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Maximal Length Elements of Excess Zero in

Finite Coxeter Groups

S.B. Hart and P.J. Rowley∗

Abstract

Here we prove that for W a finite Coxeter group and C a conjugacy class
of W , there is always an element of C of maximal length in C which has excess
zero. An element w ∈ W has excess zero if there exists elements σ, τ ∈ W
such that σ2 = τ2 = 1, w = στ and `(w) = `(σ) + `(τ), ` being the length
function on W .
(MSC2000: 20F55; keywords: Coxeter group, length, conjugacy class, excess)

1 Introduction

Conjugacy classes of finite Coxeter groups have long been of interest, the correspon-
dence between partitions and conjugacy classes of the symmetric groups having been
observed by Cauchy [4] in the early days of group theory. For Coxeter groups of
type Bn and Dn, descriptions of their conjugacy classes, by Specht [13] and Young
[14], have also been known for a long time. In 1972, Carter [2] gave a uniform and
systematic treatment of the conjugacy classes of Weyl groups. More recently, Geck
and Pfeiffer [6] reworked Carter’s descriptions from more of an algorithmic stand-
point. Motivation for investigating the conjugacy classes of finite Coxeter groups,
and principally those of the irreducible finite Coxeter groups, has come from many
directions, for example in the representation theory of these groups and the classi-
fication of maximal tori in groups of Lie type (see [3]). The behaviour of length in
a conjugacy class is frequently important. Of particular interest are those elements
of minimal and maximal lengths in their class. Instrumental to Carter’s work was
establishing the fact that in a finite Coxeter group every element is either an invo-
lution or a product of two involutions. Given the importance of the length function,
it is natural to ask whether for an element w it is possible to choose two involutions
σ and τ with w = στ in such a way that combining a reduced expression for σ
with one for τ produces a reduced expression for w. That is, can we ensure that
the length `(w) is given by `(w) = `(σ) + `(τ)? Not surprisingly, the answer to this
is, in general, no. This naturally leads to introducing the concept of excess of w,
denoted by e(w), and defined by

e(w) = min{`(σ) + `(τ)− `(w) : στ = w, σ2 = τ 2 = 1}.

In [7], [8] and [9], various properties of excess were investigated. It was shown,
among other things, that in every conjugacy class of a Coxeter group W there is
an element of w of minimal length in the conjugacy class, such that the excess of

∗The authors wish to acknowledge support for this work from a London Mathematical Society
Research in Pairs grant.
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w is zero [8, Theorem 1.1]. This raises the question as to whether there is also an
element of maximal length and excess zero.

In this paper we address this question and show that elements of maximal length
and excess zero do indeed exist.

Theorem 1.1. Let W be a finite Coxeter group and C a conjugacy class of W .
Then there exists an element w of maximal length in C such that e(w) = 0.

In the course of proving this result we need a workable description of representa-
tives of maximal length in conjugacy classes of Coxeter groups of types An, Bn and
Dn. Minimal length elements in conjugacy classes of Coxeter groups have received
considerable attention – see [6]. Now every finite Coxeter group W possesses a
(unique) element w0 of maximal length in W . For C a conjugacy class of W , set
C0 = Cw0 = {ww0 : w ∈ C}. If, as happens in many cases, w0 ∈ Z(W ), then C0 is
also a conjugacy class of W . Moreover, w ∈ C has minimal length in C if and only if
ww0 has maximal length in C0. Thus information about maximal length elements in
a conjugacy class may be obtained from that known about minimal length elements.
Among the finite irreducible Coxeter groups, only those of type Im (m odd), An, Dn

(n odd) and E6 have w0 /∈ Z(W ). The first of these, being just dihedral groups, are
quickly dealt with. Descriptions of maximal length elements in conjugacy classes
of type An were given by Kim [11] and for E6 see Table III of [5]. In Section 3
of this paper we deal with type Dn (and in doing so give a result for type Bn at
the same time). Representatives of maximal length for type Dn could be extracted
from Section 4 of [5], but here we give a more direct treatment that deals with both
type Bn and type Dn and gives more information about the number of long and
short roots taken negative by elements of maximal length. Theorem 3.1 gives an
expression for the maximal length of elements in a given conjugacy class for type
Dn while Theorem 1.2 below gives a list of maximal length class representatives in
types Bn and Dn, and this is what we require for our work on elements of excess zero.

Theorems 1.2 and 3.1 are consequences of a more general result, Theorem 3.6, con-
cerning D-lengths and B-lengths of elements in a Coxeter group W of type Bn

(D-length and B-length will be defined in Section 3). Suppose Ŵ is of type Dn.
Then we may regard Ŵ as a canonical index 2 subgroup of W where W is a Coxeter
group of type Bn. Let C be a conjugacy class of W that is contained in Ŵ . In the
case when n is odd, w0 6= ŵ0 (the longest element of Ŵ ) and consequently C0 = Cw0

is not even a subset of Ŵ , much less a conjugacy class of Ŵ . However, working in the
wider context of W , we are able to obtain elements of maximal D-length in C from
suitable elements of minimal B-length in C0. Therefore, in the course of establishing
Theorem 3.1, we also produce representative elements of maximal length in their
conjugacy class. To describe these elements, we will take for our group of type Bn

the group of signed permutations; that is, permutations w of {1, . . . , n,−1, . . . ,−n}
such that w(−i) = −w(i) for 1 ≤ i ≤ n. Signed permutations can be written as
permutations where each number has either a plus or a minus sign above it. So,

for example, if w = (
+

1
−
2
−
3), then w(1) = 2, w(−1) = −2, w(2) = −3, w(−2) = 3,

w(3) = −1 and w(−3) = 1. The set of signed permutations where an even number
of minus signs appear is a subgroup which is of type Dn. Conjugacy classes in types
Bn and Dn are parameterized by signed cycle type (this will be described fully in
Section 3), with some classes splitting in type Dn.
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For n a natural number, an ordered sequence λ = (λ1, . . . , λm) with λ1+· · ·+λm = n
is called a composition of n. A partition of n is a composition of n, λ = (λ1, . . . , λm),
with λ1 ≥ λ2 ≥ · · · ≥ λm. So as there is no confusion between compositions and
permutations, for cycles we do not use commas but space out the elements of the
cycle. Thus, for example, (1, 3, 2) is a composition of 6 while (1 3 2) is a permutation
in Sym(3). Now, let λ = (λ1, . . . , λm) be a composition of n, and let ρ ≥ 0. For
ease of notation set µi =

