD parameters ap-
plied to ToA i respectively. While in principle we could incorpo-
rate the effect of non-Gaussianity in the uncorrelated noise in our
analysis, as in Lentati, Hobson & Alexander (2014), this is not an
approach we consider here. However, even when significant non-
Gaussianity was observed in PSR J0437−4715 the effect on the
timing and stochastic results was found to be minimal, so we do
not anticipate it will affect our results significantly.

Our model for ECORR is incorporated into our analysis by
first defining the Nd × Ne matrix Ue, where as before Nd is the total
number of ToAs in the data set, and Ne is the number of unique
observing epoch/observing system combinations in our ECORR
model. For the purposes of this work we consider an epoch to be
an interval of ten seconds, however given the average observing ca-
dence for NANOGrav data is 4 to 6 weeks, the exact value is not
important, as long as it is less than this value.

The matrix Ue takes either a value of 1 or 0, depending on
whether a particular ToA i falls within a particular epoch/system
combination j, i.e.:

Ue,i j

1, if ToA i falls in epoch/system combination j
0, otherwise.

(7)

Note that by construction, Ue,i j will always be zero for all ToAs not
from NANOGrav.

We then define the Ne length vector of free parameters a that
represent the time shift at each epoch, such that we can write the
signal due to the ECORR model parameters as:

τECORR = Uea. (8)

We then define the Ne × Ne matrix Ψ(ECORR), which describes
the variance, J , in the signal parameters a, such that:

〈aia j〉 = Ψ
(ECORR)
i j = Jiδi j, (9)

where we include in our model one J per NANOGrav observing
system as a free parameter to be fitted for.

2.3 Spin noise

In order to define our model for spin noise, we will use the ‘time-
frequency’ method described in Lentati et al. (2014) (henceforth
L14) which we describe in brief below. Here the timing noise is
decomposed into a set of Fourier basis vectors where for each pul-
sar the model includes the set of frequencies n/T , with T the total
observation time for the pulsar, and where n runs from 1 to some
maximum nc. The model thus includes 2nc basis vectors, repre-
senting the sine and cosine at each frequency in the model. In our
analysis we take nc to be the integer such that T/n is closest to a
period of 60 days, which was found to be sufficient in an analysis
of the EPTA 2015 data release (Caballero et al. 2015). In principle
we note that one might wish to marginalise over the value of this
cut off numerically as part of the analysis, however that is not an
approach that we have taken here. We list the value used for each
pulsar in Table 1.

As in L14 we take the lowest frequency in our spin noise
model to be 1/T . This approximation is possible because the

quadratic term present in the timing model that describes the pulse
spin frequency and spin down significantly diminishes our sensi-
tivity to longer periods. The efficacy of this quadratic as a proxy to
low-frequency spin noise does, however, begin to decrease for ex-
tremely steep spectrum spin noise (γ > 6). We will show in the case
of PSR J1939+2134 that our parameter estimates for the power law
properties of the spin noise are completely consistent between mod-
els that use the quadratic in the pulsar timing model as a proxy to
the low-frequency variations in the data, and a model that explic-
itly parameterises those low frequencies using the methods in van
Haasteren & Valisneri (2015).

In our analysis of the IPTA data set, as in L14, we consider a
two-parameter power-law model in frequency, such that the power
ϕ at a Fourier frequency f is given by:

ϕ( f , ASN, γSN) =
A2

SN

12π2

(
1

1yr

)−3 f −γSN

T
, (10)

where ASN and γSN are the amplitude and spectral exponent of the
power-law. In L14 a more general analysis was also performed,
where the power at each frequency in the model is a free parame-
ter. Because of the large increase in dimensionality, however, this is
not an approach we pursue in this work. The Fourier coefficients are
then marginalised over analytically using the model power spec-
trum as a prior, a process that is described in detail in L14.

2.4 Dispersion measure variations

For a detailed description of the effects of the IISM on pulsar timing
data see, e.g. Lyne & Graham-Smith (1990). In brief, the plasma in
the IISM, as well as in the Solar wind and the ionosphere, results
in time-variable delays in the propagation of the pulse signal be-
tween the pulsar and the observatory. This manifests in the timing
residuals as an additional time-correlated signal.

Unlike spin noise, however, the magnitude of the DM varia-
tions are dependent upon the observing frequency. Given a set of
observations over a wide enough band width, we can therefore use
this additional information to decouple DM variations from spin-
noise.

We will consider our model for DM variations as the sum of
several different components. First we consider the time-stationary
stochastic component of the signal, which we henceforth refer to
as ‘DM noise’ and is incorporated into our analysis as in L14. We
describe this method in brief below.

2.4.1 DM Noise

To include DM noise in our model we define the vector D, of length
Nd for a given pulsar, as:

Di = 1/(Kν2
(o,i)) (11)

for observation i with observing frequency ν(o,i), where the disper-
sion constant K is given by:

K ≡ 2.41 × 10−16 Hz−2 cm−3 pc s−1. (12)

As in L14, we decompose our DM signal into a series of
Fourier modes, and determine the set of frequencies to be included
as for the red spin noise. Now, however, our basis vectors are scaled
using Eq. 11 in order to incorporate the frequency dependence of
the signal.
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As before we consider a two-parameter power-law model,
with an equivalent form to Eq. 10, however without the factor 12π2

for the DM noise, i.e. we have:

ϕ( f , ADM, γDM) = A2
DM

(
1

1yr

)−3 f −γDM

T
. (13)

In contrast to spin noise, where the spin-down quadratic in the
timing model acts as a proxy for the low-frequency ( f < 1/T ) fluc-
tuations in our data, the dependence of DM on observing frequency
leaves us sensitive to low-frequency power in the DM noise. This
power must be accounted for in the model, either by including low-
frequency Fourier modes in the model, or by including a quadratic
in DM as an approximation. In L14 the quadratic approach was
used, and we follow this method in our analysis here. This quadratic
model is defined as:

QDM(ti) = q0tiDi + q1(tiDi)2 (14)

with q0,1 free parameters to be fitted for, and ti the barycentric ar-
rival time for ToA i. This can be achieved by adding the first and
second time-derivatives of the DM, DM1 and DM2, into the timing
model for the pulsar. These parameters are equivalent to q0 and q1

in Eq. 14, and this is the approach we also take.

2.4.2 Additional DM terms

We also consider two possible extensions to our model for the DM
variations in each pulsar timing data set. Firstly, yearly DM vari-
ations as observed by Keith et al. (2013), are described by a two-
parameter model with amplitude AyrDM and phase φyrDM given by:

τ
yrDM
i = AyrDM sin

(
2πyr−1ti + φyrDM

)
Di. (15)

Secondly, we include a DM ‘event’ model that accounts for sud-
den changes in the DM that are not well described by the time-
stationary processes described thus far.

To model the DM events we use shapelet basis functions. A
complete description of shapelets can be found in Refregier (2003),
with astronomical uses in e.g, Kelly & McKay (2004); Lentati,
Alexander & Hobson (2015); Refregier & Bacon (2003). Here we
only describe what is needed for our DM-event model.

In one dimension, shapelets are described by the set of basis
functions:

Bn(t,Λ) ≡
[
Λ2nn!

√
π

]−1/2
Hn

( t − t0

Λ

)
exp

(
−

(t − t0)2

2Λ2

)
, (16)

where t0 is the reference point of the event, Λ is the scale factor
which is a free parameter in our analysis, n is a non-negative inte-
ger, and Hn is the nth Hermite polynomial. The 0th order shapelet is
therefore simply given by a Gaussian (H0(x) = 1), while higher or-
der shapelets are described by a Gaussian multiplied by the relevant
Hermite polynomial.

We can then represent a function f (t) as the sum:

f (t, ζ,Λ) =

nmax∑
i=0

ζiBi(t; Λ), (17)

where ζi are shapelet amplitudes, and nmax is the number of shapelet
terms included in the model.

We can modify Eq. 17 to form our DM-event model by mul-
tiplying for each ToA i at time ti, the corresponding element from
the vector in Eq. 11, resulting in:

τDMEvent(ti) = f (ti, ζ,Λ)Di. (18)

Finally, while we do not consider it a free parameter in
our analysis, we also incorporate a simple spherically-symmetric,
time-stationary model for the Solar-wind density. This assumes a
quadratic decrease with Solar distance given by:

DM� = 4.85 × 10−6n0
θ

sin θ
cm−3 pc, (19)

with θ the pulsar-Sun-observatory angle, and n0 the electron density
at 1 AU from the sun in units of cm−3. We use the default value for
n0 in Tempo2, which is 4 cm−3. In principle one would want to fit
for n0 as a part of the analysis, however in this work we assume any
deviation from this value can be described using our DM model.

2.5 System and Band Noise

The final two noise components that we will consider in our model
we refer to as ‘system’ and ‘band’ noise. These are additional tim-
ing noise processes that are applied to, respectively, a specific ob-
serving system, or to all ToAs within a particular frequency band.

In the case of system noise, in principle one might consider
defining a separate stochastic noise process in the same vein as the
spin noise described in Section 2.3 for every observing system used
in a particular data set, much as we already have done for the white-
noise parameters EFAC and EQUAD. In practice this is not compu-
tationally tractable, as every time-correlated signal added increases
the size of the matrix operations required as part of the analysis. We
instead define a system search parameter, which can take a value
between 1 and the number of systems present in a particular data
set. We then sample the three-dimensional parameter space of this
system index, along with the power-law amplitude and spectral ex-
ponent of the noise process applied to the system. We can then use
the evidence (see Section 3) to determine how many such terms are
required to model the data, with the assumption that all systems are
a priori equally likely to have such excess noise.

For the band noise, the number of wide (∼1 GHz) frequency
bands is significantly less than the number of observing systems,
and so we do not incorporate a ‘band search’ parameter, but instead
simply define three bands, (ν < 1 GHz, 1 < ν < 2 GHz, ν > 2
GHz) and include an additional power-law noise process in each.
For some pulsars we then subdivide these values into smaller bands,
however this is discussed on a case-by-case basis in Section 7.

We note here that, if only a single observing system exists
for each frequency band, the system-noise, and band-noise terms
will be completely covariant. In this case, when we perform model
selection between these two cases, we will naturally be unable to
distinguish one from the other. For many pulsars in the IPTA data
set, multiple observing systems operate within the same frequency
band. This breaks the degeneracy between these two competing
models, and so enables us to distinguish between band and system
noise with much greater efficacy.
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3 BAYESIAN METHODS

In our analysis we will we make use of Bayesian methods, which
provide a means of estimating a set of parameters Θ in a model or
hypothesis H given the data, D (see e.g., Hobson et al. (2014) for a
description of Bayesian inference, and its application to a range of
problems in different astrophysical fields). Central to all Bayesian
analysis is Bayes’ theorem, which states that:

Pr(Θ | D,H) =
Pr(D | Θ,H)Pr(Θ | H)

Pr(D | H)
, (20)

where Pr(Θ | D,H) ≡ Pr(Θ) is the posterior probability distribution
of the parameters, Pr(D | Θ,H) ≡ L(Θ) is the likelihood, Pr(Θ |
H) ≡ π(Θ) is the prior probability distribution, and Pr(D | H) ≡ Z
is known as the evidence.

In order to discriminate between different models, H0 and H1,
in a Bayesian analysis we must consider the odds ratio, R:

R =
Z1

Z0

Pr(H1)
Pr(H0)

, (21)

where Pr(H1)/Pr(H0) is the a priori probability ratio for the two
models. In the work that follows we will take the prior probability
ratio of different models to be one, in which case R reduces to the
‘Bayes factor’.

The Bayes factor relates to the probability of one model com-
pared the other as:

P =
R

1 + R
. (22)

In our analysis we deal with the log Bayes factor, which is just the
difference in the log evidence for two competing models. While dif-
ferent interpretations of the Bayes factor exist (e.g., Kass & Raftery
1995) in our analysis we will require an increase in the log evidence
of three to prefer one model to another, corresponding to a thresh-
old probability of approximately 95%.