∑i−1
j=1 λj (and by convention µ1 = 0). We then define the

corresponding signed element wλ,ρ to be wλ,ρ = w1 · · ·wm where

wi =

 (
−

µi+1
−

µi+2 · · ·
−

µi+1−1
−
µi+1) if 1 ≤ i ≤ ρ;

(
−

µi+1
−

µi+2 · · ·
−

µi+1−1
+
µi+1) if ρ < i ≤ m.

We call λ a maximal split partition (with respect to ρ) if λ1 ≥ · · · ≥ λρ and λρ+1 ≥
· · · ≥ λm.
For example, if λ = (5, 2, 4, 3) and ρ = 2, then

wλ,ρ = (
−
1
−
2
−
3
−
4
−
5)(
−
6
−
7)(
−
8
−
9
−
10

+

11)(
−
12

−
13

+

14).

Our second main result in this paper is the following.

Theorem 1.2. Let W be of type Bn and Ŵ its canonical subgroup of type Dn. Every
conjugacy class of W contains an element wλ,ρ, where λ is a maximal split partition
with respect to ρ. Each element wλ,ρ has maximal B-length and maximal D-length
in its conjugacy class of W . Moreover, the excess of wλ,ρ is zero, both with respect

to the length function of W and, if wλ,ρ ∈ Ŵ , with respect to the length function of

Ŵ .

Representatives of minimal length in conjugacy classes of types Bn and Dn appear
in Theorems 3.4.7 and 3.4.12 of [6]. However we need additional information about
elements of minimal length in W -conjugacy classes, which gives as a byproduct (in
Corollaries 3.4 and 3.5) an alternative proof that the representatives given in [6] are
indeed of minimal length.

In the rest of this section we briefly discuss the proof of Theorem 1.1. Given a root
system Φ for a Coxeter group W , we have that Φ is the disjoint union of the set
of positive roots Φ+ and the set of negative roots Φ− = −Φ+. For detail on root
systems, including these observations, see for example Chapter 5 of [10]. It is well
known (for example Proposition 5.6 of [10]) that for any w in W , the length `(w) is
given by

`(w) = |N(w)| = |{α ∈ Φ+ : w(α) ∈ Φ−}|.

That is, `(w) is the number of positive roots taken negative by w. We emphasise
here that, in line with other work on Coxeter groups, elements of the group will act
on the left. It is easy to show that if w = gh for some g, h ∈ W , then

`(w) = `(g) + `(h)− 2|N(g) ∩N(h−1)|. (1)

(Equation (1) is well known but is stated and proved as part of Lemma 2.1 in [8].)
Our method of proving Theorem 1.1 for the classical Weyl groups will be as follows.
First we will establish a collection of elements w constituting a representative of
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maximal length for each conjugacy class of the group under consideration. For each
such w, we will obtain involutions σ and τ such that N(σ)∩N(τ) = ∅ and στ = w.
It follows from Equation (1) that the excess of w is zero. We conclude this section
with two lemmas which will be useful later.

Lemma 1.3. Let W be a Coxeter group. Let g, h ∈ W and suppose N(g)∩N(h−1) =
∅. Then N(gh) = N(h)∪̇h−1(N(g)).

Proof. Note that |N(h) ∩ h−1N(g)| = |hN(h) ∩N(g)| ≤ |Φ− ∩N(g)| = 0. So N(h)
and h−1(N(g)) are indeed disjoint. Suppose α ∈ N(h). Then gh(α) ∈ Φ+ would
imply that h(α) ∈ −N(g), which implies −h(α) ∈ N(h−1) ∩N(g), a contradiction.
Hence gh(α) ∈ Φ−, meaning N(h) ⊆ N(gh). Now suppose α ∈ N(gh) \ N(h).
Then h(α) ∈ Φ+ but gh(α) ∈ Φ−. Therefore α ∈ h−1(N(g)). Conversely, since
N(h−1)∩N(g) = ∅, we have h−1(N(g)) ⊆ Φ+ and so h−1(N(g)) ⊂ N(gh). Therefore
N(gh) = N(h)∪̇h−1(N(g)).

Lemma 1.4. Let W be a Coxeter group. Suppose t1, t2, . . . , tm are involutions with
the property that whenever i 6= j we have ti(N(tj)) = N(tj). Then N(t1 · · · tm) =
∪̇mi=1N(ti).

Proof. The result clearly holds when m = 1. Assume the result holds for m = k.
Set uk = t1t2 · · · tk. Then inductively N(uk) = ∪̇ki=1N(ti). If α ∈ N(uk) then
α ∈ N(ti) for some i ≤ k and so tk+1(α) ∈ N(ti) ⊆ Φ+. Thus N(uk) ∩N(tk+1) = ∅.
Lemma 1.3 now gives N(uk+1) = N(tk+1)∪̇tk+1 (N(uk)) = ∪̇k+1

i=1N(ti). The result
follows by induction.

Finally for σ ∈ Sym(n), the support of σ, denoted supp(σ) is simply the set of points
not fixed by σ. That is,

supp(σ) = {i ∈ {1, . . . , n} : σ(i) 6= i}.

We thank the referee for his/her helpful comments.

2 Type An−1

The permutation group Sym(n) is a Coxeter group of type An−1. So throughout
this section we will set W = Sym(n). In this context then, the length of an element
w is the number of inversions, that is the number of pairs (i, j) with 1 ≤ i < j ≤ n
such that w(i) > w(j). We can also think of this in terms of the root system (which
we can consider as a warm up for the type Bn and Dn cases). For the root system
Φ we can take

Φ+ = {ei − ej : 1 ≤ i < j ≤ n}
and Φ− = −Φ+. Hence

N(w) = {ei − ej : i < j, w(i) > w(j)}.

For what follows it will sometimes be helpful to consider intervals [a, b] for 1 ≤ a <
b ≤ n. The group Sym([a, b]) is a standard parabolic subgroup of W , and by Φ+

[a,b] we

mean {ei − ej : a ≤ i < j ≤ b}. We note that if w ∈ Sym([a, b]) then N(w) ⊆ Φ+
[a,b].

The conjugacy classes of W are parameterized by partitions of n. Kim [11] has
described a set of representative elements of maximal length in conjugacy classes of
Sym(n), using the ‘stair form’. Following [11] we give the following definition.
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Definition 2.1. Let n be a positive integer.

(i) Define the sequence a1, a2, . . . , an by a2i−1 = i and a2i = n − (i − 1). (So
a1 = 1. a2 = n, a3 = 2, a4 = n− 1 and so on.)

(ii) Given a composition λ = (λ1, . . . , λm) of n, its corresponding element is the
element of Sym(n) defined by

wλ = w1w2 · · ·wm

where wi = (aλ1+···+λi−1+1 aλ1+···+λi−1+2 · · · aλ1+···+λi−1+λi).

(iii) Let λ = (λ1, . . . , λm) be a composition of n. Then λ is a maximal composition
of n if there exists `, with 0 ≤ ` ≤ m such that λ1, . . . , λ` are even numbers in
any order, and λ`+1, . . . , λm are odd numbers in decreasing order.

For example, given the maximal composition (4,5) of 9, the corresponding element
is (1 9 2 8)(3 7 4 6 5). Any partition of n can be reordered so as to produce a maxi-
mal composition. Therefore each conjugacy class can be represented by a maximal
composition. We can now state the main result of [11].

Theorem 2.2 (Kim, [11]). Let λ = (λ1, . . . , λm) be a maximal composition of n.
The corresponding element wλ of λ has maximal length in its conjugacy class.

Given a sequence b1, b2, . . . bk, of distinct elements in {1, . . . , n}, we define gb1,··· ,bk
to be the permutation that reverses the sequence and fixes all other c ∈ {1, . . . , n},
so that g(bi) = bk+1−i. That is,

g = (b1 bk)(b2 bk−1) · · · (bbk/2c bdk/2e+1).

In particular, gb1,··· ,bk is an involution.

Let w be the k-cycle (b1 b2 · · · bk). Define

σ(w) =

{
gb1,...,bk if k even
gb2,...,bk if k odd

(2)

τ(w) =

{
gb1,...,bk−1

if k even
gb1,...,bk if k odd

(3)

Lemma 2.3. Let w be a cycle of Sym(n). Then writing σ = σ(w) and τ = τ(w) we
have that w = στ , where σ and τ are both involutions.

Proof. It is clear from the definitions that σ and τ are involutions. Let w =
(b1 · · · bk). If k is even, then by (2) and (3) we see that for i ≤ k − 1 we have
στ(bi) = σ(bk−i) = b(k+1)−(k−i) = bi+1, and στ(bk) = σ(bk) = b1. Therefore w = στ .
If k is odd then σ(bj) = bk+2−j when 2 ≤ j ≤ k, and σ(b1) = b1. Therefore, when
i ≤ k− 1 we have στ(bi) = σ(bk+1−i) = bk+2−(k+1−i) = bi+1 and στ(bk) = σ(b1) = b1.
Again we get w = στ .

Before we go further we introduce some additional notation. Any composition λ (via
its corresponding element wλ) induces a partition X = (X1, . . . , Xm) of {1, . . . , dn

2
e}

and a partition Y = (Y1, . . . , Ym) of {dn
2
e+ 1, . . . , n} by setting

Xk = {1, . . . , dn
2
e} ∩ supp(wk);

Yk = {dn
2
e+ 1, . . . , n} ∩ supp(wk).
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By definition of wk we see that Xk is an interval [xk, xk] where xk and xk are,
respectively, the minimal and maximal elements of Xk appearing in supp(wk).
Similarly we may write Yk = [y

k
, yk] for appropriate y

k
and yk. For example, if

λ = (8, 5), then wλ = (1 13 2 12 3 11 4 10)(5 9 6 8 7) and we have X1 =
{1, 2, 3, 4} = [1, 4], X2 = {5, 6, 7}, Y1 = {10, 11, 12, 13}, Y2 = {8, 9}. Note also that
σ(w1) = (1 10)(2 11)(3 12)(4 13), σ(w2) = (6 8)(7 9), τ(w1) = (1 4)(2 3)(11 13) and
τ(w2) = (5 7)(8 9). We will see that τ(wk) leaves the sets Xk and Yk invariant, and
σ(wk) interchanges, in an order-preserving way, nearly all, if not all, elements of Xk

and Yk.

Proposition 2.4. Let λ be a maximal composition of n and let C be the corre-
sponding conjugacy class of Sym(n). Then the corresponding element wλ has excess
zero.

Proof. Write λ = (λ1, . . . , λm). Set w = wλ = w1 · · ·wm where wi is as given in
Definition 2.1. For each i set σi = σ(wi) and τi = τ(wi). Since the supports (in
other words the sets of non-fixed points) of σ and τ are subsets of the support of
wi, it is clear that both σi and τi commute with both σj and τj whenever i 6= j.
Hence σ = σ1 · · ·σm and τ = τ1 · · · τm are involutions with the property that στ = w.
We must show that N(σ)∩N(τ) = ∅. This will imply by Equation (1) that e(w) = 0.