We perform our analysis using either the MultiNest algorithm
(Feroz & Hobson 2008; Feroz, Hobson & Bridges 2009), or the re-
cently introduced PolyChord (Handley, Hobson & Lasenby 2015).
Both these algorithms make use of nested sampling (Skilling 2004)
which allows for efficient calculation of the evidence and also pro-
duces posterior distributions for the parameters being sampled.

Which algorithm we make use of depends upon the dimen-
sionality of the pulsar data set being analysed, as in high dimen-
sions (& 50), the number of samples required by MultiNest in-
creases exponentially (See Fig. 4 in Handley, Hobson & Lasenby
2015).

In the IPTA data set some pulsars have significantly more than
50 dimensions in their model. For example, the PSR J1713+0747
data set is comprised of observations taken from a total of 43 ob-
serving systems, of which 14 are from NANOGrav telescopes. Sim-
ply considering the white-noise parameters alone (EFAC, EQUAD,
ECORR) this results in a dimensionality of 100 before any ad-
ditional terms describing spin noise or DM variations have been
added to the model. It is therefore not computationally feasible
to use the MultiNest algorithm to compute the evidence for these
larger data sets.

The PolyChord algorithm, however, scales with dimensional-
ity d as d3 at worst, making it the ideal choice for the more com-
plex data sets. We have updated TempoNest to use the PolyChord
algorithm, and this was used in all analyses where the dimension-

ality is greater than 50. For smaller-dimensional problems we find
MultiNest is more efficient. The evidence values and parameter es-
timates from both samplers are consistent. The updated version of
TempoNest is publicly available as part of Tempo2.

Regardless of the sampler used, unless otherwise stated we use
priors that are uniform in the log of the parameter for all noise am-
plitudes with the exception of the EFAC parameter, and the shapelet
amplitudes that describe our DM-event model for which we use a
prior that is uniform in the amplitude. Finally we use priors that are
uniform in spectral exponent for all power-law noise models and in
the phase of the yearly DM model. These priors are chosen to be
uninformative in all cases, so as to result in conservative detections
of the noise processes under investigation. Finally, when marginal-
ising over the timing model analytically we use a uniform prior on
the amplitude of these parameters. In principle one could include
further prior information, such as constraints on system jumps ob-
tained from additional information not present in the IPTA data set,
however, as stated, incorporating less prior information will only
result in our analysis being more conservative.

4 THE DATA SET

The first IPTA data release includes a total of 49 pulsars, of which
14 are solitary and 35 are in binary orbits. For full details refer to
Verbiest et al. (2016). Here we will give only a brief overview and
provide details relevant to the analysis that follows.

The IPTA data release combines observations previously re-
leased by the three PTAs independently in Demorest et al. (2013),
Manchester et al. (2013) and Desvignes et al. (submitted). The
EPTA data set contains observations from the four largest radio
telescopes in Europe: the Effelsberg Radio Telescope in Germany,
the Lovell Radio Telescope at the Jodrell Bank Observatory in
the UK, the Nançay Radio Telescope in France, and the Wester-
bork Synthesis Radio Telescope in The Netherlands. The PPTA
data release contains data from the 64-m Parkes radio telescope,
and the NANOGrav observations make use of the 100-m Robert
C. Byrd Green Bank Telescope, and the 305-m William E. Gor-
don Telescope of the Arecibo Observatory. In addition, for PSRs
J1857+0943 and J1939+2134, publicly available data taken with
the Arecibo radio telescope from Kaspi et al. (1994) have been in-
cluded, extending the timing baseline for these two pulsars back-
wards to 1986 and 1982, respectively. Finally for PSR J1713+0747,
archival data previously used in Zhu et al. (2015) is also included
in the IPTA data set.

In Table 1, we list some properties of the pulsars in the first
IPTA data release relevant to the stochastic analysis performed
here. Namely, we list the timespan for each pulsar, the frequency
range covered by all observations, the weighted rms scatter of the
residuals, σw, obtained after subtracting the maximum-likelihood
time-correlated stochastic signals from the optimal model deter-
mined by our analysis, the number of observing systems per PTA,
and finally the number of Fourier-frequencies included in our
model, nc (see Section 2.3), such that we sample timescales as short
as 60 days. The weighted rms is calculated using the ToA error
bars, after modifying them with the EFAC and EQUAD parameters
obtained from our analysis.

The large number of telescopes and observing systems in the
IPTA data release presents numerous challenges when attempting
to perform a robust statistical analysis on the data, many of which
are discussed in Verbiest et al. (2016). In Table 1 we draw attention
to one particular aspect of this challenge, namely the number of
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Table 1. Details of the individual pulsar data sets. We define σw as the weighted RMS of the residuals, after subtracting out the maximum likelihood time-
correlated signals for the optimal model determined by our analysis. Nsys is the number of observing systems associated with each PTA, and finally nc is
the number of Fourier frequencies included in the time-correlated noise processes (see Section 2.3 for details). Note that PSRs J18242452A, J1857+0943,
J1939+2134 and J1955+2908 also have B1950 names, which are, respectively, PSRs B1821-24A, B1855+09, B1937+21 and B1953+29.

PSR J-Name Timespan Frequency σw Nsys nc
(J2000) (yrs) (MHz) (µs) EPTA PPTA NANOGrav

J0030+0451 12.7 420 - 2628 1.5 6 – 2 78
J0034−0534 11.1 324 - 1410 4.4 5 – – 68
J0218+4232 15.2 324 - 2048 6.7 13 – – 93
J0437−4715 14.9 690 - 3117 0.1 – 14 – 91
J0610−2100 4.5 1366 - 1630 5.2 3 – – 28
J0613−0200 13.7 324 - 3101 1.1 14 14 2 84
J0621+1002 14.3 324 - 2636 7.2 10 – – 88
J0711−6830 17.1 689 - 3102 2.0 – 13 – 105
J0751+1807 15.3 1353 - 2695 3.3 9 – – 94
J0900−3144 4.5 1366 - 2206 2.8 5 – – 28
J1012+5307 14.4 324 - 2636 1.6 15 – 2 88
J1022+1001 15.2 324 - 3102 2.1 10 11 – 93
J1024−0719 15.9 689 - 3102 1.5 9 13 – 97
J1045−4509 17.0 689 - 3102 3.7 – 13 – 104
J1455−3330 7.4 760 - 1699 3.8 4 – 2 46
J1600−3053 9.9 689 - 3104 0.7 4 12 2 61
J1603−7202 15.3 689 - 3102 1.8 – 26 – 94
J1640+2224 15.0 420 - 2636 2.0 8 – 2 92
J1643−1224 17.8 689 - 3102 1.8 9 13 2 109
J1713+0747 21.2 689 - 3102 0.2 14 15 14 130
J1721−2457 10.3 1335 - 1412 25.7 3 – – 63
J1730−2304 17.8 689 - 3102 1.6 7 13 – 109
J1732−5049 8.0 689 - 3101 2.5 – 10 – 49
J1738+0333 4.9 1366 - 1628 2.6 2 – – 30
J1744−1134 17.0 324 - 3102 0.8 9 13 2 104
J1751−2857 5.7 1398 - 1411 2.4 1 – – 35
J1801−1417 4.8 1396 - 1698 2.0 3 – – 30
J1802−2124 4.7 1366 - 2048 2.9 4 – – 29
J1804−2717 5.9 1395 - 1520 4.4 2 – – 36
J1824−2452A 5.8 689 - 3101 0.6 – 10 – 36
J1843−1113 8.7 1335 - 1630 1.0 5 – – 53
J1853+1303 7.0 1370 - 2378 1.1 2 – 2 43
J1857+0943 26.0 420 - 3102 1.3 10 11 2 159
J1909−3744 9.0 565 - 3106 0.2 3 16 2 55
J1910+1256 6.9 1366 - 2378 1.4 2 – 2 43
J1911+1347 4.9 1366 - 1408 5.2 1 – – 30
J1911−1114 5.7 1398 - 1520 0.7 3 – – 35
J1918−0642 10.5 792 - 1520 1.5 5 – 2 64
J1939+2134 27.1 689 - 3101 0.3 12 14 – 165
J1955+2908 5.8 1386 - 2378 5.0 3 – 2 36
J2010−1323 5.0 1366 - 2048 2.0 5 – – 31
J2019+2425 6.8 1366 - 1520 8.8 3 – – 42
J2033+1734 5.5 1368 - 1520 13.3 3 – – 34
J2124−3358 17.6 689 - 3102 3.0 5 13 – 108
J2129−5721 15.4 689 - 3102 1.2 – 12 – 94
J2145−0750 17.5 324 - 3142 1.0 12 14 2 107
J2229+2643 5.8 1355 - 2638 3.8 6 – – 36
J2317+1439 14.9 317 - 2638 1.0 8 – 2 91
J2322+2057 5.5 1395 - 1698 7.0 4 – – 34

unique observing systems (Nsys) present for the different pulsars.
These are listed separately for the EPTA, PPTA and NANOGrav
contributions to the data set. For each system we include the two
white-noise parameters, EFAC and EQUAD, and in addition for
each NANOGrav system we include a separate ECORR parameter.

As we will discuss in Section 6, the existence of a wealth of
overlapping data from different telescopes analysed using differ-

ent data reduction pipelines, allows us to separate system noise
with much greater efficacy compared to the individual data sets.
Similarly, the much greater multi-frequency coverage afforded by
the IPTA data set, spanning in some instances from 300 MHz to
3 GHz, allows us to better separate DM variations from other ef-
fects, and to explore deviations from the standard ν2

obs paradigm for
band-dependent noise, which we discuss further in Section 7.
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5 RESULTS

Table 2 lists the relative evidence values for different models ap-
plied to the 49 pulsars in the IPTA data set. In each case we in-
dicate the combination of spin noise, DM noise, system noise and
band noise that is included in the model by marking the included
components with a cross.

For each pulsar we indicate the model most favoured by the
evidence by giving the evidence value corresponding to that model
in bold. We note again here that we only perform model selec-
tion between different time-correlated signals, and so all models
include as a minimum an EFAC and an EQUAD per system, and an
ECORR for each NANOGrav system. The timing model parame-
ters included in the analysis are the same as those in Verbiest et al.
(2016), and the relevant white noise parameters are included for all
systems. As discussed in Section 3, we require a change in the log
evidence of 3 to warrant the inclusion of extra parameters. As such,
in many cases the model that has the highest evidence is not consid-
ered the favoured model, as the increase in the log evidence is less
than 3. Similarly, in some cases multiple models will have their log
evidence values in bold, as different models of similar ‘complexity’
(i.e. models including the same number of components) will have
log evidence values such that the difference does not exceed 3.

For example, the PSR J0030+0451 data set has a maximum
value for the log evidence of 7.3 for a model that includes both DM
noise and spin noise. This, however, is only 1.3 greater than a model
that includes spin noise alone, and only 1.7 greater than a model
that includes DM noise alone. Thus we conclude that the timing
model must include either spin noise or DM noise, but likely due
to a lack of quality overlapping multi-frequency data, we cannot
distinguish between these two models from this data set, and so
both are bold in the table.

Table 3 then lists the evidence values when including either
additional non-stationary DM events, or yearly DM variations.
We only consider these additional DM components for those pul-
sars with data sets that support DM noise in their optimal model,
and where the DM noise can be clearly distinguished from spin
noise, and other system- or band-dependent effects. Only two data
sets support the inclusion of non-stationary DM events, those for
PSRs J1713+0747 and J1603−7202. For these two the emboldened
model in Table 2 reflects the set of model components that opti-
mally describes the data when also including the DM-event model,
and as such might not be the highest number in that row. In both
cases however in Table 3 the optimal model is greater than any
non-event model listed in Table 2.