Consider the cycle wk of w. Then wk = (aL+1 aL+2 · · · aL+λk) (setting L =∑k−1
j=1 λj). This means, depending on the parity of L, that there is some i ≥ 1 for

which wk is either (i n−i+1 i+1 n−i · · · ) or (n−i+2 i n−i+1 · · · ). The
support of wk is Xk ∪ Yk.

Let us consider τk = τ(wk). Now if λk is even, we have τk =
∏(λk/2−1)

i=1 (aL+i aL+λk−i).

If λk is odd then τk =
∏bλk/2c

i=1 (aL+i aL+λk+1−i). In both cases τk is mapping odd
terms of the sequence (ai) to odd terms and even terms to even terms. In particular,
τk ∈ Sym(Xk)× Sym(Yk). Therefore

N(τk) ⊆ {ei − ej : xk ≤ i < j ≤ xk} ∪ {ei − ej : y
k
≤ i < j ≤ yk}. (4)

(If λk is odd then we have equality here and τk = gxk,...,xkgyk,...,yk .)

Next we look at σk. If λk is even, then setting µ = bλk
2
c we have

σk =

µ∏
i=1

(aL+i aL+λk+1−i).

If λk is odd then σk =
∏µ+1

i=2 (aL+i aL+λk+2−i). What happens this time is that σk is
the order preserving bijection between the highest µ elements of Xk and the lowest
µ elements of Yk. Therefore

N(σk) = {ei − ej : xk ≤ xk + 1− µ ≤ i ≤ xk < j < y
k
}

∪ {ei − ej : xk < i < y
k
≤ j ≤ y

k
+ µ− 1 ≤ yk}. (5)

Now for ` 6= k, we have that σ` fixes all i for i /∈ X` ∪ Y` and interchanges various
elements of X` and Y`. Therefore σ`(N(σk)) = N(σk). So we may apply Lemma 1.4
to conclude that N(σ) = ∪̇mk=1N(σk). Similarly since τ` fixes all i for i /∈ X` ∪ Y`,
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we can deduce that N(τ) = ∪̇mk=1N(τk). Looking at Equations (4) and (5) it is clear
that N(τ) ∩ N(σ) = ∅. Therefore by Equation (1) we see that `(w) = `(σ) + `(τ)
and hence e(w) = 0, as required.

We remark that Theorem 1.1 for type An follows immediately from Theorem 2.2
and Proposition 2.4.

3 Maximal lengths in types Bn and Dn

Throughout this section, W is assumed to be a Coxeter group of type Bn containing
Ŵ , the canonical index 2 subgroup of type Dn. We will view elements of W as signed
cycles. A cycle is called negative if it has an odd number of minus signs above its
entries, and positive otherwise. The conjugacy classes of W are parameterized by
signed cycle type. So for X a subset of a conjugacy class of W , this data may be
encoded by

λ(X) = (λ1, . . . , λνX ;λνX+1, . . . , λzX )

where νX is the number of negative cycles, zX is the total number of cycles, and
λ1 ≤ . . . ≤ λνX , respectively λνX+1 ≤ · · · ≤ λzX , are the lengths of the negative,
respectively positive, cycles of X. So any element of X has λ(X) as its signed cycle
type.
Our main aim in this section is to prove the first part of Theorem 1.2 along with
the following result.

Theorem 3.1. Suppose Ŵ is a Coxeter group of type Dn, and let Ĉ be a conjugacy
class of Ŵ . Set C = Ĉ0 = Ĉw0, where w0 is the longest element of W , and assume
that λ(C) = (λ1, . . . , λνC ;λν+1, . . . , λzC ). Then the maximal length in Ĉ is

n2 + zC − 2

νC−1∑
i=1

(νC − i)λi.

Let Φ be the root system of W . We employ the usual description of Φ (as given, for
example in [10]). So the positive long roots are Φ+

long = {ei ± ej : 1 ≤ i < j ≤ n},
the negative long roots are Φ−long = −Φ+

long and Φlong = Φ+
long∪Φ−long. The short roots

are Φ+
short = {ei : 1 ≤ i ≤ n}, Φ−short = −Φ+

short and Φshort = Φ+
short ∪ Φ−short. Finally

the positive roots are Φ+ = Φ+
long ∪Φ+

short, the negative roots are Φ− = Φ−long ∪Φ−short

and Φ = Φ+ ∪ Φ−. We note that the set of positive roots for Ŵ is Φ+
long. We recall

our convention will be that the action of a group element is on the left of the root,

so that for example (
−
1

+

3
+

8)(e1) = (
+

1
+

3
+

8)(
−
1)(e1) = −e3.

For w ∈ W , we define the following two sets.

Λ(w) = {α ∈ Φ+
long : w(α) ∈ Φ−};

Σ(w) = {α ∈ Φ+
short : w(α) ∈ Φ−}.

Set lB(w) = |Λ(w)| + |Σ(w)| and lD(w) = |Λ(w)|. By [10] lB(w) is the length of
w and, should w ∈ Ŵ , then lD(w) is the length of w viewed as an element of Ŵ .
We call lB(w) the B-length of w and lD(w) the D-length of w. Given w ∈ W , let

w be the corresponding element of Sym(n). So, for example, if w = (
−
1

+

3
+

8), then
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w = (138).
Observe that for w ∈ W , by a slight abuse of notation, we can write

w = w

(∏
ei∈Σ(w)(

−
i)

)
.

Hence, in our above example, (
−
1

+

3
+

8) = (138)(
−
1).

Later when we talk about excess in these groups, to avoid ambiguity we will use the
notation eB(w) to mean the excess e(w) when w is viewed as an element of W , and
eD(w) to mean the excess e(w) when w is viewed (where appropriate) as an element
of Ŵ . That is, for all w in W we define

eB(w) = min{`B(σ) + `B(τ)− `B(w) : σ, τ ∈ W,w = στ, σ2 = τ 2 = 1};
eD(w) = min{`D(σ) + `D(τ)− `D(w) : σ, τ ∈ Ŵ , w = στ, σ2 = τ 2 = 1}.

As noted earlier, conjugacy classes of W are parameterized by signed cycle type.
So, for example, if W is of type B9 and C is the W -conjugacy class of w =

(
+

1
+

2)(
+

3
−
4

+

5)(
−
6

+

7
+

8)(
+

9), then the signed cycle type λ(C) of C is λ(C) = (3, 3; 1, 2).
In Ŵ , conjugacy classes are also parameterized by signed cycle type, with the ex-
ception that there are two classes for each signed cycle type consisting only of even
length, positive cycles. (The length profiles in each pair of split classes are identical,
because the classes are interchanged by the length-preserving graph automorphism.)

Lemma 3.2. Let C be a conjugacy class of W , and w ∈ C. Then

|Λ(w)| ≥ n− zC + 2

νC−1∑
i=1

(νC − i)λi.

Moreover |Σ(w)| ≥ νC.

Proof. Set ν = νC and z = zC . Write w as a product of disjoint cycles, w =
σ1σ2 · · ·σz, where σ1, . . . , σν are negative cycles and the remaining cycles are pos-
itive. Also, order the negative cycles such that i < j if and only if the minimal
element in supp(σi) is smaller than the minimal element in supp(σj). Our approach
is to consider certain 〈w〉-orbits of roots.

Firstly, let σ be a positive k-cycle of w and consider the orbits consisting of roots
of the form ea − eb, for a, b ∈ supp(σ) and a 6= b. Each such orbit has length k.
There are 2

(
k
2

)
roots of this form, and hence k−1 such orbits. Let c be the maximal

element in supp(σ). Then each orbit contains both ea − ec and ec − eb for some
a, b ∈ supp(σ). Now ea − ac ∈ Φ+ and ec − eb ∈ Φ−. Therefore each orbit includes
a transition from positive to negative (that is, a positive root α for which w(α) is
negative). Hence each orbit contributes at least one root to Λ(w). Therefore each
positive k-cycle contributes at least k − 1 roots to Λ(w).

Next suppose σ is a negative k-cycle of w. This time we consider orbits consisting
of roots of the form ±ea ± eb, for a, b ∈ supp(σ) and a 6= b. Each such orbit has
length 2k. There are 4

(
k
2

)
roots of this form, and hence k− 1 such orbits. Moreover

if α lies in one of these orbits, then −α lies in the same orbit. Thus again each orbit
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includes a transition from positive to negative and hence contributes at least one
root to Λ(w). Therefore each negative k-cycle contributes at least k−1 roots to Λ(w).

Now suppose σi and σj are negative cycles, with i < j, and consider the union of all
orbits consisting of roots of the form ±ea±eb, where a ∈ supp(σi) and b ∈ supp(σj).
Suppose |supp(σi)| = k and |supp(σj)| = `. Let c be minimal in supp(σi). Then
every orbit contains some ±ec ± eb for some b ∈ supp(σj). For every root of the
form ec ± eb, we have wk(ec ± eb) = −ec ± eb′ and w2k(ec ± eb′) = ec ± eb′′ for some
b′, b′′ ∈ supp(σj). Now ec ± eb and ec ± eb′′ are positive roots, but −ec ± eb′ is neg-
ative. Therefore in this orbit or part of orbit there is at least one transition from
positive to negative. There are 2` roots of the form ec ± eb, and hence each pair σi,
σj of negative cycles with i < j contributes at least 2|supp(σj)| roots to Λ(w). For
example, letting i range from 1 to ν−1, we get a total of (ν−1)×2|supp(σν)| roots
from pairs σi and σν .

Combining these three observations and writing ki for |supp(σi)|, we see that

Λ(w) ≥
z∑
i=1

(ki − 1) + 2
ν∑
i=2

(i− 1)ki.

Since {k1, . . . , kν} = {λ1, . . . , λν}, and λ1 ≤ λ2 ≤ · · · ≤ λν , it is clear that

ν∑
i=2

(i− 1)ki = k2 + 2k3 + · · ·+ (ν − 1)kν

≥ λν−1 + 2λν−2 + · · ·+ (ν − 1)λ1

=
ν−1∑
i=1

(ν − i)λi.

Therefore

|Λ(w)| ≥ n− z + 2
ν−1∑
i=1

(ν − i)λi.

It only remains to show that |Σ(w)| ≥ ν. This trivially follows from the fact that
there are ν negative cycles and each negative cycle must contain at least one minus
sign. Therefore there are at least ν roots ea for which w(ea) ∈ Φ−. Thus |Σ(w)| ≥ ν
and the proof of the lemma is complete.

Next, given a conjugacy class C of W we define a particular element uC of C (which
will turn out to have minimal B-length). Recall that the signed cycle type of C is

λ(C) = (λ1, λ2, . . . , λνC ;λνC+1, . . . , λzC ),

and write µi = n−
∑i

j=1 λj for 1 ≤ i < zC . Set ν = νC and z = zC . Then define uC
to be the following element of C.

uC =(
+

1
+

2 · · ·
+

λz)(
+

µz−1+1 · · · +
µz−2) · · · (

+

µν+1+1
+

µν+1+2 · · · +
µν)·

· (
+

µν+1
+

µν+2 · · ·
+

µν−1−1
−

µν−1) · · · (
+

µ1+1 · · ·
+

n− 1
−
n)

9



As an example, let w = (
−
1

+

7
−
2
−
9)(
−
3

+

4
−
6)(

+

5
−
8) and let C be the conjugacy class of w

in type B9. Then λC = (2, 4; 3), νC = 2, zC = 3, µ1 = 7 and µ2 = 3. This gives

uC = (
+

1
+

2
+

3)(
+

4
+

5
+

6
−
7)(

+

8
−
9).