In total we find that:

• For 19 pulsars, the data support no time-correlated timing
noise components. Typically these are shorter data sets, with
all but six of these pulsars having less than 7 years of observa-
tions. Notably, however, PSRs J1640+2224, J2124−3358, and
J2129−5721 all have time spans of greater than 15 years and σw of
less than 3µs. These three data sets do, however, have significant
low-frequency DM variations.

• For a further 20 pulsars, the data support a single time-
correlated noise component, of which for seven we are unable to
distinguish between spin noise and DM noise. With the exception
of PSR J0030+0451, however, these are all data sets for which
there is no data at less than 1400 MHz, or no high-precision
high-frequency (> 3 GHz) data, stressing the importance of
including broad frequency coverage if we wish to disentangle
timing noise that is intrinsic to the pulsar (or GWs) from that

induced by variable propagation effects in the IISM.

• Of the remaining ten pulsar data sets, four support a combi-
nation of two noise components, five support three components
and only the PSR J1939+2134 data set supports all four types of
time-correlated signal in the model.

For clarity we note that there are ten pulsars that do not show
evidence for the DM noise model (i.e., higher order DM variations,
see Section 2.4.1) which do still have significant low-frequency
DM variations which are modeled by the DM quadratic we include
in the timing model (see Verbiest et al. (2016)). These pulsars are
indicated by a superscript 1 on pulsar name in Table 2.

Of particular note are those pulsars whose data support system
noise or band noise in their model. For example, when consider-
ing only spin noise and DM noise for PSR J1600−3053, we find
that a model that includes both has an increase of more than three
in the log evidence compared to a model that includes only DM
noise, which would lead us to conclude that this pulsar suffered
from spin noise. When including the possibility of both system and
band noise, however, we find no evidence for spin noise in the data
set.

In previous analyses of the NANOGrav five-year data set, in-
cluded as a subset of the IPTA data set, Perrodin et al. (2013) found
that PSR J1643−1224 suffered from red timing noise. In our analy-
sis described in Section 7 we show that this data set has significant
additional frequency-dependent noise that is coherent between dif-
ferent frequency bands observed by different PTAs, but scales more
steeply than either ν0

o or ν2
o as would be expected from either spin

noise or DM noise respectively. This allows us to interpret this tim-
ing noise as likely coming from time-variable scattering or refrac-
tion in the IISM, as opposed to being due to spin noise intrinsic to
the pulsar.

As a final example, in Fig. 2 we show one- and two-
dimensional marginalised posterior distributions for the spin-noise
amplitude and spectral exponent for PSR J0437−4715 when in-
cluding; a) only spin noise and DM noise, b) additional system
noise, and c) additional system noise, and band noise terms in
the 600-800 MHz and 1200-1600 MHz bands. When performing a
standard analysis including only spin noise and DM noise we find
a relatively flat spectral exponent for the spin-noise model, with
γSN ∼ 1 − 2. When including system noise terms the spin-noise
model drops significantly in amplitude, and becomes steeper, with
γSN ∼ 3 − 4, more in line with the steep timing noise observed
in young pulsars and the MSP PSR J1939+2134. Finally, when
including band noise in the model, we find that the spin noise is
again consistent with smaller amplitudes and steeper spectral ex-
ponents. That the inferred parameter estimates change significantly
depending upon the chosen model clearly demonstrates the impor-
tance of performing model comparisons when attempting to draw
astrophysical conclusions from pulsar timing data.

In the following sections we discuss in more detail the results
for the different models used in our analysis, including system noise
in Section 6, band noise in Section 7, DM noise, and non-stationary
DM events in Section 8 and finally spin noise in Section 9.

6 SYSTEM NOISE

We find that for ten pulsars in the IPTA data release, the data
support system noise in addition to, or in favour of other time-
correlated stochastic signals. The inferred properties of these sig-
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Table 2. Relative log evidence values for different models. Crosses indicate which components have been included in the model. Values in bold reflect the
‘optimal’ models as supported by the evidence (see Section 5 for details). As stated in Section 2.4.1 we do not perform evidence comparisons for the quadratic
in DM used to model the low-frequency fluctuations. 1 Indicates the data set has low-frequency DM variations with greater than 2σ significance using the
model shown in bold.

Spin Noise - x - - x x - - x x - x
DM Noise - - x - x - x x x x x x

System Noise - - - x - x x - x - x x
Band Noise - - - - - - - x - x x x

Pulsar Name
J0030+0451 0.0 6.0 5.6 2.8 7.3 5.9 5.3 - - - - -
J0034−05341 0.0 0.3 1.5 0.3 - - - - - - - -
J0218+4232 0.0 26.0 124.1 35.4 124.2 48.7 123.7 - - - - -
J0437−4715 - - 0.0 - 85.9 - - - 240.0 - 270.1 270.6
J0610−2100 0.0 -0.1 0.1 0.1 - - - - - - - -
J0613−0200 - 0.0 3.4 - 8.0 - - - 21.9 - - 19.3
J0621+1002 0.0 117.9 110.9 67.5 117.7 117.3 111.6 - - - - -
J0711−6830 0.0 1.0 5.2 -0.8 5.0 1.5 4.3 1.3 - - - -
J0751+1807 0.0 7.3 7.4 1.8 7.5 7.1 7.2 - - - - -
J0900−3144 0.0 9.1 9.9 7.2 9.3 8.5 9.1 - - - - -
J1012+5307 0.0 8.3 4.0 1.1 9.4 8.5 - - - - - -
J1022+1001 0.0 10.2 17.4 16.2 17.5 - 32.3 26.5 - - 31.6 -
J1024−07191 - 0.0 -59.7 -148.5 -1.5 -1.7 - - - - - -
J1045−4509 0.0 190.5 339.2 94.5 340.6 - 339.0 - - - - -
J1455−33301 0.0 0.6 0.1 3.8 - 2.4 2.1 - - - - -
J1600−3053 0.0 89.8 116.8 61.3 119.9 - 143.9 138.0 142.7 137.5 161.5 160.5
J1603−7202 0.0 19.3 43.6 28.8 44.1 - 50.3 50.3 - - - -
J1640+22241 0.0 0.6 2.3 0.4 2.0 0.6 2.0 - - - - -
J1643−1224 0.0 - - - 0.0 22.8 21.2 - 43.9 - 80.4 80.8
J1713+0747 - - 0.0 - 37.0 - - - 160.2 50.1 - 160.3
J1721−2457 0.0 0.0 0.2 0.0 - - - - - - - -
J1730−23041 0.0 -0.9 -1.3 5.1 - 4.1 4.3 - - - - -
J1732−5049 0.0 6.7 9.9 3.6 9.4 6.4 9.6 9.8 - - - -
J1738+0333 0.0 -0.5 -0.3 -0.2 - - - - - - - -
J1744−1134 0.0 9.0 10.0 19.0 10.4 35.6 33.5 - - - - -
J1751−2857 0.0 -0.2 0.0 0.0 - - - - - - - -
J1801−1417 0.0 12.8 13.1 12.0 13.3 12.9 13.3 - - - - -
J1802−2124 0.0 61.7 61.7 60.1 62.1 61.6 61.7 - - - - -
J1804−2717 0.0 -0.3 -0.1 0.0 - - - - - - - -

J1824−2452A - 0.0 5.5 -76.7 27.5 6.2 9.0 27.4 29.5 - - -
J1843−1113 0.0 17.7 16.7 9.6 17.8 17.4 16.3 - - - - -
J1853+1303 0.0 -0.6 -0.4 0.4 - - - - - - - -
J1857+0943 - 0.0 34.0 - 32.6 - 32.81 34.1 - - - -
J1909−3744 - - 0.0 - -2.0 - -3.6 -2.4 -4.5 - - -
J1910+1256 0.0 8.6 8.2 4.6 8.0 6.7 8.8 - - - - -
J1911−1114 0.0 -0.3 -0.2 0.0 - - - - - - - -
J1911+1347 0.0 -0.6 -0.4 -0.5 - - - - - - - -
J1918−06421 0.0 -4.0 -0.3 -8.6 - - - - - - - -
J1939+2134 - - - - 0.0 - - - 89.7 11.7 - 105.7
J1955+2908 0.0 -0.3 -0.1 0.7 - - - - - - - -
J2010−13231 0.0 -0.2 0.0 -0.1 - - - - - - - -
J2019+2425 0.0 -0.5 -0.3 -0.2 - - - - - - - -
J2033+1734 0.0 -0.4 -0.1 -0.1 - - - - - - - -
J2124−33581 0.0 0.8 -0.2 0.4 - - - - - - - -
J2129−57211 0.0 0.0 0.0 -0.5 - - - - - - - -
J2145-0750 - 0.0 -20.8 -87.0 3.2 53.5 29.7 - 56.9 - - 56.0

J2229+26431 0.0 -0.5 0.0 0.2 - - - - - - - -
J2317+1439 0.0 48.2 125.1 40.0 124.2 71.5 124.9 - - - - -
J2322+2057 0.0 -0.4 -0.1 0.0 - - - - - - - -

nals are given in Table 4 which lists the log amplitude, spectral
exponent, and total integrated power with 1-σ confidence intervals
in each case. Note that, while the one sigma confidence interval is
mathematically well defined regardless of the shape of the poste-
rior, for highly non-Gaussian probability distributions the signifi-

cance of a parameter can only be determined using the full pos-
terior, and the relative evidence for models with and without that
parameter. We calculate the integrated power over only the Fourier
frequencies included in the power law model, from 1/T to nc/T ,
with T the time span of the pulsar, and nc the number of frequen-
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Table 3. Relative log evidence values for additional DM model components. Bold font in column 3 identifies the two pulsars for which significant DM events
were identified. For both pulsars, the remaining model parameters are given by the emboldened column in Table 2.

Pulsar Name Yearly DM DM Event

J0437−4715 269.1 268.3
J0218+4232 123.7 123.5
J0613−0200 22.5 18.3
J1022+1001 30.1 30.3
J1045−4509 339.8 339.3
J1600−3053 159.1 161.2
J1603−7202 47.9 53.3
J1643−1224 80.1 79.1
J1713+0747 158.7 195.1
J1732−5049 9.8 11.7

J1824−2452A 28.7 26.5
J1857+0943 33.7 32.9
J1909−3744 -1.4 -2.6
J1939+2134 104.9 103.6
J2145−0750 55.8 54.4
J2317+1439 124.5 125.2

Table 4. System and band-noise model parameters. We denote the integrated power for each model as σSys, and σBN for the system-noise, and band-noise
processes respectively (see Section 6 for details).