Lemma 3.3. Suppose w = uC for some conjugacy class C of W . Then |Σ(w)| = νC
and |Λ(w)| = n− zC + 2

∑νC−1
i=1 (νC − i)λi

Proof. Again set z = zC and ν = νC . The size of Σ(w) is simply the number of
minus signs appearing in the expression for w. Here, Σ(w) = {en, eµ1 , . . . , eµν−1}
and |Σ(w)| = ν.

To find Λ(w), consider pairs (i, j) with 1 ≤ i < j ≤ n. Suppose first that i and j
are in the same cycle of w. Then ei /∈ Σ(w) because only the maximal element of
each negative cycle has a minus sign above it. If j = µk for some k, or if j = n, then
exactly one of ei + ej ∈ Λ(w) or ei − ej ∈ Λ(w) occurs (depending whether k < ν).

Otherwise, ei−ej /∈ Λ(w) and ei+ej /∈ Λ(w). Hence a cycle (
+

µk+1+1 · · ·
+

µk−1
±
µk)

contributes exactly λk+1 − 1 roots to Λ(w).

Now suppose that i and j are in different cycles. Hence w(i) < w(j). It is a sim-
ple matter to check that if ei ∈ Σ(w), then {ei + ej, ei − ej} ⊆ Λ(w), whereas if
ei /∈ Σ(w), then ei− ej and ei + ej are not in Λ(w). Therefore each i with ei ∈ Σ(w)
contributes exactly 2(n− i) additional roots to Λ(w), and no roots are contributed
when ei /∈ Σ(w).

Therefore

|Λ(w)| =
z∑

k=1

(λk+1 − 1) +
∑

k:ek∈Σ(w)

2(n− k)

= (n− z) + 2 ((n− n) + (n− µ1) + (n− µ2) + · · ·+ (n− µν−1))

= (n− z) + 2
ν−1∑
i=1

i∑
j=1

λj

= n− z + 2
ν−1∑
i=1

(ν − i)λi.

Therefore |Λ(w)| = n− zC + 2
∑νC−1

i=1 (νC − i)λi and |Σ(w)| = νC .

Corollary 3.4. Let C be a conjugacy class of W . Then the minimal B-length in C
is

n+ νC − zC + 2

νC−1∑
i=1

(νC − i)λi.

If w ∈ C has minimal B-length, then |Λ(w)| = n − zC + 2
∑νC−1

i=1 (νC − i)λi and
|Σ(w)| = νC. Moreover, uC is a representative of minimal B-length in C.

In the next corollary the element utC is the element obtained from uC by taking

its shortest positive cycle (which in this context will be the cycle (
+
n

+

n−1 · · · +
m)

for some odd m), and putting minus signs over n and n − 1. In other words it

is the conjugate of uC by t = (
−
n). Conjugation by (

−
n) is the length preserving

automorphism of Ŵ induced by the graph automorphism of the Coxeter graph Dn.
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Corollary 3.5. Let C be a conjugacy class of W . If C is also a conjugacy class, or
a union of conjugacy classes, of Ŵ , then the minimal D-length of elements in the
class(es) is n− zC + 2

∑νC−1
i=1 (νC − i)λi. Moreover uC and utC are representatives of

minimal D-length in the class(es), with one in each Ŵ -class if the class C splits.

Theorem 3.6. Let C be a conjugacy class of W and w ∈ C. Let C0 be the conjugacy
class of ww0 where w0 is the longest element of W . Then the maximal B-length of
elements of C is n2−|Λ(uC0)|−|Σ(uC0)|, with uC0w0 being an element of maximal B-
length. If C is a conjugacy class or union of conjugacy classes of Ŵ , the maximal
D-length of elements of C is n2 − n − |Λ(uC0)|. Moreover uC0w0 and utC0

w0 are

representatives of maximal D-length in the class(es), with one in each Ŵ -class if C
is a split class.

Proof. Let C be a conjugacy class of W . Since w0 is central, the W -conjugacy class
C0 of ww0 is just Cw0. Moreover, for any root α we have w0(α) = −α. Therefore
for all x ∈ W , |Λ(xw0)| = (n2 − n)− |Λ(x)| and |Σ(xw0)| = n− |Σ(x)|. (Note that
there are n2 − n long positive roots and n short positive roots.) Let u = uC0 . Then
by Lemma 3.2 and Lemma 3.3, we have that for all v ∈ C0, |Λ(v)| ≥ |Λ(u)| and
|Σ(v)| ≥ |Σ(u)|. Now every x ∈ C is of the form vw0 for some v ∈ C0. Hence for
every x ∈ C, we have

|Λ(x)| ≤ n2 − n− |Λ(u)| and

|Σ(v)| ≤ n− |Σ(u)|.

Also |Λ(uw0)| = n2− n− |Λ(u)| and |Σ(uw0)| = n− |Σ(u)|. Therefore the maximal
B-length in C is n2 − n − |Λ(u)| + n − |Σ(u)| = n2 − |Λ(u)| − |Σ(u)| and this
is attained by the element uw0. Moreover, if C is a conjugacy class (or union of
conjugacy classes) of Ŵ , then the maximal D-length is n2 − n − |Λ(u)| and this is
attained by uw0 (or (uw0)t if the class splits).

Theorem 3.1 now follows immediately from Theorem 3.6 and Lemma 3.3. All that
remains in this section is to prove the following corollary, which is the first part of
Theorem 1.2.

Corollary 3.7. Every conjugacy class of W contains an element wλ,ρ, where λ is a
maximal split partition with respect to ρ. Each element wλ,ρ has maximal B-length
and maximal D-length in its conjugacy class of W .

Proof. Note that each element wλ,ρ, where λ = (λ1, . . . , λm) is a maximal split
partition with respect to ρ, is of the form w0uC for some uC . In particular we
have zC = m and νC = m − ρ. Thus each element wλ,ρ has maximal B-length and
maximal D-length in the class Cw0. Therefore, given any class C ′ of W , setting
C = C ′w0 we see that w0uC is wλ,ρ for some suitable λ, ρ, and so wλ,ρ is of maximal
B-length and D-length in C ′.