System-noise model parameter estimates

Pulsar System Log10 ASys γSys Log10σSys

J0613−0200 Nançay 1400 MHz -14.8 ± 0.8 4.9 ± 1.4 -6.08 ± 0.16
J1022+1001 Nançay 1400 MHz -12.68 ± 0.07 1.8 ± 0.3 -5.58 ± 0.14
J1455−3330 Nançay 1400 MHz -13.5 ± 1.0 3.6 ± 1.5 -5.8 ± 0.8
J1600−3053 Nançay 1400 MHz -13.28 ± 0.10 1.9 ± 0.4 -6.23 ± 0.14
J1643−1224 Nançay 1400 MHz -12.60 ± 0.07 1.7 ± 0.3 -5.55 ± 0.17
J1730−2304 Nançay 1400 MHz -12.66 ± 0.14 1.6 ± 0.5 -5.63 ± 0.14
J1744−1134 Nançay 1400 MHz -13.36 ± 0.16 2.3 ± 0.4 -5.99 ± 0.13
J2145−0750 Nançay 1400 MHz -12.71 ± 0.06 1.7 ± 0.2 -5.66 ± 0.11
J0437−4715 Parkes CPSR2 1400 MHz -13.34 ± 0.07 0.9 ± 0.3 -5.49 ± 0.08
J0437−4715 Parkes CPSR2 legacy 1400 MHz -13.51 ± 0.17 2.8 ± 0.7 -4.8 ± 0.3
J1939+2134 Nançay DDS 1400 MHz -12.95 ± 0.05 1.8 ± 0.2 -5.78 ± 0.15
J1939+2134 Parkes CPSR2 1400 MHz -13.7 ± 0.3 1.7 ± 0.7 -6.5 ± 0.2

Band-noise model parameter estimates

Pulsar Band Log10 ABN γBN Log10σBN

J0437−4715 0-1000 MHz −13.32 ± 0.16 0.6 ± 0.4 −5.46 ± 0.16
J0437−4715 1000-2000 MHz −13.83 ± 0.14 0.8 ± 0.4 −5.96 ± 0.16
J0437−4715 > 2000 MHz −14.4 ± 0.3 3.3 ± 0.9 −5.5 ± 0.3
J1600−3053 0-730 MHz −12.7 ± 0.15 2.2 ± 0.6 −5.4 ± 0.3
J1643−1224 0-730 MHz −12.02 ± 0.06 2.2 ± 0.3 −4.7 ± 0.2
J1643−1224 750-890 MHz −12.19 ± 0.07 1.5 ± 0.3 −5.2 ± 0.16
J1939+2134 0-800 MHz −12.85 ± 0.10 2.2 ± 0.3 −5.44 ± 0.19
J1939+2134 2000-2500 MHz −13.6 ± 0.3 2.1 ± 0.6 −6.2 ± 0.3

cies included in the model. The mean and uncertainty are derived
directly from the posterior distributions for the amplitude and spec-
tral exponent of the noise processes.

In Fig. 3 we explicitly demonstrate the advantages of work-
ing with the IPTA data set in terms of isolating system-dependent
timing noise using the PSR J1730−2304 data set. When perform-
ing a timing analysis of the subset of the data set provided by the
EPTA, fitting for white-noise parameters and an additional spin-
noise model, we find a significant detection of the spin-noise pro-
cess. The difference in the log evidence for the more complex

model that includes spin noise, compared to the white noise only
model is eight, with log10 ASN = −12.66±0.14 and γSN = 1.6±0.5.

If we fit for a model that includes both spin noise and an addi-
tional system-dependent time-correlated signal applied to only the
Nançay 1400 MHz data, we find that the spin-noise amplitude is
highly covariant with the system noise amplitude, as shown in the
top-right panel. This clearly indicates that the EPTA data alone are
not sufficient to discriminate between these two models, because
the Nançay 1400 MHz data contributes over 90% of the weight to
the EPTA J1730−2304 data set.
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Figure 2. One- and two-dimensional marginalised posterior distributions
for the spin-noise amplitude and spectral exponent in the PSR J0437−4715
data set when including: Only spin noise and DM noise (blue lines), addi-
tional system noise (red lines), and both additional system noise, and band
noise terms in the 600-800 MHz and 1200-1600 MHz bands (black lines).
The inferred parameter estimates change significantly depending upon the
chosen model, demonstrating the importance of determining the optimal
model when attempting to draw astrophysical conclusions from pulsar tim-
ing data. In this plot, and all triangular plots henceforth, the contours repre-
sent one- and two-σ confidence intervals. In addition, the axis labels on the
bottom row apply to all plots above it, and similarly, all axis labels on the
left apply to all plots to the right of it.

The effect of this imbalance can also be seen if we adopt the
reasonable prior that each of the seven observing systems present
in the EPTA data set is equally likely to suffer from system noise,
rather than assuming a priori that there is system noise present in
the Nançay 1400 MHz data. In this case we search for the system
to which we apply the system noise term, as described in Section
2.5, and find that there is a much greater probability that the timing
noise present in the data set should be attributed to spin noise, rather
than system noise. This is shown in the bottom-left panel of Fig. 3.
In comparison to the top-left panel, however, we find there is now
some probability that the spin-noise amplitude is consistent with
zero, as we would expect. This tail on the amplitude of the spin
noise corresponds to a peak in the posterior probability distribution
associated with system five, marked with a vertical line in the one
dimensional figure, which is associated with the Nançay 1400 MHz
data.

The full IPTA data set, however, includes significant addi-
tional PPTA data. Analysis of this data set (bottom-right panel)
shows that the Nançay 1400 MHz data is sufficiently inconsistent
with the PPTA data that we can separate the system noise from the
spin noise in this pulsar. The optimal model then includes no sup-
port for spin noise in this data set, only system noise in the Nançay
1400 MHz data.

In total we find that eight pulsars have significant system
noise in the EPTA Nançay 1400 MHz data. In Fig. 4 we show the
maximum-likelihood signal realisations and 1-σ confidence inter-
vals given the maximum-likelihood power spectrum from the full
Bayesian analysis. In particular, PSRs J1643−1224, J2145−0750

and J1600−3053 show significant bumps or troughs around MJDs
∼ 54300-54500, an interval known to be contaminated by polariza-
tion calibration errors.

We note that of these eight pulsars, all but PSRs J1455−3330
and J0613−0200 have also been found previously to be susceptible
to polarization calibration errors at the > 100 ns level at 1400 MHz
in van Straten (2013) (henceforth S13). PSR J1455−3330 was not
a part of the sample analysed in S13, and PSR J0613−0200 was
found to be susceptible at a lower level. We find that the amplitude
of the system-noise signal determined by our analysis for these pul-
sars tracks the rms of the systematic timing error introduced by po-
larization calibration errors found in S13. PSR J0613−0200 (Log10

ASys = -14.8 ± 0.8), and PSR J1744−1134 (Log10 ASys = -13.36 ±
0.16) being less prone to calibration errors than PSR J1643−1224
(Log10 ASys = -12.60 ± 0.07), and PSR J1022+1001 (Log10 ASys =

-12.68 ± 0.07), for example.
Clearly if the calibration errors are localised to a particular

set of observational epochs, a time-stationary power-law model ap-
plied to the entire Nançay 1400 MHz data set is not going to be
the most optimal model to describe the system noise, as it will
down-weight the entire data set in order to model the excess noise
over this small time period. As a final test we therefore investi-
gate the stationarity of the system noise in PSR J1730−2304. In
principle we could apply the same approach that we use to model
DM events, applying the shapelet basis to model a non-stationary
system-noise process. However, we perform a simpler test, limiting
the time period over which this noise term is applied to only those
MJDs greater than the date that the polarization errors are known
to have occurred (∼ 54200). We find the difference in the evidence
between this model and a model where the system noise is applied
to the entire Nançay 1400 MHz data set is ∼ 3, in favour of the non-
stationary model. Future IPTA data releases will clearly have to de-
velop these system-noise models further, utilising as much prior in-
formation as possible about the observations. In our analysis, how-
ever, we can still say that while it is likely not the most suitable
model, the stationary description of the system noise included in
our analysis is still preferred to not including system noise, as sup-
ported by the evidence in each case.

7 BAND NOISE

Out of the 49 pulsars in the IPTA data set, four show signifi-
cant evidence for the presence of ‘band noise’ (see Section 2.5);
J0437−4715, J1600−3053, J1643−1224, and J1939+2134. The
origin of this band noise is as of yet unclear. In principle, band
noise could have its origins in the IISM, either as an incoherent
component of the DM variations that represents photons at differ-
ent frequencies experiencing different scattering volumes (Cordes,
Shannon & Stinebring 2015), or as terms that have steeper depen-
dencies on the observing frequency than ν2, and thus would present
themselves as an excess of noise at longer wavelengths. Alterna-
tively, the excess noise could be the result frequency-dependent cal-
ibration errors, which can show correlations over hundreds of days
(van Straten 2013), or RFI. This last source of band noise, however,
is likely to be uncorrelated between observations and thus would be
modelled by the white-noise parameters in our analysis. In the fol-
lowing sub-sections we look in greater detail at the four pulsars that
have evidence for band noise in order to try and ascertain which of
these possibilities could be the origin of the excess noise in these
pulsars.

As for the system noise, in Table 4 we list the mean parameter
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Figure 3. Each of the four sets of panels shows one- and two-dimensional marginalised posterior distributions for stochastic parameter estimates from different
models, either for the full PSR J1730−2304 IPTA data set, or for the EPTA data set alone. The top-left panel shows posteriors for the amplitude and spectral
exponent of a red spin-noise process fitted to the EPTA data set, when this is the only time-correlated component included in the model. We find a difference
in the log evidence for this model compared to a white-noise-only model of 8 which, if we were to consider only these two models, would lead us to conclude
that there was strong support for the existence of spin noise in this pulsar. The top-right panel shows the posteriors for the amplitude of the spin-noise process,
and the amplitude of an additional system-noise process simultaneously applied to the Nançay 1400 MHz data. The Nançay 1400 MHz data set contributes
over half the ToAs and, based on the formal ToA uncertainties, over 90% of the weight to the EPTA PSR J1730−2304 data set. Consequently these two model
components are highly covariant. If we assume a priori that we expect additional noise in the Nançay 1400 MHz data, we cannot distinguish between ‘true’
spin noise and system noise in this data set. The bottom-left panel shows the posteriors for a similar analysis to the top-right panel, however this time we
have also fitted for the system to which we apply the additional noise process. In this case there is a significant penalty associated with searching over the
system, however we still see a peak in the posterior associated with system noise in the Nançay 1400 MHz data, indicated in this plot as index 5 for the system
parameter, and marked with a vertical line. However, if we assume the same prior probability for system noise in all systems, we cannot claim that there is any
significant system noise in the EPTA data set. Finally, the bottom-right panel shows the same set of parameters for the same model as the bottom-left panel,
this time applied to the full IPTA data set which includes additional data from the PPTA. In this case, even though we have doubled the number of systems
that we have to search over, and thus increased the penalty for performing the search, the Nançay 1400 MHz data are sufficiently inconsistent with the PPTA
data that we can separate the system noise from the spin noise in this pulsar.
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Figure 4. Maximum-likelihood signal realisations for the system noise detected in eight pulsars for the Nançay 1400 MHz system. The bumps and troughs
around MJDs ∼ 54300-54500 correspond to known times where errors in polarization calibration have affected the ToAs.

estimates and 1-σ uncertainties, along with total integrated power,
for the band noise components of the stochastic model.

7.1 PSR J0437−4715

For PSR J0437−4715 the optimal noise model included (in addi-
tion to DM noise and the system noise discussed in Section 6)
band-noise processes in the 0-1000 MHz, 1000-2000 MHz, and >
2000 MHz bands, which we refer to in this section as the 50 cm,
20 cm and 10 cm bands. In Fig. 5 (top-left panel) we show the
one- and two-dimensional posterior probability distributions for the
power-law amplitudes and spectral exponents for the three band-
noise components from the optimal model. The mean values and
1-σ uncertainties for the band-noise models, along with the total
integrated power for each term are listed in Table 4. We find the
evidence supports different amplitudes for the band-noise in each
band, with log10 values of -13.32 ± 0.16, -13.83 ± 0.14, and -14.4

± 0.3 for the 50, 20 and 10 cm bands respectively. Both the 50 cm
and 20 cm bands have shallow red-spectrum noise models with
γBN ∼ 1, while the 10 cm band noise is much steeper with γBN ∼ 3.

When including an additional spin-noise component in the
model we found this to be completely covariant with the 10 cm
band noise term, and the difference in evidence for including ei-
ther the spin-noise model or the 10 cm band-noise term was ∼ 0.4,
indicating the data have no power to discriminate between these
two models. We find that the parameter estimates for both the spin
noise or the 10 cm band noise are consistent with one another, and
with the timing noise observed in the 10 cm data set analysed in
Shannon et al. (2015).

We find significant evidence that the band-noise signals are in-
coherent between the 50 cm and 20 cm bands (i.e., the time-domain
signals for both processes are inconsistent with one another). We
compare models where we fit for either, (i) a single additional noise
process present in both the 50 cm and 20 cm bands with the same
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Figure 5. (Top left) One- and two-dimensional marginalised posterior parameter estimates for the band noise power-law amplitudes and spectral exponents
from the optimal noise model for PSR J0437−4715. The amplitude-γ space occupied by the three bands are inconsistent with one another. Both the 50 cm and
20 cm band-noise terms have flat-spectrum noise models with γBN ∼ 1, while the 10 cm band noise is much steeper with γBN ∼ 3. (Top right) If we perform
our analysis of the optimal model, but scale the noise in each band as with the DM variations, we find that both the 50 cm (black solid lines) and 20 cm terms
(red dashed lines) are completely consistent in A − γ space, and the evidence supports describing both with a single amplitude and spectral exponent. (Bottom
left) DM-subtracted residuals for the whole multi-frequency data span, and (bottom right) for a ∼250-day period. For clarity, residuals have been time averaged
in two-day windows, separately for each system group. Colours indicate observing frequency; 50 cm data (red + points), 20 cm (green x points) and 10 cm
(blue ∗ points).

(i.e., coherent) signal and (ii) separate incoherent band-noise pro-
cesses in the 50 cm and 20 cm bands. We repeat this process both
with a ν0

o (equivalent to spin noise) and ν2
o (equivalent to DM vari-

ations) scaling of the amplitude of the signals with observing fre-
quency. We find a difference in the log evidence of ∆ logZ = 30.1
and ∆ logZ = 24.3 in favour of separate noise processes in the ν0

o
and ν2

o cases respectively. In Fig. 5 we show DM subtracted resid-
uals for the full multi-frequency data set (bottom-left) and for a
250-day sub-section. We subtract the DM by calculating the maxi-
mum likelihood signal realisation using the maximum a posteriori

amplitude and spectral exponent for the DM noise process obtained
from our Bayesian analysis. In both cases for clarity we have time
averaged the residuals in two-day windows, separately for each sys-
tem. The 50 cm data show high frequency structure that is, even by
eye, inconsistent with the 20 cm data, which reflects the magnitude
of the increase in the log evidence when allowing the signals to
be incoherent between the different bands, despite the increase in
dimensionality.

Despite the lack of coherent signals between the 50 cm and
20 cm bands, we find that the spectral properties of the noise in
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Figure 6. One-dimensional marginalised posterior distributions for the am-
plitude of a steep spin-noise process with γSN = 13/3. We use this model as
a proxy for perturbations that are consistent with those expected from a GW
background generated by a population of supermassive black-hole binaries.
A prior that is uniform in the amplitude of the spin-noise is used in order to
obtain upper limits. Different models are assumed for the stochastic signals
and different subsets of the PSR J0437−4715 data set are analysed. Black
solid lines correspond to an analysis of the full data set, including only spin
noise and DM noise in the model, red lines correspond to a spin-noise-only
model applied to the 10 cm data only, and finally the blue dashed lines cor-
respond to the optimal model, including system-noise and band-noise terms
applied to the full data set. Vertical lines correspond to 95% upper limits for
each case, which we find to be 1.3 × 10−14, 1.1 × 10−14, and 8.2 × 10−15,
respectively.

these bands are related. Fig. 5 (top-right panel) shows the one- and
two-dimensional posterior distributions for the 50 cm and 20 cm
power-law amplitude and spectral exponents from our model where
we have separate, incoherent noise terms in each band, but scale
the amplitudes in each band with ν2

o, as for our model for DM vari-
ations. We find the parameter estimates are completely consistent
in A − γ space, and the evidence supports describing both with a
single amplitude and spectral exponent. Given the expected delay
at 20 cm due to scattering in PSR J0437−4715 is less than 1 ns
(Coles et al. 2010), and that the DM is relatively low in this pul-
sar (∼ 2.64 cm−3 pc) it is possible that given the amount of data
currently available, this is a coincidence and that the origin of the
excess band noise could simply be RFI at the telescope site, or the
result of polarisation calibration errors. However, given the high
precision of the observations, it is also possible that this could be
indicative of small differences in the sampling of the IISM by the
different wavelengths emitted by the pulsar. Without overlapping
observations from multiple telescopes at the same frequency, how-
ever, it will be difficult to disentangle these different interpretations.

Finally, in Fig. 6 we show the upper limits obtained at a spec-
tral exponent of γS N = 13/3 (consistent with the expected spectral
exponent for a GWB resulting from inspiraling SMBHBs, c.f. ref-
erences in the Introduction) for an additional spin-noise process
using a uniform prior on the amplitude for three different cases.
As we are only calculating upper limits on the GWB term we do
not perform evidence comparison for models with and without this
additional parameter. We show the 95% upper limits obtained on
the full J0437−4715 data set using a simple model that contains

Table 5. Relative log evidence values, and upper limits on a stochastic GWB
for a simulated PSR J0437−0715 data set.

Model log evidence 95% upper limit
10−16

No noise model −4081.2 6162
DM Noise 0.0 5.3

DM Noise, Spin Noise −0.9 5.3
DM Noise, Spin Noise, Band Noise −3.0 5.3

only coherent power-law DM noise and spin-noise terms (black
line, A95 = 1.3×10−14 ), and using the optimal model (blue line,
A95 = 8.2×10−15), and finally the upper limit obtained using only
the 10 cm data, where we include only a spin-noise term in our
noise model in addition to the GWB power-law term with fixed
spectral exponent (red line, A95 = 1.1×10−14). We find that com-
pared to the simple noise model the 10 cm only data set results in
an upper limit that is ∼ 30% lower. However, when the system-
and band-dependent noise terms are modelled more appropriately,
the upper limit for the optimal noise model is ∼ 20% lower than
the 10 cm only limit, and 60% lower than that for the simple noise
model.

We stress that the improvement in the sensitivity of the data
set to gravitational waves as the complexity of the noise model in-
creases is not simply a generic result of including additional param-
eters in the model. If further components are added to the model
that are not warranted by the data the upper limit on the amplitude
of a GWB will either remain constant, or potentially increase. We
show this explicitly by constructing a simulation using the observed
time stamps and frequencies from the IPTA PSR J0437−4715 data
set, with white noise consistent with the formal ToA uncertainties
and DM variations with statistical properties consistent with those
from the real data. We then analyse this simulation using four dif-
ferent models which we list in Table 5. For the band noise model
we include three terms for the <1000 MHz, 1000−2000 MHz, and
> 2000 MHz bands. In each case we perform the analysis twice,
once without an additional GWB term, and once with the addi-
tional term. We include in Table 5 the relative log evidences for
the models without the GWB term, and the 95% upper limit on the
amplitude of the GWB obtained from that analysis.

We find that the evidence supports the DM-noise only model,
and that as expected the upper limit decreases substantially when
going from a model with no noise components to the DM-noise
model. However, as additional components are added to the model
describing spin noise or band noise, the upper limit decreases no
further. We note that the upper limit is significantly better in the
simulation compared to the real data set as we have used the for-
mal ToA uncertainties, rather than the uncertainties modified by the
EFAC and EQUAD parameters in constructing our simulation.

7.2 PSR J1600−3053

For PSR J1600−3053 we find that the data support a band-noise
model that includes excess noise in the 690-730 MHz PPTA data
(which here we treat as a separate band from the 780-884 MHz
NANOGrav data), in addition to DM noise, and system noise. We
note here that, the analysis we perform is a weighted fit. Thus, while
the excess noise is detected in a band with low timing precision
(larger uncertainties), these uncertainties are factored into our anal-
ysis when calculating our parameter estimates, and evidence val-
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Figure 7. (Top left) Timing residuals for PSR J1600−3053 after subtracting the maximum-likelihood timing model from our optimal model. Colours represent:
The 690-730 MHz PPTA (black points), 780-884MHz NANOGrav (red points) and 1000 − 2000 MHz data from all PTAs (blue points). For clarity, the three
data sets have been time-averaged over windows of 10 days. (Top right) As for top-left panel, however the residuals have been scaled by Kν2

o, with K as defined
in Eq. 12. The lower-frequency PPTA data shows more structure than the 1000-2000 MHz data, even after scaling by Kν2

o. This additional noise is present
in both the Parkes CPSR2 and PDFB3 690-730 MHz data and is statistically consistent between systems. (Middle) As for top, however after subtracting the
maximum likelihood DM variations signal. The 1000-2000 MHz data shows no significant residual timing noise, however there is still significant structure in
the lower-frequency PPTA data. (Bottom) One-dimensional posterior distributions for the amplitude of the power-law band-noise processes obtained for the
PPTA 690-730 MHz data (black line) using a prior uniform in the log of the amplitude parameter, and for the NANOGrav 780-884 MHz data (red line), and
1000-2000 MHz data from all PTAs (blue line) using a prior uniform in the amplitude which we use to obtain 95% upper limits (vertical lines). We obtain
the upper limits by fitting for a single spectral exponent across all three band-noise terms, but allowing the amplitude in each band to vary, and perform the
analysis both in units that scale as ν0

o (bottom-left panel) and ν2
o (bottom-right panel).
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ues. That the band noise is significant means that it is inconsistent
with the higher-frequency data, even given the larger uncertainties.
Similarly, the evidence would not support a band-noise process in
the 690-730 MHz PPTA data if the DM-noise model constrained by
data at other frequencies was able to describe this lower-frequency
data fully. In Fig. 7 (top-left panel) we show the timing residuals for
PSR J1600−3053 after subtracting the maximum-likelihood timing
model from our optimal model, and additionally after subtracting
the maximum-likelihood DM noise model (centre-left panel). In the
top-right and centre-right panels we show the same thing, with the
residuals scaled by Kν2

o, with K as defined in Eq. 12. This rescaling
allows us to visualise a DM-like process in the data, which should
be both coherent, and of similar amplitude in all bands. For clarity,
the three data sets have been time-averaged over ten-day intervals.

The excess noise in the lower-frequency PPTA data shows
more structure than the 1000-2000 MHz data from all PTAs, even
after scaling by Kν2

o. We test to see if this excess occurs in both
observing systems present in the PPTA 690-730 MHz data. Fig. 8
shows the one- and two-dimensional posterior distributions for the
power-law amplitude and spectral exponent for system-noise terms
fitted simultaneously to the two Parkes systems that have observed
at this band (the CPSR2 and PDFB3 systems) instead of a single
excess noise term in the whole PPTA band. We perform this anal-
ysis using the full PSR J1600−3053 IPTA data set, including DM
noise, and Nançay 1400 MHz system noise as in the optimal model.
Contours in the two-dimensional plot are at the 1-σ and 2-σ levels.
Both Parkes systems have significant detections of the excess noise,
and we find that the evidence supports a single power-law model,
indicating the two noise terms are statistically consistent.

In Fig. 7 (bottom), we show one-dimensional posterior distri-
butions for the amplitude of the power-law band-noise processes
obtained for the PPTA 690-730 MHz data using a prior that is uni-
form in the log of the amplitude parameter, and for the NANOGrav
780-884 MHz data, and 1000-2000 MHz data from all PTAs us-
ing a prior that is uniform in the amplitude which we use to obtain
95% upper limits. All band-noise parameters are evaluated simul-
taneously with the other noise parameters from the optimal model.
We obtain the upper limit fitting for a single spectral exponent
across all three band noise terms, but allowing the amplitude in
each band to vary, and perform the analysis both in units that scale
as ν0

o (bottom-left panel) and ν2
o (bottom-right panel). We find that

the 1000-2000 MHz data rules out the possibility of a ν0
o process

that has the same characteristics as the lower frequency noise with
a probability of > 99%, however it is unable to rule out a ν2

o scaling
to high significance. The upper limits from the NANOGrav 780-
884 MHz data are also consistent with the excess noise for both
scalings.