It is the task of the next section to show that these elements wλ,ρ have excess zero.

4 Excess zero in types Bn and Dn

The aim of this section is to prove Theorems 1.1 and 1.2 for W and Ŵ . In order to
do this we will show that the elements wλ,ρ described in Theorem 1.2 have excess
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zero both in W and (if applicable) in Ŵ . To obtain the required involutions σ and
τ such that N(σ)∩N(τ) = ∅ and στ = w, we modify the definition of gb1,...,bk given
in Section 2. We will only need to consider sequences of consecutive integers here
though. Let {a+ 1, a+ 2, . . . , a+ k} be a sequence of consecutive positive integers
in {1, . . . , n}. Define ga;k to be the permutation of W that reverses the sequence
and fixes all other c ∈ {1, . . . , n}. (Essentially this is just gb1,··· ,bk where b1 = a+ 1,
b2 = a + 2, . . ., bk = a + k, but viewed as an element of W rather than Sym(n).)
Thus ga;k(a+ i) = a+ k + 1− i for 1 ≤ i ≤ k. That is,

ga;k = (
+

a+1
+

a+k)(
+

a+2
+

a+k−1) · · · (
+

a+bk/2c
+

a+dk/2e+1).

In particular, ga;k is an involution.

We also define ha;k to be ga;k with the plus signs replaced by minus signs. Thus
ha;k(a+ i) = −(a+ k + 1) + i for 1 ≤ i ≤ k. So

ha;k =

 (
−
a+1

−
a+k)(

−
a+2

−
a+k−1) · · · (

−
a+k

2

−
a+k

2
+1) if k even;

(
−
a+1

−
a+k)(

−
a+2

−
a+k−1) · · · (

−
a+bk

2
c

−
a+dk

2
e+1)(

−
a+dk

2
e) if k odd.

In particular, ha;k is an involution. Moreover ha;k is order preserving on the intervals
[1, a], [a+ 1, a+ k] and [a+ k + 1, n].

As an example g1;6 = (
+

2
+

7)(
+

3
+

6)(
+

4
+

5) and h3;5 = (
−
4
−
8)(
−
5
−
7)(
−
6).

Next we define two kinds of cycle and some involutions which are relevant to our
analysis of the elements wλ,ρ. Define

w−a;k = (
−
a+1

−
a+2 · · ·

−
a+k−1

−
a+k)

σ(w−a;k) = ha;k

τ(w−a;k) = ga;k−1

w+
a;k = (

−
a+1

−
a+2 · · ·

−
a+k−1

+

a+k)

σ(w+
a;k) = ha+1;k−1

τ(w+
a;k) = ga;k

Lemma 4.1. Let w be either w−a;k or w+
a;k. Then writing σ = σ(w) and τ = τ(w)

we have that w = στ , where σ and τ are both involutions.

Proof. It is clear from the definitions that σ and τ are involutions. First we consider
w = w−a;k. Then if 1 ≤ i ≤ k − 1 we have στ(a+ i) = σ(a+ k − i) = −(a+ k + 1) +
(k− i) = −(a+ i+ 1), whereas στ(a+ k) = σ(a+ k) = −(a+ k+ 1) + k = −(a+ 1).
Therefore w = στ in this case. Now consider w = w+

a;k. Then if 1 ≤ i ≤ k−1 we have
στ(a+ i) = σ(a+k+1− i) = σ((a+1)+(k− i)) = −((a+1)+(k−1)+1)+(k− i) =
−(a + i + 1), whereas στ(a + k) = σ(a + 1) = a + 1. Thus again w = στ and the
proof is complete.

Proposition 4.2. Let w = wλ,ρ be the corresponding signed element of the maximal
split partition λ = (λ1, . . . , λm) (with respect to ρ). Then eB(w) = eD(w) = 0.
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Proof. By definition, and recalling that µi =
∑i−1

j=1 λj we have w = w1 · · ·wm where

wi =

 (
−

µi+1
−

µi+2 · · ·
−

µi+1−1
−
µi+1) if 1 ≤ i ≤ ρ;

(
−

µi+1
−

µi+2 · · ·
−

µi+1−1
+
µi+1) if ρ < i ≤ m.

Therefore

wi =

{
w−µi;λi if 1 ≤ i ≤ ρ;

w+
µi;λi

if ρ < i ≤ m.

For each i set σi = σ(wi) and τi = τ(wi). Since the supports of σi and τi are subsets
of the support of wi, it is clear that both σi and τi commute with both σj and τj
whenever i 6= j. Hence σ = σ1 · · ·σm and τ = τ1 · · · τm are involutions with the
property that στ = w. We must show that N(σ) ∩N(τ) = ∅.

Consider a cycle wk of w. Then τ(wk) is either gµk;λk−1 or gµk;λk . The action of g
is to reverse the order of the sequence µk + 1, . . . , µk + λk, reverse the order of the
sequence −µk, . . . ,−µk − λk and fix all other integers. Hence

N(τ(wk)) ⊆ {ei − ej : µk < i < j ≤ µk+1}. (6)

On the other hand σ(wk) is either hµk;λk or hµk+1;λk−1, so is of the form ha;b where
a ≥ µk and a+ b = µk+1. We observe that

Σ(ha;b) = {ea+1, . . . , ea+b} ⊆ {eµk+1, . . . , eµk+1
}. (7)

Recall that ha;b fixes ei for all i /∈ {a + 1, . . . , a + b} and ha;b(ei) = −e2a+b+1−i if
i ∈ {a+ 1, . . . , a+ b}. From this we see that

Λ(ha;b) = {ei + ej : a < i < j ≤ a+ b} ∪ {ei ± ej : a < i < a+ b < j ≤ n}. (8)

Therefore

Λ(σ(wk)) ⊆ {ei + ej : µk < i < j ≤ µk+1} ∪ {ei ± ej : µk < i < µk+1 < j ≤ n}. (9)

For l 6= k, we note that σl and τl fix all i for i /∈ {µl + 1, . . . , µl+1}. In particular
they stabilise (setwise) the sets {1, . . . , µk}, {µk+1, . . . , µk+1} and {µk+1 +1, . . . , n}.
Therefore σl(N(σk)) = N(σk). So we may apply Lemma 1.4 to conclude that
N(σ) = ∪̇mi=1N(σk) and that N(τ) = ∪̇mi=1N(τk).