If the observed signal were due to scattering by the IISM we
would expect a broadening of the pulse profile that varies in time,
leading to a change in the observed arrival times relative to the stan-
dard template used to form the ToA. For each observational epoch
we have a measurement of the pulse intensity as a function of ob-
serving frequency and time, referred to as a dynamic spectrum. This
intensity will fluctuate due to scintillation in the IISM, and the char-
acteristic scale of those fluctuations (referred to as the scintillation
bandwidth, ∆νd) can be used to directly estimate the magnitude of
the scattering timescale, τd, observed in our ToAs, as ∆νd and τd

are the Fourier conjugate of one another. As ∆νd scales as ν4
o, how-

ever, at low frequencies it will rapidly become unresolved in the
dynamic spectra, despite having a large impact on the arrival times.
We therefore use the 3100 MHz PPTA data to estimate ∆νd, and
from that estimate τd in the 690-730 MHz band. We find ∆νd to be
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Figure 8. One- and two-dimensional posterior parameter estimates for the
power-law amplitude and spectral exponent for system-noise terms for PSR
J1600−3053, fitted simultaneously to the 690-730 MHz Parkes CSPR2
(black solid lines) and Parkes PDFB3 (red dashed lines) data, instead of a
single excess-noise term in the 690-730 MHz band as in the optimal model.
Contours in the two-dimensional plot are at the 1-σ and 2-σ levels. Both
systems have significant detections of the excess noise, which are consis-
tent within statistics.

∼ 10 MHz for the 3100 MHz data, corresponding to a τd of 30 ns
at 3100 MHz, which gives a τd of 10 µs in the 690-730 MHz band.
In Fig. 7 we see the peak to peak fluctuations of the 690-730 MHz
band noise are ∼ 5-10 µs, consistent with our estimate of the am-
plitude of the scattering from the high-frequency data.

7.3 PSR J1643−1224

For PSR J1643−1224 we find that the optimal noise model in-
cludes band-dependent terms in both the PPTA 690-730 MHz,
and NANOGrav 780-884 MHz bands in addition to the DM-noise
and system-noise terms discussed previously. In contrast to PSR
J0437−4715, we find that the evidence supports a coherent signal
present in both these bands, however with a different amplitude in
each, which is highly suggestive of this excess noise being the re-
sult of astrophysical processes, as opposed to RFI or telescope de-
pendent effects.

In Fig. 9 (top-left panel) we show the timing residuals for
PSR J1643−1224 after subtracting the maximum likelihood timing
model from our optimal model. For clarity, both the NANOGrav
780-884 MHz data and the 1000-2000 MHz data from all PTAs
have been time-averaged over ten-day intervals. In the top-right
panel we show the same data after scaling the residuals by a factor
Kν2

o, with K as defined in Eq. 12. The lower frequency PPTA and
NANOGrav data show significantly more structure than the 1000-
2000 MHz data, even after scaling by Kν2

o. However, both the PPTA
and NANOGrav data show coherent structure, indicating this is not
simply an instrumental effect.

In the centre panels of Fig. 9 we show the DM-subtracted
residuals, unscaled (centre left) and scaled by a factor Kν2

o (centre
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right). Both the PPTA and NANOGrav data clearly track each other
across the time period for which both PTAs are present. We stress
that at no stage have we enforced any prior on the coherency of
these two signals in the data. The difference in the amplitude of the
signals is also apparent by eye, with the lower frequency PPTA data
showing larger fluctuations compared to the NANOGrav points.

We compare models that either assume the same amplitude in
both bands, or allow the amplitude to take a different value in each
band. We also compare models that assume the same spectral ex-
ponent in each band, or that allow this parameter to vary between
bands. As for PSR J0437−4715 for models where the amplitude
is described by a single value in both bands, we consider cases
where this amplitude scales as ν0

o as for a spin-noise process, and
as ν2

o for DM variations. We find that the difference in log evidence
for a model with separate power-law amplitudes and exponents in
both the PPTA and NANOGrav low-frequency bands, compared to
a model that fits a single coherent noise process with one amplitude
and spectral exponent with a ν0

o scaling, is 4.6, indicating that the
data support the use of the more complex model in this case. How-
ever, when assuming a ν2

o scaling, the log evidence is 1.6 greater
for the simpler two-parameter coherent-noise model.

That the evidence supports an additional coherent DM term
could suggest that a power-law model for the DM variations is in-
sufficient, and we are seeing residuals from that fit in our analysis.
If this is the case we would expect to see the same effect in the
1000-2000 MHz band, provided the data are sensitive enough for
the signal to be observed in that band.

We quantify this possibility in the bottom panels of Fig. 9.
Here we show the one-dimensional posterior distributions for the
amplitude of the power-law band-noise processes obtained for the
PPTA 690-730 MHz data, and NANOGrav 780-884 MHz data,
both using priors uniform in the log of the amplitude parameter,
and additionally, for the 1000-2000 MHz data from all PTAs using
a prior that is uniform in the amplitude, which we use to obtain
a 95% upper limit. We obtain the upper limit fitting for a single
spectral exponent across all these band noise terms, but allowing
the amplitude in each band to vary, and perform the analysis both
in units that scale as ν0

o (bottom-left panel) and ν2
o (bottom-right

panel). We find that the 1000-2000 MHz data rules out the possi-
bility of a ν0

o process that has the same characteristics as the excess
lower frequency noise with a probability of > 99%, while a ν2

o pro-
cess is ruled out at > 95%. It is therefore unlikely that there are
simply mis-modelled ν2

o DM variations. Instead, it is suggestive of a
noise process that originates in the IISM, but with a steeper depen-
dence on observing frequency, such as scattering which is expected
to have ν4

o (Cordes & Shannon 2010).
As for PSR J1600−3053 we use the 3100 MHz PPTA data to

estimate the scintillation bandwidth, and find ∆νd and τd to be ∼
2MHz, and 80ns at 3100 MHz, corresponding to τd of 25 µs in the
690-730 MHz band. In Fig 9 (middle left panel) we see the peak to
peak fluctuations of the DM-subtracted 690-730 MHz band noise
are ∼ 25 µs, consistent with our estimate of the amplitude of the
scattering from the high-frequency data.

7.4 PSR J1939+2134

The final pulsar in the IPTA data set for which the data support band
noise is PSR J1939+2134. In this case we find that the optimal
model supports time-correlated noise in both the 500-1000 MHz,
and 2000-2500 MHz bands, in addition to spin noise, DM noise
and system noise terms. We find that neither the 500-1000 MHz
nor the 3100 MHz PPTA data provide significant constraints on

the frequency dependence of the additional band noise, with 95%
upper limits greater than the amplitude expected for a process that
scales as ν0

o from the 500-1000 MHz band noise.
In order to check whether this additional noise is consistent

over all data in these bands, or is simply present in a single ob-
serving system, we fit two independent power-law noise processes
simultaneously to separate Parkes systems that observe in the 680-
740 MHz band. In particular we take i) the CPSR2 data which ex-
tends from the year 2005 until 2010, and ii) data from both the
APSR and PDFB3 systems which were in use from the year 2010
onwards. As in the previous examples we perform this analysis
jointly with the rest of the IPTA PSR J1939+2134 data set, includ-
ing the spin noise, DM noise, system noise, and 2000-2500 MHz
band noise from the optimal model. The one- and two-dimensional
marginalised posterior distributions for the amplitude and spec-
tral exponent for these two noise processes are shown in Fig. 10
(top-left) for the CPSR2 and APSR/PDFB3 groups. We find that
there is significant excess noise detected in both systems, and that
the parameter estimates are consistent with one another, with the
evidence supporting a single-band process compared to separate
system-noise processes. We also check the 820-860 MHz WSRT
data for the excess noise, however we find no evidence for such a
process, but obtain an upper limit that is consistent with the levels
observed in the Parkes data.

We perform a similar test for the 2000-2500 MHz band, di-
viding the band into two and fitting separate power-law processes
to the 2.0-2.3 GHz EPTA data, and the 2.4 GHz data from Kaspi,
Taylor & Ryba (1994). We find that, while there is still significant
evidence for excess noise in the 2.0-2.3 GHz EPTA data, there is
only minimal evidence (logZ ∼ 1) for an additional noise process
in the 2.4 GHz data. The peak in the posterior however is consistent
with the amplitude observed in the EPTA 2.0-2.3 GHz data.

In Fig. 10 (top-right) we show the Kν2
o scaled residuals for a

subset of the PSR J1939+2134 data set which has overlapping data
from both the 680-740 MHz PPTA and 2.0-2.2 GHz EPTA data,
after subtracting both the maximum-likelihood DM variations and
spin-noise signal realisations. While both show a similar degree of
structure, they are clearly not coherent across the MJD range where
they overlap, and we find the evidence does not support a coherent
noise process with either ν0

o or ν2
o scaling.

Finally, we test models that enforce a single spectral exponent
or amplitude for the different band-noise terms assuming either a
ν0

o or ν2
o scaling of the amplitude between the different bands. We

find that in both cases a single spectral exponent is supported by
the data. In Fig. 10 (bottom panels) we show the one-dimensional
posterior parameter estimates for the amplitude of the power-law
noise processes obtained for the 680-740 MHz band (red lines), and
200-230 MHz band (black lines) when fitting for a single spectral
exponent across both band noise terms, but allowing the amplitude
in each band to vary. We find that the evidence does not support a
single amplitude in the ν0

o scaling case (bottom-left panel) with >
99% probability, however we find a single amplitude is sufficient
to describe the data when assuming a ν2

o scaling between the bands
(bottom-right panel).

In summary, we find that the evidence supports incoherent
noise processes in the two bands (i.e., the time-domain signals are
not consistent with one another), in addition to the other noise pro-
cesses mentioned previously. The spectral exponents for these two
band terms are however consistent, and further more we find the
power-spectrum amplitudes scale with ν2

o. As for J0437−4715, this
could therefore be indicative of different sampling of the IISM by
the different wavelengths emitted by the pulsar. This is consistent
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Figure 9. (Top left) Timing residuals for PSR J1643−1224 after subtracting the maximum-likelihood timing model from our optimal model. Colours represent:
690-730 MHz PPTA (black points), 780-884 MHz NANOGrav (red points) and 1000 − 2000 MHz data from all PTAs (blue points). For clarity, both the
780-884 MHz NANOGrav and the 1000 − 2000 MHz data have been time-averaged over 10 day intervals. (Top right) As for top-left panel, however the
residuals have been scaling by Kν2

o, with K as defined in Eq. 12. The lower frequency PPTA and NANOGrav data shows significantly more structure than
the 1000 − 2000 MHz data, even after scaling by Kν2

o. (Middle) As for the top panels, however after subtracting the maximum-likelihood DM-variations
signal. The 1000-2000 MHz data shows no significant residual timing noise, however there is still significant structure in the lower frequency data. (Bottom)
One-dimensional posterior distributions for the amplitude of the power-law band-noise processes obtained for the PPTA 690-730 MHz data (black line), and
NANOGrav 780-884 MHz data(red line), both using priors uniform in the log of the amplitude parameter, and for the 1000-2000 MHz data from all PTAs
using a prior uniform in the amplitude (blue line). We use the latter to obtain 95% upper limits (blue vertical lines) both in units that scale as ν0

o (bottom-left
panel) and ν2

o (bottom-right panel).
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Figure 10. (Top Left) One- and two-dimensional marginalised posterior distributions for the amplitude and spectral exponent of the system-noise terms present
in the Parkes 680-740 MHz CPSR2 system (red dashed lines) and PDFB3/APSR combined system group (black solid lines), obtained simultaneously with
the additional model parameters included in the optimal model for PSR J1939+2134. We find the parameter estimates for both terms are consistent, and
that the evidence supports a single noise process across all Parkes 680-740 MHz data. (Top right ) A subset of the timing residuals, scaled by Kν2

o, with K
as defined in Eq. 12 for PSR J1939+2134 after subtracting the maximum likelihood timing model, as well as the maximum-likelihood DM variations and
spin-noise signal realisations from our optimal model. Colours represent: 680-740 MHz PPTA (red points) and 2000 − 2200 MHz data from the EPTA (black
points). While both frequency bands show a similar amount of structure, the two signals are not coherent across the time period where they overlap. (Bottom
panels) One-dimensional posterior parameter estimates for the amplitude of the power-law noise processes obtained for the 680-740 MHz band (red lines),
and 2.0-2.5 GHz bands (black lines). Posteriors are shown when fitting for a single spectral exponent across all band-noise terms, but allowing the amplitude
in each band to vary. We perform the analysis in units that scale as ν0

o (bottom-left panel) and as ν2
o (bottom-right panel).

with the observations made at both 1400 MHz and 2400 MHz pre-
sented in Cordes et al. (1990) and later in Ramachandran et al.
(2006). As before, however, this could also result from telescope-
dependent effects. Without observations that overlap in time from
different telescopes at the same frequency, it is not possible to dif-
ferentiate between these possibilities.

8 DM VARIATIONS

We find that 17 pulsars from the IPTA data set support power-law
DM noise that can be clearly distinguished from spin noise and
other system- or band-dependent effects. We list the mean log am-
plitudes, spectral exponents and the total integrated power for these
models in Table 6, along with their 1-σ confidence intervals. In
Fig. 11 we show a histogram of the sum of the 17 one-dimensional
marginalised posteriors for the spectral exponent of the power-law
DM noise model. We find that, while there is non-zero probability

c© 0000 RAS, MNRAS 000, 000–000



22 L. Lentati et al.

Table 6. Properties of the power-law spin noise and DM noise. We denote the integrated power in the each model as σSN, and σDM for the spin-noise, and
DM-noise processes respectively.

Pulsar Name Spin Noise DM Noise
Log10 ASN γSN Log10 σSN Log10 ADM γDM Log10 σDM

J0218+4232 - - - -11.15 ± 0.05 2.1 ± 0.3 -2.89 ± 0.15
J0437−4715 - - - -11.90 ± 0.07 2.9 ± 0.3 -3.26 ± 0.13
J0613−0200 -14.4 ± 0.5 5.0 ± 1.0 -5.88 ± 0.17 -11.72 ± 0.04 1.8 ± 0.2 -3.62 ± 0.11
J0621+1002 -11.91 ± 0.08 1.9 ± 0.3 -4.81 ± 0.14 - - -
J0711−6830 - - - -12.3 ± 0.5 3.7 ± 1.2 -3.1 ± 0.3
J1012+5307 -13.18 ± 0.09 1.5 ± 0.3 -6.23 ± 0.09 - - -
J1022+1001 - - - -11.53 ± 0.05 0.9 ± 0.3 -3.67 ± 0.08
J1024−0719 -13.9 ± 0.2 5.4 ± 0.6 -4.82 ± 0.16 - - -
J1045−4509 - - - -10.72 ± 0.05 3.1 ± 0.2 -1.90 ± 0.13
J1600−3053 - - - -11.57 ± 0.05 1.8 ± 0.2 -3.52 ± 0.11
J1603−7202 - - - -12.4 ± 0.5 4.4 ± 1.1 -2.9 ± 0.2
J1643−1224 - - - -11.40 ± 0.16 3.3 ± 0.5 -2.42 ± 0.19
J1713+0747 -14.0 ± 0.2 3.1 ± 0.6 -6.14 ± 0.17 -12.01 ± 0.04 1.7 ± 0.2 -3.90 ± 0.12
J1732−5049 - - - -11.7 ± 0.5 3.9 ± 1.3 -2.9 ± 0.2

J1824−2452A -12.73 ± 0.19 3.0 ± 1.0 -5.6 ± 0.2 -10.80 ± 0.07 2.7 ± 0.4 -2.59 ± 0.16
J1857+0943 - - - -11.78 ± 0.06 2.62 ± 0.16 -3.07 ± 0.08
J1909−3744 - - - -12.14 ± 0.03 1.69 ± 0.17 -4.13 ± 0.07
J1939+2134 -14.2 ± 0.2 6.0 ± 0.5 -4.09 ± 0.16 -11.35 ± 0.03 2.73 ± 0.12 -2.56 ± 0.09
J2145−0750 -12.98 ± 0.05 0.6 ± 0.2 -6.18 ± 0.05 -12.1 ± 0.4 4.4 ± 0.9 -2.52 ± 0.16
J2317+1439 - - - -11.76 ± 0.09 3.0 ± 0.5 -3.1 ± 0.2
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Figure 11. Sum of the one-dimensional marginalised posterior distributions
for the spectral exponents of the power-law DM-noise for the 17 pulsars for
which the data support this term in their optimal model. The vertical line
shows the spectral exponent expected for Kolmogorov turbulence.

for all spectral exponent bins, the peak is consistent with a value of
γDM = 8/3, as expected from Kolmogorov turbulence.

We find that only for PSR J1603−7202 and PSR J1713+0747
do the data support the inclusion of non-stationary DM events in
their stochastic model. In Fig. 12 we show the maximum-likelihood
DM signal realisations for these two pulsars when including the
shapelet model for the DM event. In PSR J1603−7202 the event
corresponds to an increase in the electron density along the line
of sight. We find that only the lowest-order shapelet model is sup-
ported by the data, corresponding to a simple Gaussian model for
the DM event, with centroid at MJD 53890 ± 60, full width at half

maximum (FWHM) of 190 ± 50 days, and amplitude 3 ± 0.5 ×
10−3 cm−3 pc, consistent with values previously reported in Keith
et al. (2013). In PSR J1713+0747 we find a more complex model
for the DM event is supported by the data, with five shapelet com-
ponents. We show the maximum likelihood model and 1-σ confi-
dence intervals for the PSR J1713+0747 DM event in Fig. 13. In the
EPTA data alone only a single Gaussian component was found to
be supported by the data for the DM event (Desvignes et al. submit-
ted). In the IPTA data set the additional NANOGrav and PPTA data
improve both the constraints placed on the stationary component of
the DM variations, and also improve the sampling of the DM event
itself, warranting additional components in the model. We find the
event extends across a period of ∼ 100 days with a maximum de-
crease in the DM over this period of ∼ 1.3 × 10−3 cm−3 pc at ∼
MJD 54757(see e.g. Coles et al. (2015), Desvignes et al. submit-
ted).

In the bottom two panels of Fig. 12 we compare the one- and
two-dimensional posteriors for the amplitude and spectral exponent
of the power-law DM noise model for both PSRs J1603−7202 (bot-
tom left) and J1713+0747 (bottom right) when including, or not,
the non stationary DM-event model. In both cases we find that not
including the model for the non-stationarity in the DM leads to a
significantly higher estimate of the amplitude, with a flatter spec-
trum.

We find that no pulsars support the addition of a yearly varia-
tion in DM in the IPTA data sets we have analysed. This seemingly
contradicts results presented in Keith et al. (2013) which observed
significant yearly variations in PSR J0613−0200 in particular. In
Fig. 14 (top) we show the one- and two-dimensional posteriors for
the log amplitude and phase of the yearly DM model included in
our analysis simultaneously with the optimal model from Table
2 which includes power-law spin noise and DM noise, and addi-
tional system noise for the Nançay 1400 MHz data. We find the
increase in the evidence when including the yearly DM variations
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Figure 12. Maximum-likelihood signal realisations for the power-law DM noise model with the inclusion of a non-stationary DM event for PSRs J1603−7202
(top left) and J1713+0747 (top right). Colours represent the ToA observation frequency: > 3 GHz (blue), 2-3 GHz (magenta), 1-2 GHz (green) and < 1 GHz
(red). The properties of the time-stationary power-law component of the DM variations change significantly when including the DM-event model for both
pulsars. The bottom two plots show the one- and two-dimensional marginalised posteriors for the amplitude and spectral exponent of the power-law DM
variations when including the non-stationary DM event (black solid lines) or not (dashed red lines) for PSRs J1603−7202 (bottom left) and J1713+0747
(bottom right). In both cases when including the DM event the power-law component of the DM variations is consistent with smaller amplitudes and steeper
spectral exponents.

is ∼ 1, which is not significant enough to warrant its inclusion in
the model.

To better explain this result, we perform an additional analysis
on the PSR J0613-0200 data set where, rather than parameterising
the DM noise as a power law, we allow the power at each Fourier
frequency included in the model to vary as a free parameter. In Fig.
14 (bottom) we show the 95% upper limits (arrows), and significant
detections (points with 1-σ uncertainties) for the power spectrum of
the DM noise obtained from this analysis. We consider significant
detections in this case to be those frequencies for which less than
5% of the posterior distribution is consistent with power of less than
10−18(cm−3 pc)2, which we take to be effectively zero. The straight
line indicates the maximum likelihood DM noise power-law from
the optimal analysis. While there is a clear detection of power at
a frequency of 1 yr−1, a simple power-law model is still sufficient

to describe the data. This can be understood in terms of the differ-
ences in the DM models fitted in this work, compared to Keith et al.
(2013). Here our stationary power-law model for the DM noise al-
ready includes power at a period of 1 yr, thus our model for yearly
DM variations represents an excess with respect to the level al-
ready included in the power-law model. In comparison, in Keith
et al. (2013) a piecewise time-series model is used for the DM vari-
ations which does not explicitly include power at any periodicity.
We therefore are not claiming here that there is no power at a period
of 1 year in the DM variations, simply that the power at that period
is consistent with a simple power-law model for all pulsars in the
IPTA data set.
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Figure 13. Maximum-likelihood model and 1-σ confidence intervals for
the PSR J1713+0747 DM event. We find that the event model supports
a shapelet model with five components and extends across an interval of
∼ 100 days with a maximum decrease in DM of ∼ 1.3 × 10−3 cm−3 pc.

9 SPIN NOISE

We find that for eight pulsars in the IPTA data set the data
support spin-noise processes that can be clearly distinguished
from DM noise processes in the stochastic model. We list the
mean log amplitudes, spectral exponents, and the total integrated
power for these models in Table 6, along with their 1-σ con-
fidence intervals. In Fig. 15 we show the maximum likelihood
signal realisations for the spin noise in each of the eight pul-
sars: PSRs J0613−0200, J0621+1002, J1012+5307, J1024−0719,
J1713+0747, J1824−2452A, J1939+2134, and J2145−0750. These
cover a broad range of spectral exponents, from 0.6 ± 0.2 for PSR
J2145−0750 up to 6.0 ± 0.5 for PSR J1939+2134.

Given the large amplitude and steep spectral exponent ob-
served in the timing noise for PSR J1939+2134 we also perform an
evidence comparison for spin-noise models that include frequen-
cies below 1/T , with T the length of the data set. We do this using
the ‘log low frequency’ model advocated in van Haasteren & Val-
lisneri (2015). However we find that the posterior parameter esti-
mates are consistent with those derived above and that the evidence
does not support the addition of the parameter describing the low-
frequency cut off. This indicates that the spin-down quadratic in-
cluded in the timing model is sufficient to model the low-frequency
variations in the spin noise.

In the recent NANOGrav 9-yr data release (Arzoumanian et al.
2015b) (henceforth A15) six pulsars were found to have timing
noise with significance such that the evidence factor for models
with timing noise was greater than three compared to a model
without timing noise3. These were PSRs J0030+0451, J0613-0200,
J1012+5307, J1643−1224, J1910+1256, J1939+2134. We find that
for all six pulsars, the IPTA data sets support time-correlated
stochastic signals. For PSRs J0030+0451 and J1910+1256 the

3 A15 actually list ten pulsars as having possible spin-noise, but four of
these are under our evidence threshold of three and hence are excluded here.
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Figure 14. (Top) One- and two-dimensional marginalised posterior distri-
butions for the log amplitude and phase of the yearly DM model solved
for simultaneously with the optimal model which includes power-law spin
noise and DM noise, and additional system noise for the Nançay 1400 MHz
data. (Bottom) 95% upper limits (arrows), and significant detections (points
with 1-σ error bars) for the power spectrum of the DM noise in PSR J0613-
0200. The straight line indicates the maximum-likelihood DM power law
from the optimal model. While there is a clear detection of power at a fre-
quency of 1 yr−1, a simple power-law model is still sufficient to describe
the data. This is reflected in the evidence, which increased by only ∼ 1
compared to the optimal model when including the yearly variations.