Equations (6), (7) and (9) now imply that N(τ)∩N(σ) = ∅. Therefore by Equation
(1) we see that `B(w) = `B(σ) + `B(τ) and therefore eB(w) = 0. But also N(τ) ∩
N(σ) = ∅ implies that Λ(τ)∩Λ(σ) = ∅, and so we also have `D(w) = `D(σ) + `D(τ),
giving eD(w) = 0 as required.

We observe that Theorem 1.2 now follows immediately from Corollary 3.7 and
Proposition 4.2.

Corollary 4.3. Theorem 1.1 holds for Coxeter groups of type Bn and Dn.

Proof. If W is of type Bn, then by Theorem 1.2 every conjugacy class C of W
contains an element of the form wλ,ρ for suitable λ and ρ, and this element has

excess zero and maximal B-length in C. Now consider Ŵ of type Dn, and let C
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be a conjugacy class of Ŵ . If C is also a conjugacy class of W , then again C
contains some wλ,ρ, which has maximal D-length and excess zero. If C is not a

conjugacy class of W then C ∪C(
−
n) is a conjugacy class of W (as conjugation by (

−
n)

is a length preserving map corresponding to the non-trivial graph automorphism of

Dn), so for some w = wλ,ρ we have either w or w(
−
n) ∈ C. Now e(w) = 0, which

means there are σ, τ involutions such that w = στ and `(w) = `(σ) + `(τ). Hence

w(
−
n) = σ(

−
n)τ (

−
n) and, since conjugation by (

−
n) is a length-preserving map, we have

`(w(
−
n)) = `(σ(

−
n))+`(τ (

−
n)). Hence either w or w(

−
n) is an element of maximal D-length

and excess zero in C.

5 Conclusion

Proof of Theorem 1.1 Observe that every finite Coxeter group W is a direct
product of irreducible Coxeter groups. If W = W1 × · · · ×Wn for some Wi, then it
is easy to see that for w = (w1, . . . , wn) ∈ W , we have `(w) = `(w1) + · · · + `(wn)
and e(w) = e(w1)+ · · ·+e(wn). Moreover w is of maximal length in some conjugacy
class C of W if and only if each wi is of maximal length in a conjugacy class of
Wi. Therefore Theorem 1.1 holds if and only if it holds for all finite irreducible
Coxeter groups. Theorem 1.1 has already been proved for types An, Bn and Dn

(Proposition 2.4 and Corollary 4.3). The exceptional groups E6, E7, E8, F4, H3

and H4 were checked using the computer algebra package Magma[1]. In each case
there is at least one (usually many) elements of maximal length and excess zero in
every conjugacy class. Finally it is easy to check that every element of the dihe-
dral group has excess zero, so the result is trivially true. Thus Theorem 1.1 holds
for every finite irreducible Coxeter group, and hence for all finite Coxeter groups.

Theorem 1.1 shows the existence of at least one element of maximal length and
excess zero in every conjugacy class of a finite Coxeter group. However, if one looks
at some small examples in the classical Weyl groups, it appears that every element
of maximal length in a conjugacy class has excess zero. It is natural to ask whether
this holds in general. It turns out that it does not – although the number of elements
for which it fails seems to be small. For example, if W is of type E6, then in 23 of
the 25 conjugacy classes every element of maximal length has excess zero. If W is
of type E7, then every element of maximal length in 59 of the 60 conjugacy classes
has excess zero. In the remaining class, which consists of elements of order 3, there
are 708 elements of maximal length, all but 50 of which have excess zero.
For the classical Weyl groups, we have checked all conjugacy classes of these groups
for n up to 10, and in each case every element of maximal length in a conjugacy
class has excess zero. However, as Lemma 5.1 shows, there are examples of elements
w of maximal length with an arbitrarily large number of pairs of involutions xy with
w = xy, such that only one such pair has the property that `(w) = `(x) + `(y).
Elements like these ‘only just’ have zero excess. Because of near misses such as this,
we are not sufficiently confident that the pattern of maximal length elements having
zero excess will continue, even in classical groups. It would be interesting to know
whether it does.

Lemma 5.1. Let W be of type Bn, for n ≥ 2. There are at least 2n pairs of
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involutions (x, y) such that xy = (
−
1

+

2), but only one of these pairs has the property

that `(x) + `(y) = `((
−
1

+

2)).

Proof. The element w = (
−
1

+

2) is certainly of maximal length in its conjugacy class,
by Theorem 1.2. If x is an involution such that xy = w for some involution y, then
wx = w−1. Thus x = x1x2 where x1 and x2 are commuting involutions, x2 fixes 1

and 2, and x1 is either (
−
1), (

−
2), (

−
1
−
2) or (

+

1
+

2). We can then determine y, and the
upshot is that we get the following possibilities, where here z is any involution fixing
1 and 2.

x y

(
−
1)z (

−
1
−
2)z

(
−
2)z (

+

1
+

2)z

(
−
1
−
2)z (

−
2)z

(
+

1
+

2)z (
−
1)z

If N(x)∩N(y) = ∅ then clearly we must have z = 1. It is now a quick check to show

that the only possibility is x = (
−
2), y = (

+

1
+

2). The number of possible pairs (x, y) is
four times the number of involutions in a Coxeter group of type Bn−2, which is at
least 2n−2, because for all subsets {a1, . . . , ak} of size k of {3, 4, . . . , n} the element

(
−
a1) · · · (−ak) is an involution.
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