IPTA data set lacks the multi-frequency coverage to distinguish be-
tween DM noise and spin noise, however for PSRs J0613-0200 and
J1012+5307, we observed significant spin noise, with spectral ex-
ponents of γSN = 5.0 ± 1.0 , and 1.5 ± 0.3 respectively, roughly
consistent with the values quoted in the NANOGrav data release
of γ = 2.9 and 1.7. For PSR J1643−1224 as discussed in Section
7 we found that there was significant band noise, inconsistent with
either spin noise or DM variations, which if improperly modelled
will manifest itself as spin noise. This is the likely origin of the
timing noise observed in the NANOGrav analysis.

We find that our analysis of the IPTA PSR J1939+2134 data
set is incompatible with that presented in A15 where a timing-noise
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Figure 15. Maximum-likelihood signal realisations with 1-σ uncertainties for the power-law spin-noise models for PSRs J0613−0200, J0621+1002,
J1012+5307, J1024−0719, J1713+0747, J1824−2452A, J1939+2134, and J2145−0750. Colours represent the ToA observation frequency: > 3 GHz (blue),
2-3 GHz (magenta), 1-2 GHz (green) and < 1 GHz (red).
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process with a spectral exponent of 2.4 was observed. In A15 the
discrepancy with previously published analysis (e.g., Kaspi, Taylor
& Ryba (1994); Shannon & Cordes (2010); Lentati et al. (2014) )
was attributed to either un-modelled IISM effects, or non-stationary
timing noise. To test the long-term stationarity of the timing noise
in this pulsar we construct a 9-yr data set from 10 cm and 20 cm
PPTA observations that covers the same MJD range as the data set
presented in A15. In Fig. 16 we compare one- and two-dimensional
marginalised posteriors for the amplitude and spectral exponent of
a spin-noise process from the optimal model for the IPTA data set
(black lines), the 8-yr Kaspi et. al. (1994) subset of the IPTA data
set (pink lines), our analysis of the data set presented in A15 (blue
lines), and the 9-yr PPTA data set (light green lines).

We find that the analyses of the IPTA data set, the 8-yr Kaspi
data set, and the 9-yr PPTA data set are all consistent with each
other, indicating steep-spectrum spin noise (γSN = 6.0 ± 0.5) in
the pulsar. Our analysis of the data set presented in A15, where we
include power-law spin noise, DM variations, and EFAC, EQUAD
and ECORR parameters for each system is consistent with the anal-
ysis presented in A15, with a shallow spin-noise spectrum with
γSN = 2.0 ± 0.2. However this is inconsistent with the other PSR
J1939+2134 data sets analysed. We note that the IPTA data set for
PSR J1939+2134 contains no contribution from NANOGrav, and
so can be considered a completely independent data set from that
presented in A15. While these results suggest that the long-term
behaviour of the spin noise in this pulsar is stationary over the ob-
served time-span, it does not rule out either band noise due to un-
modelled IISM effects, or system noise in the A15 data set, either
of which could result in a flatter spectrum.

While A15 do not observe timing noise in their PSR
J1713+0747 data set, we find our analysis is consistent with that
presented in Zhu et al. (2015), in which a timing noise process
with a spectral exponent of γ = 3.6 ± 1.4 was observed, compared
to our value 3.1 ± 0.6. A15 also did not observe timing noise for
PSR J1024−0719. For these two pulsars our results show that the
spin noise processes present have steep spectra. The IPTA data sets
are considerably longer (21- and 16-yr for PSRs J1713+0747 and
J1024−0719, respectively) than the 9-yr data sets analysed in A15,
implying that the shorter A15 data set is simply not yet sensitive to
these processes.

Finally, in Caballero et al. (2015) an analysis of timing noise
in an extended EPTA data set compared to that included in the first
IPTA data release is presented. We find that for those pulsars that
have no detectable system noise in the EPTA data we obtain con-
sistent parameter estimates for the properties of the spin noise. In
addition, several pulsars that we identify as supporting system noise
in the Nançay 1400 MHz data (likely due to polarisation calibration
errors, see Section 6), such as PSRs J1022+1001, J1600−3053, and
J1744−1134 are found to have significant timing noise in the ex-
tended EPTA data set.

10 CONCLUSIONS

In this paper we have presented an analysis of the stochastic tim-
ing properties of the 49 pulsars included in first IPTA data release.
We performed model selection using the Bayesian evidence to de-
termine the optimal model for the time-correlated signals present
in each pulsar. In addition to power-law spin noise and DM noise,
these models could include system noise, present in a single ob-
serving system, and band noise present in all observing systems
within some frequency band.
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Figure 16. One- and two-dimensional marginalised posteriors for the log
amplitude and spectral exponent of the spin-noise component of the PSR
J1939+2134 for the optimal model from the IPTA data set (black lines), the
8-yr Kaspi et. al. (1994) subset of the IPTA data set (pink lines), the recent
9-yr NANOGrav data release (Arzoumanian et al. 2015b) (blue lines), and a
9-yr PPTA data set consisting of 10 cm and 20 cm observations that extend
over the same MJD range as the 9-yr NANOGrav data release (cyan lines).

In total we found that for 19 pulsars the data support no
time-correlated timing noise components, of which notably PSRs
J1640+2224, J2124−3358, and J2129−5721 all have time spans of
greater than 15 years and σw of less than 3 µs.

We find for 17 pulsars the data support power-law DM noise,
for eight pulsars the data support a model for intrinsic spin noise,
for ten pulsars the data support system noise and finally for four
pulsars the data support a model with additional band noise.

We showed that the improved frequency coverage, and the
wealth of overlapping data from different telescopes analysed us-
ing different data reduction pipelines in the IPTA data set enables
us to separate out system- and band-dependent effects with much
greater efficacy than just using the individual PTA data sets. Addi-
tionally, we showed that failing to model these effects appropriately
can dramatically alter the interpretation of the signals observed in
the residuals, in the most extreme cases revealing a significant de-
tection of spin-noise, as a purely systemic effect.

For example, for PSR J1643−1224, we showed that the data
set has, in addition to DM variations, further frequency-dependent
noise that is coherent between different frequency bands observed
by different PTAs, but does not scale as either ν0

o or ν2
o as would be

expected for spin noise or DM variations respectively. This allows
us to interpret this timing noise as likely being the result of chro-
matic IISM effects, such as refraction and scattering, as opposed to
being due to spin noise intrinsic to the pulsar.

One of the primary goals of the IPTA is to detect GWs. The
signal induced by a GW background will be highly correlated with
the intrinsic timing noise present in each pulsar in the data set.
Therefore the strength and properties of this spin noise will cer-
tainly affect the timeline for detection of GWs using a PTA. We
showed in the context of the PSR J0437−4715 dataset, that by more
optimally modelling the different components of the stochastic sig-
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nals present in the data set, the sensitivity to a GWB could be im-
proved by ∼ 60% compared to a model that includes only DM vari-
ations and spin noise. This clearly demonstrates the importance of
performing a comprehensive analysis of the combined data sets -
such as that presented here - in order to best exploit the potential of
pulsar timing arrays to detect GWs.

It is clear that it will be critical for future GW-detection efforts
to ensure that multiple telescopes continue to observe the same pul-
sars, at the same frequencies, in order to robustly identify system-
dependent noise. Thus, even when future telescopes such as the
Square Kilometre Array come online, it will be necessary to con-
tinue observing with as many large telescopes as possible, in order
to characterise systemic effects in the data sets from these new in-
struments.

It has also become clear that band-dependent effects can have
a significant impact on the sensitivity attainable by a PTA at the
level required to detect GWs. At low radio frequencies, variable
interstellar scattering can result in non-ν−2 delays that induce erro-
neous DM corrections (Cordes, Shannon & Stinebring 2015), but
other band-dependent effects are also possible. As demonstrated
by the most recent PPTA GWB limit of 1 × 10−15, the most sensi-
tive limit to date, which was derived using only 10-cm (∼ 3 GHz)
data (Shannon et al. 2015), such effects can be mitigated by ob-
serving at as high a frequency as possible. However, the problem
is complex since different pulsars have different amounts of scat-
tering, different flux densities and different radio spectral indices.
For some pulsars with limited scatter-broadening, low-frequency
observations using e.g., LOFAR (Stappers et al. 2011; Kondratiev
et al. 2015), will help to identify band-dependent effects. Such ob-
servations, together with those obtained using the ultra-wideband
receivers that are currently installed or under construction at several
observatories, will greatly assist in achieving optimal sensitivity for
GW detection by PTAs.
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D-53121 Bonn, Germany
7 Jet Propulsion Laboratory, California Institute of Technology,
Pasadena, California 91109, USA
8 Center for Research and Exploration in Space Science and
Technology/USRA and X-Ray Astrophysics Laboratory,
NASA Goddard Space Flight Center, Code 662, Greenbelt, MD
20771, USA
9 MPI for Gravitational Physics (Albert Einstein Institute), Golm-
Potsdam 14476, Germany
10 ASTRON, the Netherlands Institute for Radio Astronomy,
Postbus 2, 7900 AA Dwingeloo, the Netherlands
11 INAF - Osservatorio Astronomico di Cagliari, via della Scienza
5, 09047 Selargius (CA), Italy
12 National Radio Astronomy Observatory, PO Box O Socorro NM
87801, USA
13 Cornell Center for Astrophysics and Planetary Science, Cornell
University, Ithaca, NY 14853, USA
14 Laboratoire de Physique et Chimie de l’Environnement et de
l’Espace LPC2E CNRS-Université d’Orléans,
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16 Department of Astronomy, School of Physics, Peking University,
Beijing, 100871, China
17 Department of Physics, Hillsdale College, 33 E. College Street,
Hillsdale, Michigan 49242, USA
18 McGill University, Department of Physics, Rutherford Physics
Building, 3600 University Street, Montreal, QC,
H3A 2T8, Canada
19 Department of Physics and Astronomy, University of British
Columbia, 6224 Agricultural Road, Vancouver, BC V6T 1Z1
Canada
20 School of Mathematics, University of Edinburgh, King’s
Buildings, Edinburgh EH9 3JZ, UK
21 Vancouver Coastal Health, Department of Nuclear Medicine,
899 W 12th Ave, Vancouver, BC, V5Z 1M9, Canada
22 Anton Pannekoek Institute for Astronomy, University of Ams-
terdam, Science Park 904, 1098 XH Amsterdam, The
Netherlands
23 NCSA, University of Illinois at Urbana-Champaign, Urbana,
Illinois 61801, USA
24 Department of Physics, Columbia University, New York, NY

10027, USA
25 Jodrell Bank Centre for Astrophysics, University of Manchester,
Manchester, M13 9PL, United Kingdom
26 Monash Centre for Astrophysics (MoCA), School of Physics
and Astronomy, Monash University, Victoria 3800, Australia
27 Kavli institute for astronomy and astrophysics, Peking Univer-
sity, Beijing 100871, P.R.China
28 Department of Physics and Astronomy, West Virginia Univer-
sity, Morgantown, WV 26506, USA
29 National Radio Astronomy Observatory, P.O. Box 2, Green
Bank, WV, 24944, USA
30 National Radio Astronomy Observatory, 520 Edgemont Rd.,
Charlottesville, VA 22903, USA
31 TAPIR, California Institute of Technology, MC 350-17,
Pasadena, CA 91125 USA
32 Physics Department, Lafayette College, Easton, PA 18042 USA
33 University of Virginia, Department of Astronomy, P.O. Box
400325 Charlottesville, VA 22904-4325, USA
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